
MINI-COURSE ON APPROXIMATE GROUPS

EMMANUEL BREUILLARD

Abstract. These are notes from a 2-hour minicourse I gave at the hot topics work-
shop on Super-strong approximation at MSRI, Berkeley, in February 2012

1. Lecture 1, A definition, a problem and some theorems

1.1. Motivation: why study approximate groups ? One of the main motivations
for the subject of approximate groups and its recent fast development is its connection
with super-strong approximation1 as was first made clear in the 2005 work of Bourgain-
Gamburd [2] on SL2(Z/pZ).

Super-strong approximation is the topic of this workshop, so I will not attempt here
to give the state of the art on this theorem (for this see the talk by Alireza Salehi-
Golsefidy and [41]) nor will I talk about the wonderful applications of this theorem as
we have already heard about many of them this week. Let me however recall the follow-
ing typical instance of super-strong approximation: let Γ 6 SLd(Z) be a Zariski dense
subgroup. Then strong approximation for Γ says that for every large enough prime
number p, the subgroup Γ surjects onto SLd(Z/pZ) (see Rapinchuk’s talk and [35, 37]),
while super-strong approximation asserts that given any fixed generating set S of Γ, the
sequence of Cayley graphs Cay(SLd(Z/pZ), S mod p) forms a family of ε-expanders, for
some ε = ε(S) > 0.

Up until 2005, the main tool for constructing such families of expanders was repre-
sentation theory. This started with Margulis [34] in the 70s and his use of Kazhdan’s
property (T ) to give the first construction of expander graphs, then was continued in
the work of Lubotzky-Phillips-Sarnak on Ramanujan graphs [33], and many others later
on. This approach applied only to lattices Γ and was essentially based on a transfer
principle between the representation theory of L2(G/Γ) and that of Γ.

A consequence of the expander property is that the simple random walk on Γ, when
projected onto the finite quotients, becomes equidistributed very fast, typically in loga-
rithmic time (in the size of the quotient). In the representation theoretic approach, this
fast equidistribution follows from the spectral gap. However it is not difficult to prove
(see the survey by Hoory-Linial-Wigderson) that the spectral gap is in fact equivalent
to the fast equidistribution of the random walk. In 2005 Bourgain-Gamburd [2] reversed

Date: February 14th 2012.
1or simply ‘super-approximation’ as was suggested by Alex Kontorovich at this workshop.

1



2 EMMANUEL BREUILLARD

the idea: they proved the fast equidistribution of the random walk by combinatorial
methods, then deduced the spectral.

For this, the strategy is to control the random walk on the finite quotients SLd(Z/pZ)
in three stages:

(i) For short times (typically t < c log p, c > 0 small constant), one needs to show
that the random walk escapes proper subgroups, i.e. is not too concentrated on
any proper subgroup of SLd(Z/pZ).

(ii) For medium times (with c log p < t < C log p, c < C), one shows that the walk
escapes from approximate subgroups. This is sometimes phrased in terms of
probability measures as the “`2-flattening” lemma.

(iii) For long times one uses quasi-randomness (i.e. the Frobenius/Landazuri-Seitz
bounds on the dimension of complex linear representations of finite simple
groups) to show that the walk covers the whole group very quickly.

The hard parts of this strategy are (1) and (2). In their original paper Bourgain-
Gamburd dealt only with SL2(Z/pZ) whose subgroup structure is very simple, so item
(1) in this case was a simple consequence of Kesten’s thesis [30] (on the decay of the
probability of return to the identity of simple random walks on groups). Currently there
are two (related) known methods to deal with (1) in higher rank: to use ping-pong and
produce a free subgroup which has small intersection with every proper algebraic sub-
group (see Varju [48] and Salehi-Varju [41]), or to use the theory of products of random
matrices à la Furstenberg-Guivarc’h (see the further work of Bourgain-Gamburd [4, 3]).

Item (2) is the subject of this mini-course and amounts to understanding approximate
subgroups of the finite quotients. This was first done in a famous paper of Helfgott [25]
for SL2(Z/pZ), which then allowed Bourgain-Gamburd to implement their strategy in
the SL2 case. In my second lecture, I will explain how Helfgott’s result generalizes to
higher rank and sketch a proof of the classification of approximate subgroups of simple
algebraic groups over an arbitrary field (finite or not).

1.2. Approximate groups: the definition. Given sets A,B in a group G, write
AB = {ab, a ∈ A, b ∈ B} and more generally An+1 = AnA. Also |A| denotes the cardi-
nality of A.

Definition 1.3 (Approximate groups, Tao 2005 [45]). Let K > 1 be a parameter, G be
a group and A ⊂ G a finite subset. We say that A is a K-approximate subgroup of G if

(i) 1 ∈ A,
(ii) A is symmetric: A = A−1,
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(iii) There is a symmetric set X of size at most K such that AA ⊂ XA.

Remark. Observe that if K = 1, then we recover the definition of a finite subgroup
of G. Namely 1-approximate subgroups are just genuine finite subgroups.

This definition arose in a very different context from that of super-approximation.
Tao was largely motivated by a different problem, coming from additive number theory
and combinatorics, which is known as the:

Freiman inverse problem: Given a group G and a parameter K > 1, describe the
“structure” of finite subsets A of G such that |AA| 6 K|A|.

Sets with |AA| 6 K|A| are said to have doubling at most K, and the ratio |AA|
|A| is

often called the doubling constant of A. Note that K-approximate groups are examples
of sets with doubling at most K.

Later in the talk, I will state a recent theorem of Green, Tao and myself [11], which
provides an answer to Freiman’s inverse problem for general groups. For the appli-
cations to super-approximation however (i.e. for step (2) of the Bourgain-Gamburd
strategy outlined above) this general theorem is not enough, because it provides no
explicit bounds in terms of the parameter K. However it treats the general case while
for these applications one only cares about approximate subgroups of linear groups (i.e.
subgroups of GLd for some fixed d). In the linear setting one has an entire set of tools
and techniques (in particular algebraic geometry) that can be exploited and it turns
out that one can indeed give explicit (even polynomial bounds) for the Freiman inverse
problem as I will explain in this mini-course.

Many people have contributed to the Freiman inverse problem in recent years in the
non-commutative case. To name a few:

• Bourgain-Katz-Tao [6] (2003) proved the sum-product theorem for finite fields.
• Helfgott (2005) breakthrough result [25] for SL2(Fp) using the sum-product.
• Tao (2005) transposed to the non-commutative setting most of the apparatus of

additive number theory previously used to tackle Freiman’s problem in abelian
groups and defined approximate groups [45].
• Helfgott for SL3(Fp) [26] then partial results for SLd(Fp) by Gill-Helfgott [17].
• Dinai SL2(Fq) [15].
• Tao : general solvable subgroups with a bounded on the solvability length [46].
• Breuillard-Green [9]: torsion-free nilpotent groups and compact Lie groups.
• Bourgain-Gamburd-Sarnak SL2(Z/qZ) with q square-free integer [5].
• Hrushovski (2009): progress towards the general Freiman inverse problem and

the higher rank GLd case using model theory [27].
• Pyber-Szabo, Breuillard-Green-Tao (2010) generalization of Helfgott’s theorem

to higher rank simple algebraic groups over arbitrary fields [38, 12].
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• Varju (2010) G(Z/qZ), q square free [48].
• Bourgain-Varju (2011) [7] handled SLd(Z/nZ) for arbitrary modulus n.
• Salehi-Varju (2011) [41] handled the case G perfect with square free modulus.
• Gill-Helfgott (2011) [18]: solvable algebraic subgroups over Fp.
• Breuillard-Green-Tao (2011) : general groups with no explicit bounds [11].

1.4. Some examples of approximate groups. Having given the definition of ap-
proximate groups and stated Freiman’s inverse problem, I will now discuss some simple
instances of this problem and give some examples of approximate groups.

Remark. Suppose A is a finite set of an ambient group G. Then requiring |A| = |AA|
is equivalent to saying that A is a normalizing coset of a finite subgroup, namely that
A = aH for some a ∈ G and some finite subgroup H in G such that aH = Ha (a simple
exercise).

This remark answers completely Freiman’s inverse problem when the doubling con-
stant K equals 1. What if K is slightly bigger than 1 ? Then the following is an old
result of Freiman (see Tao’s blog or Freiman’s recent note about it [16], or [8]).

Proposition 1.5. (Freiman inverse problem for K < 3
2
) Let A be a finite subset of an

ambient group G such that |AA| < 3
2
|A|. Then there exists a finite subgroup H of G

and a ∈ G such that aH = Ha and A ⊂ aH with |A| > 2
3
|H|. The converse is clear.

In other words if A has doubling < 3
2
, then A is contained in a coset of a genuine

subgroup which is not much larger than A itself. This is certainly an instance of the
Freiman problem, because starting only from a small doubling assumption, we have
exhibited structure: there is a genuine subgroup that hangs around.

If K > 3/2, Freiman’s problem is more tricky. However as long as K < 2, it will
remain the case that doubling at most K implies that A is contained in a bounded
number of cosets of a genuine finite subgroup, which is itself not much bigger than A.
This is a recent result of Y. Hamidoune [24], which answered a question of Tao.

It is clear that such a thing no longer holds if K > 2, because of the following other
well-known example of set of small doubling (besides finite subgroups), namely arith-
metic progressions: the subset A := [−N,N ] ⊂ Z has doubling at most 2.

This brings about the following family of approximate groups:

Example 1.6 (Symmetric generalized arithmetic progressions). Let N1, ..., Nd be pos-

itive integers and consider the box B =
∏d

1[−Ni, Ni] ⊂ Zd with side lengths N1, ...Nd.
Let π : Zd → G be a group homomorphism. Then A := π(B) is called a (symmet-
ric) d-dimensional (generalized) arithmetic progression. It is easy to see that A is a
2d-approximate group and in particular |AA| 6 2d|A|.
�
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Generalized arithmetic progressions can be generalized further (!) to the setting of
nilpotent groups. Basically any homomorphic image of a “box” in a finitely generated
nilpotent group will have small doubling. This leads to the notion of nilprogression
or nilpotent progression. It was investigated in Breuillard-Green [9] as well as in Tao’s
paper on solvable groups [46]. There are several natural definitions of nilprogressions
which are all roughly equivalent. One can define them as the homomorphic image of a
“box” in the free nilpotent group Nr,k(Z) of step r and rank k. A natural definition for
the “box” can be to take all elements that can be written as a word in the generators
e1, ..., ek of Nr,k(Z) with ei appearing at most Ni times. Another more geometric possi-
ble notion of “box” is to take the integer points in the Lie group Nr,k(R) that lie in the
ball of radius 1 for the left-invariant Carnot-Caratheodory metric induced on Nr,k(R) by

the norm ‖(x1, ..., xk)‖ =
∑ |xi|

Ni
on the abelianization Rk of Nr,k(R). The two notions

lead to two essentially equivalent notions of nilprogressions, see [9, 11, 8].

Let us leave the general case for a moment and say a word about approximate sub-
groups of G = Z, the infinite cyclic group. In this case, the inverse Freiman problem was
solved by Freiman himself in the late 60s. There are no non trivial finite subgroups of Z,
so finite groups will not appear. However there are generalized arithmetic progressions.
Freiman’s theorem [16] says that every approximate subgroup of Z is roughly equivalent
to a generalized arithmetic progression.

Theorem 1.7 (Freiman’s theorem). Let A be a K-approximate subgroup of Z. Then
there is a d-dimensional generalized arithmetic progression P and a set X in Z such
that

(i) A ⊂ X + P
(ii) |P | 6 C|A|, with C 6 OK(1).

(iii) |X| 6 OK(1)
(iv) d 6 OK(1)

For a proof, see Ben Green’s Edinburgh notes [22], or the book by Tao and Vu [47].

In the 90s Ruzsa gave a simplified proof of Freiman’s theorem [40], which was im-
proved by Chang [14] and then pushed to all abelian groups by Green and Ruzsa [23].
Ruzsa’s proof gave the bounds of the form: C 6 exp(O(KO(1))), d 6 O(KO(1)) and
|X| 6 O(KO(1)). Note that, given the exponential bound on C, one could ignore the set
X altogether by declaring it to be part of the progression P at the expense of increasing
slightly the rank d of the progression. However the set X becomes important when one
considers the following conjecture:

Conjecture 1.8 (Polynomial Freiman-Ruzsa conjecture). One can take C 6 O(KO(1)),
while keeping |X| and d of size O(KO(1)).

Recently Tom Sanders gave almost polynomial bounds towards this conjecture (see

[42]): he has d = O(log6K), while C 6 K3 and |X| = O(K log6K).
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1.9. The Balog-Szemeredi-Gowers-Tao lemma: from small doubling to ap-
proximate groups. Tao’s definition of a K-approximate subgroup is only one of sev-
eral natural candidates. The following result says that all these notions are essentially
equivalent.

Proposition 1.10 (Balog-Szemeredi-Gowers-Tao). There is an absolute constant C > 0
such that the following conditions on a finite set A in an ambient group G

(i) |AA| 6 K|A|
(ii) |AAA| 6 K|A|

(iii) |{(a, b, c, d) ∈ A× A× A× A|ab = cd}| > |A|3
K

(iv) |{(a, b) ∈ A× A|ab ∈ A}| > |A|2
K

(v) A is a K-approximate subgroup of G.

are roughly equivalent in the sense that if condition (i) holds for A with a constant K,
then condition (i′) will hold for a set A′ ⊂ G such that |A ∩ A′| > 1

CKC max{|A|, |A′|}
with constant K ′ 6 CKC (where C is an absolute constant).

This proposition was proved by Tao in [45], but it relies2 on a tricky graph theoret-
ical result of Balog and Szemeredi, which was later improved (yielding the polynomial
bound CKC in the above statement) by Gowers. See the book by Tao-Vu [47] for a
proof, or Green’s Part III lectures notes.

This proposition also gives a hint at what kind of equivalence between sets one would
like to impose when dealing with the Freiman inverse problem and talk about the
“structure” of sets of small doubling. For example, passing to a large (say > 1/CKC)
proportion of a set A is allowed and does not significantly alter the structure of A (at
least for our purposes).

Tao’s approximate groups are easier to handle than the other notions defined in this
proposition. In fact it is fair to say that this definition is tailored so as to reduce to a
maximum the number of combinatorial arguments in the proofs, so the inverse Freiman
problem in a given group G now becomes a more familiar (at least to me) algebraic or
geometric problem about the ambient group.

I will now present some of the basic properties of approximate groups. This basic
yoga of approximate groups relies of the following guiding principle which will remain
our slogan for the remainder of these lectures:

Philosophy: group theoretical arguments (at least those not involving divisibility prop-
erties of the order of the group) can often be successfully transfered to approximate
groups.

2at least for the conditions involving (iii) and (iv); the rough equivalence between (i), (ii) and (v) are
easier.
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1.11. Basic properties of approximate groups. As Tao observed, many combina-
torial arguments from additive number theory actually work without modification in the
non-commutative setting. This is the case for the celebrated Ruzsa triangle inequality
which asserts that the Ruzsa distance

d(A,B) = log
|AB|√
|A||B|

for any finite subsets A,B of an ambient group G satisfies the triangle inequality

d(A,C) 6 d(A,B) + d(B,C).

The proof of the Ruzsa triangle inequality is just a few lines (see the book by Tao and
Vu [47]) and is comparatively much easier than the Balog-Szemeredi-Gowers-Tao result
stated above. Applying only the Ruzsa triangle inequality one can prove the following
(e.g. see [8]):

Lemma 1.12. Let A be a finite subset of a group G.

• If |A3| 6 K|A|, then |An| 6 K2n|A| for all n > 1.
• If |A3| 6 K|A|, then B := (A ∪ A−1 ∪ {1})2 is a O(KO(1))-approximate group.
• If A is a K-approximate subgroup and B an L-approximate subgroup, then
A2 ∩B2 is a (KL)2-approximate subgroup.

Beware: small doubling is not enough to guarantee small tripling! If A = H ∪ {x} for
some finite subgroup H and such that xHx−1∩H = {1} (this situation can arise), then
AA = H∪xH∪Hx∪{x2} (a set of size at most 3|A|) while AAA contains HxH, which
has size |H|2.

The polynomial bounds in Proposition 1.10 and Lemma 1.12 are crucial for the ap-
plications to super-approximation.

Also crucial to the classification of approximate subgroups of simple algebraic groups
that we are about to describe is the following approximate version of the orbit-stabilizer
lemma for group actions.

Lemma 1.13 (Approximate orbit-stabilizer lemma). Suppose a group G acts on a set
X and let A be a K-approximate subgroup of X. Let k > 2, then

|A| 6 |A · x| · |Stab(x) ∩ Ak| 6 Kk+1|A|

Observe that this lemma applies in particular to the action by left translations on the
coset space G/H for any subgroup H. It follows from the lemma applied to this action
that the size of Ak ∩ H is roughly (i.e. up to a factor Kk) independent of k > 2. See
Pyber’s talk, where this feature is exploited a lot: growth in a subgroup implies growth
of the set.

Proofs of the two lemmas above can be found in my lecture notes [8] for instance.
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1.14. Classification of approximate groups and the Helfgott-Lindenstrauss
conjecture. We have seen two chief examples of approximate groups: finite subgroups,
and generalized arithmetic progressions. We also mentioned that the latter is only a
special case of the notion of nilprogression.

Furthermore one can build extensions of approximate groups: if A normalizes a finite
subgroup H and A is an approximate subgroup, then AH is again an approximate sub-
group. In particular any set of the form HL, where H is a finite subgroup normalized
by L and L is a finite subset such that H\HL is a nilprogression is an approximate
subgroup. Such HL sets are called coset nilprogressions.

The following conjecture and theorem say that every approximate group is roughly
equivalent to an HL set as above. The conjecture was formulated by E. Lindenstrauss in
a private communication. It is also implicit in Helfgott’s SL3(Z/pZ) paper [26], because
it coincides with his description of an arbitrary approximate subgroup of SL3(Z/pZ).

Conjecture 1.15 (Helfgott-Lindenstrauss). Let G be an arbitrary group. Let A be a
K-approximate subgroup of G. Then there is a finite subset P of G (“a coset nilpro-
gression”) and X ⊂ G such that

(i) A ⊂ XP
(ii) |X| 6 OK(1)

(iii) |P | 6 OK(1)|A|
(iv) P = HL, where H is a finite subgroup of G and L a finite subset lying in the

normalizer NG(H) of H in G such that H\HL generates a nilpotent subgroup
of H\NG(H) with complexity OK(1) (i.e. number of generators and nilpotency
class are OK(1)).

This conjecture is now a theorem:

Theorem 1.16 (B-Green-Tao, 2011 [11]). The Helfgott-Lindenstrauss conjecture holds.
Moreover one can take P ⊂ A4 and P a coset nilprogression of complexity OK(1).

Note that the theorem not only proves the conjecture, but also generalizes Freiman’s
classification of approximate subgroups of Z (see Theorem 1.7), because nilprogressions
in Z are just generalized arithmetic progressions. In fact our proof of Theorem 1.16
gives a new proof of Freiman’s theorem.

The theorem also gives a strengthening of Gromov’s polynomial growth theorem and
has several applications to Riemannian geometry and non-negative curvature. Gromov’s
theorem can be deduced in only a few lines from Theorem 1.16.

The reader interested in the proof of Theorem 1.16 should look at our arXiv preprint
[11] and at Tao’s blog posts in the past few months. The basic strategy was inspired
by a 2009 preprint of Hrushovski [27], which outlines a way to tackle the Freiman in-
verse problem for general groups using model theory to construct limits of sequences
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of approximate groups. In particular Hrushovski showed that every infinite sequence
of K-approximate groups (K fixed) yields a certain locally compact group in a certain
model theoretic limit. Studying this locally compact group, and in particular applying
the Gleason-Montgomery-Zippin-Yamabe structure theorem (Hilbert 5th problem), al-
ready gets you a long way towards the above theorem and indeed Hrushovski was also
able to improve on Gromov’s polynomial growth theorem using these ideas. In [11] we
delve into the proof of the Gleason-Montgomery-Zippin-Yamabe structure theorem and
manage to transfer some of the group theoretic arguments there to approximate groups
in order to exhibit the coset nilprogression P .

The proof of Theorem 1.16 does not give any explicit bounds on the complexity of
the coset nilprogression3 nor on the size of X. This is due to the inherently non explicit
nature of the proof, which makes use of ultrafilters to take limits.

In view of the polynomial Freiman-Ruzsa conjecture (see Conjecture 1.8 above) it is
reasonable to expect that these bounds can be made polynomial in K.

We will see in the second lecture that this polynomiality of the bounds can be proven
for approximate subgroups of GLd with exponents depending on the dimension d. But
can they be made independent of d ? – this was asked in Pyber’s lecture. For approxi-
mate subgroup of GLd one can even hope to find a P which is normalized by A (this is
what happens in Helfgott SL3(Z/pZ) theorem). One should however bear in mind the
following example due to Laci Pyber (see also the end of his preprint with E. Szabo):

Example 1.17. Let G = S2n+1 be the symmetric group on 2n + 1 objects. Let H be
the subgroup generated by all transpositions (i, i + 1) for i = 1, ..., n. Let σ be the shift
i 7→ i + 2 mod 2n + 1. Let A := H ∪ {σ±1}. Then A is a 10-approximate group which
generates G. While it is contained in at most 10 cosets of H, it does not normalize any
proper subgroup of G (except A2n+1), because S2n+1 has no non trivial normal subgroup
(apart from A2n+1).
�

In this example, the approximate group is roughly equivalent to a large finite sub-
group which is almost normalized by A, but A does not normalize any subgroup (except
trivial ones, which are either much smaller of much larger than A).

3if one does not require P ⊂ A4, then our proof does give a O(logK) bound on the dimension of P .
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2. Lecture 2, Approximate subgroups of linear groups: some proofs

2.1. Quasi-randomness and Gowers trick. A distinctive feature of finite simple
groups (as opposed to abelian groups for instance) is that they have few complex linear
representations of small dimension. In fact the smallest dimension m(G) of a non triv-
ial complex linear representation must tend to infinity with the size of the finite simple
group G. This fact is a simple consequence of Jordan’s theorem on finite subgroups of
GLd(C) which asserts that every such group must have an abelian normal subgroup of
index at most some bound which depends on d only (see e.g. [10] for some historical
comments on Jordan’s theorem).

This feature has played a very important role in the spectral theory of arithmetic
surfaces (see the work of Sarnak-Xue [43]). It also plays an important role in the
Bourgain-Gamburd proof of the spectral gap for SL2(Z/pZ) in the last step of their
proof, when one derives the spectral gap from the fast decay of the probability of return
to the identity of the random walk at time C log p.

For finite simple groups of Lie type (as opposed to the alternating groups) a very
strong lower bound on the dimension of complex linear representations is known. This
goes back to Frobenius who showed that m(PSL2(Fp)) = p−1

2
and was established in

full generality by Landazuri and Seitz [31] in the 70s. Namely:

Fact: There is a constant cd > 0 such that m(G) > cd|G|
r
d for every finite simple group

of Lie type G = G(q) over a finite field Fq with dimension d = dim G and rank4 r.

In the early 2000s Tim Gowers [19] exploited this fact in order to answer a combina-
torial question of Babai and Sos: does every finite group G have a product free set of
size > c|G| ? A product free set is a subset X ⊂ G such that XX ⊂ G \ X. Gowers
shows that answer is no for PSL2(Fp) and for all finite simple groups of Lie type pre-
cisely thanks to the above fact about m(G). And indeed this follows directly from the
following formulation (due to Nikolov-Pyber [36]) of Gowers’ result (take A = B = X
and C = X−1):

Lemma 2.2 (Gowers’ trick). Suppose A,B,C are subsets of a finite group G such that
|A||B||C| > |G|3/m(G). Then ABC = G.

Gowers’ proof (as well as the proof given later by Babai-Nikolov-Pyber [1]) is based
on spectral analysis of bi-partite graphs. We give a seemingly different though shorter
argument based on the non-abelian Fourier transform.

Proof. Let f := 1A ∗ 1B ∗ 1C be the convolution product of the indicator functions of
the three subsets A,B and C. Note that the support of f is precisely the product set
ABC. So in order to show that ABC = G it is enough to prove that f(g) > 0 for every
g ∈ G. To show that, the idea is very simple: expand f in Fourier.

4Recall that the rank of G is the dimension of a maximal torus, in particular it is < d.



MINI-COURSE ON APPROXIMATE GROUPS 11

Recall the non-abelian Fourier inversion and Parseval formulas (see Serre’s book [44]
on representation theory of finite groups for example). Let dπ = dim(Hπ) be the di-
mension of the irreducible representation π of G.

Parseval: ∑
g∈G

|f(g)|2 =
1

|G|
∑
π

dπ‖π(f)‖2

Fourier inversion:

f(g) =
1

|G|
∑
π

dπ〈π(f), π(g)〉

where the sum on the right hand side extends over all irreducible complex linear repre-
sentations of G, and where π(f) =

∑
g∈G f(g)π(g) and the scalar product is defined on

End(Hπ) by 〈X, Y 〉 = trace(XY ∗).

From the Parseval formula stated above applied to 1C and the bound dπ > m(G) for
every non trivial π, we see that |A| = 1

|G|
∑

π dπ‖π(1A)‖2 and thus:

‖π(1A)‖ 6

√
|A||G|
m(G)

(2.2.1)

for every non trivial π.

Now writing the Fourier inversion formula for f and splitting the sum into a main
term (corresponding to the trivial representation) and a remainder term (corresponding
to all other representations), we get:

f(g) >
|A||B||C|
|G|

− 1

|G|
∑
π 6=1

dπ‖π(1A)‖ · ‖π(1B)‖ · ‖π(1C)‖

Using (2.2.1) to control ‖π(1A)‖ and Cauchy-Schwartz inequality together with the
Parseval identity to handle ‖π(1B)‖ and ‖π(1C)‖, we get:

f(g) >
|A||B||C|
|G|

−

√
|A||G|
m(G)

1

|G|
√
|G||B| ·

√
|G||C|

which is > 0 as soon as |A||B||C| > |G|3/m(G) as claimed.

In relation with approximate groups, Gowers’ trick will be used in the following form.

Corollary 2.3. Let G = G(q) be a finite simple group of Lie type of dimension d =
dim G over a finite field Fq. There is δ = δ(d) > 0 independent of q such that AAA = G
for every subset A ⊂ G such that |A| > |G|1−δ.
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Proof. Combine Gowers’ trick with the bound on m(G) mentioned above.

Gowers calls “quasi-random” the finite groups G for which m(G) is large. This
terminology comes from the abelian case, where a quasi-random subset, say of G =
(Fp,+), is by definition a subset A ⊂ G such that χ(1A) =

∑
a∈A χ(a) is small compare

to |G| for every non trivial character χ of G. Certainly random subsets of G (chosen by
flipping independent coins for each element of G) are quasi-random. The bound (2.2.1)
shows that if m(G) is large, then every subset of G is quasi-random in the sense that
‖π(1A)‖ is small compared to |G| for every non trivial irreducible representation π.

2.4. The sum-product theorem. The story of approximate groups really began with
a 2003 paper of Bourgain-Katz-Tao [6], which proved the following:

Theorem 2.5 (Sum-product in Fp). Let Fp be the finite field with p elements (p prime).
Then for every δ > 0, there is ε > 0 such that

|SS|+ |S + S| > |S|1+ε

for every subset S ⊂ Fp such that pδ < |S| < p1−δ.

There are several proofs of this result (see e.g. Tao-Vu [47]), most of them very com-
binatorial. Konyagin [29] gave a proof which does not require the |S| > pδ assumption.
We will give a more geometric proof (also not requiring the |S| > pδ assumption) later
on in this talk. All proofs require (at least some version of) the following lemma due to
Katz and Tao (see [47] or [8]):

Lemma 2.6 (Katz-Tao lemma). For every n > 1 there is an absolute constant C > 0
such that for every K > 1 and for any set S ⊂ Fp with |S + S| + |SS| 6 K|S|, there
is λ ∈ F∗p and a subset S ′ ⊂ λS with |S ′| > |S|/CKC and |Fn(S ′)| 6 CKC |S|, where
Fn(S ′) denotes the set of all elements of Fp one can obtain from 0 by applying at most n
operations (i.e. additions,subtractions, multiplications, divisions) by elements from S ′

or from the previously constructed elements.

It turns out that one can recast the sum-product theorem in terms of the Freiman
inverse problem, which we discussed in the first lecture. This was first observed by
Helfgott in his SL3 paper [26]. Consider the group of affine transformations of the
Fp-line, namely Fp o F×p viewed as a matrix group as

{
(
α β
0 1

)
| α ∈ F×p , β ∈ Fp}

and inside this group consider the subset

B := {
(
α β
0 1

)
| α ∈ S ′, β ∈ S ′}

where S ′ is the subset obtained from the Katz-Tao lemma (applied with n = 4 say).
Then B satisfies

|BBB| 6 CKC |B|
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for some absolute constant C. So in view of Lemma 1.12 the subset A := (B ∪ B−1 ∪
{id})2 is a O(KO(1))-approximate subgroup of the affine group. So if we knew the
solution to Freiman’s inverse problem for the affine group, namely a complete description
(with polynomial bounds) of its approximate subgroups, then we would derive the sum-
product theorem as a corollary. We will pursue this strategy to the end in the second
part of the talk, but before that I would like to describe the answer to Freiman’s inverse
problem inside simple algebraic groups.

2.7. The product theorem. In his seminal 2005 paper [25], Helfgott established the
following theorem

Theorem 2.8 (Helfgott’s product theorem). For every δ > 0 there is ε > 0 such that

|SSS| > |S|1+ε

for every finite generating subset of SL2(Z/pZ) such that |S| < | SL2(Z/pZ)|1−δ.

Approximate groups are not mentioned in this statement. The bridge between prod-
uct theorems and results about the classification of approximate groups is clear however:
if one has |SSS| 6 |S|1+ε, then S has tripling at most K, where K = |S|ε, and thus by
Lemma 1.12 A := (S ∪ S−1 ∪ {id})2 is CKC-approximate group. So Helfgott’s theorem
can be rephrased by saying that: there are no non-trivial approximate subgroups of
SL2(Fp).

Helfgott’s proof was based on the Bourgain-Katz-Tao sum-product theorem and ex-
plicit 2× 2 matrix calculations. It appeared clearly from the proof however that a key
role was played by large subsets of simultaneously diagonalizable matrices in S. This
idea was further exploited in Helfgott’s SL3 paper [26].

After Helfgott’s results (and also his partial results with Gill [17] on SLn(Z/pZ)) it
became highly plausible that a product theorem should hold in full generality for sub-
sets of arbitrary simple algebraic groups (such as SLd) over an arbitrary field. Moreover
a proof of such a theorem should be geometric and exploit the underlying algebraic
geometry of simple algebraic groups and in particular the geometry of maximal tori.

The breakthrough came with Hrushovski’s 2009 preprint on “Stable groups theory
and approximate subgroups” (see [27]) in which he made use of model theoretic tools to
give an essentially complete classification of approximate subgroups of simple algebraic
groups, albeit with no explicit bounds. One of his statements is the following:

Theorem 2.9 (Hrushovski 2009). Let G be a simple algebraic group over an alge-
braically closed field k with dim G = d. Let A ⊂ G(k) be a K-approximate subgroup of
G(k). Then there exists a closed algebraic subgroup H of G such that A intersects at
most f(d,K) cosets of H(k) and

(i) either H is a proper algebraic group of G with at most C = C(d) connected
components,
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(ii) or A4 contains H(k).

where f(d,K) is a number depending only on d and K.

Hrushovski’s interest in approximate groups was triggered by his observation of the
similarity between the Freiman inverse problem and some model theoretic results, such
as the Zilber stabilizer lemma, in stable group theory. His proof however (as often in
model theory) gave no explicit bounds on the function f(d,K) above in terms of d and
K.

A few months after Hrushovski’s paper appeared on the archive however Pyber-Szabo
[39, 38] and independently Green-Tao and myself [13, 12] managed to give a polynomial
bound on f(K, d) and to improve Hrushovski’s conclusion slightly as follows:

Theorem 2.10 (Classification of approximate subgroups of G(k), PS / BGT 2010).
There is a constant f(d,K) 6 Od(K

Od(1)) such that for every simple algebraic group
G with dimension d = dim G which is defined over an algebraically closed field k and
every K-approximate subgroup A ⊂ G(k)

(i) either there exists a proper closed algebraic subgroup with at most C(d) con-
nected components such that A ⊂ H(k)

(ii) or |A| 6 f(d,K)
(iii) or |A| > |〈A〉|/f(d,K).

I will sketch a proof of that theorem later in the talk. An explicit bound on the
implied constants in f(d,K) is obtainable in principle from the proof (especially the
version given by Pyber-Szabo), although it has not been worked out, mostly because
tracking the constants throughout the proof would most likely not yield very sharp
bounds.

It follows from the theorem that if conclusions (i) and (ii) fail, thenA generates a finite
subgroup. In view of that theorem of Jordan on finite linear groups in characteristic
zero which we already mentioned, this implies that k is of positive characteristic. Now
a deep result of Larsen and Pink [32] implies that 〈A〉 is then essentially (up to some
bounded index issues) a finite simple group of Lie type. In particular the Landazuri-
Seitz bound on the dimension of complex linear representations holds and Gowers’ trick
kicks in.

One can then easily derive the following generalization of Helfgott’s product theorem.

Corollary 2.11 (The product theorem). Let G be a simple algebraic group over an
algebraically closed field k with dimension d = dim G. There is a constant ε = ε(d) > 0
such that for every finite subset S ⊂ G(k),

(i) either S is contained in a proper algebraic subgroup with at most C connected
components.

(ii) or

|SN | > min{|〈S〉|, |S|1+ε}
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where N = N(d) and C = C(d) are constants.

One can take N(d) 6 max{3, |Z|}, where |Z| is the size of the center of the simply
connected cover of G.

Sketched proof. Take k = Fp, set K = |S|ε and apply Theorem 2.10 to A := (S ∪
S−1 ∪ {id})2, which is a O(KO(1))-approximate group. Then, thanks to the polynomial
bound on f(d,K) obtained in Theorem 2.10, item (ii) in that theorem cannot hold if ε
is chosen small enough. So if (i) does not either, it must be that (iii) holds. Then 〈A〉
is finite and k has positive characteristic (because the negation of (i) is incompatible
with Jordan’s theorem in characteristic zero). Larsen-Pink then tell us that 〈A〉 is (after
taking the commutator subgroup and moding out by the center) a finite simple group
of Lie type. If ε is small enough, we can apply Gowers’ trick (see Corollary 2.3 above)
to [〈A〉, 〈A〉]/center and the result follows.

Finite simple groups of Lie type5 are of form G = G(Fq)/center for some absolutely
almost simple (simply connected) algebraic group G defined over Fq. It can be shown
that they (rather their lift to G) are not contained in a proper algebraic group of G
with boundedly many connected components. Moreover finite simple groups are quasi-
random in the sense of Gowers (cf. the result of Landazuri-Seitz mentioned above)
and Gowers’ trick applies to large subsets of G. The product theorem then takes the
following simple form for generating sets of finite simple groups of Lie type.

Corollary 2.12 (Product theorem for finite simple groups of Lie type). Let G = G(q)
be a finite simple group of Lie type over a finite field Fq with d = dim G. Let A be any
generating set for G. Then

|SSS| > min{|G|, |S|1+ε}
for some constant ε = ε(d) > 0.

I am now going to talk about the proof of Theorem 2.10. I will give an essentially
complete proof, modulo the Larsen-Pink inequality for which I will refer to our original
paper. Before doing so, I want to give a geometric proof of the sum-product theorem
(Theorem 2.5), because we will see that this geometric proof can easily be transformed
into a proof of Theorem 2.10.

2.13. A geometric proof of the sum-product theorem. In this paragraph I give
a proof of Theorem 2.5. I keep the notation of that theorem and of the discussion
following it. In particular G = FpoF×p is the group of affine transformations of the line
over the finite field Fp. In matrix notation

G = {
(
α β
0 1

)
| α ∈ F×p , β ∈ Fp}

This group admits two remarkable actions:

5except the Suzuki and Ree families, which arise slightly differently and can also be handled similarly.
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(a) its action on itself by conjugation gh := hgh−1,

(b) its action on the affine line Fp by affine transformations g · x := αx+ β.

In case (b) the stabilizers of a point x ∈ Fp are the tori Tx made of all homotheties
fixing the point x. In case (a) the stabilizers are centralizer subgroups. Note that if g is
a non trivial homothety (i.e. fixes a point x and is not the identity), then its centralizer
CG(g) is precisely the torus Tx. Finally note that gTxg

−1 = Tg·x.

The sum-product theorem is a consequence of the tension between these two actions.
The proof relies on the orbit-stabilizer lemma for approximate groups (i.e. Lemma 1.13)
applied to both actions. The approximate group in consideration is obtained from the
set S in the way that was described earlier, namely A := (B ∪ B−1 ∪ {id})2, where B
is the set:

B := {
(
α β
0 1

)
| α ∈ S ′, β ∈ S ′}

and S ′ is the subset obtained from the Katz-Tao lemma applied with n = 6 say and
with K = |S|ε for some small ε to be determined later. Then B satisfies |BBB| 6
CKC |B| and by Lemma 1.12 A is a O(KO(1))-approximate subgroup of G. Moreover

|S ′| = |B| 12 > |S|/O(KO(1)).

Let us apply the orbit-stabiliser lemma two both actions:

Action (a) : suppose g ∈ A2 ∩ Tx for some x ∈ Fp and g 6= 1, then computing the
matrix gh for h ∈ A, we see that |gA| 6 O(KO(1))|S| because (cf. Katz-Tao lemma) the
translation part of that matrix is an algebraic expression of small length involving only
elements from S ′. From the orbit-stabilizer lemma, we conclude:

|A2 ∩ Tx| >
|S|

O(KO(1))

Action (b) : we clearly have |A · x| > |S ′| > |S|
O(KO(1))

for every x ∈ Fp, for example

because A contains many translations. From the orbit-stabilizer lemma applied to this
action, we conclude:

|A2 ∩ Tx| 6 O(KO(1))|S|.

Conclusion: For every x ∈ Fp, if A2 ∩ Tx 6= {1}, then |A2 ∩ Tx| �K |S|,

where I have used the following shorthand |A1| �K |A2| if |A1| > |A2|/O(KO(1)) and
vice-versa.
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This is where the miracle happens: if A2 ∩ Tx has one non trivial element, then it
has many! Everything will follow easily from this. Let T be the set of tori Tx which
intersect A2 non trivially (the so-called “involved tori” in the terminology of [13]). We
have:

Key claim: If |S ′| > CKC for some absolute constant C, then T is invariant under
conjugation by A (and hence by the subgroup 〈A〉 generated by A).

Proof. Recall again the orbit stabilizer lemma (Lemma 1.13) and its extra feature that
|Ak ∩ Stab(x)| is roughly of the same size as |A2 ∩ Stab(x)| for any given k > 2. So we
may write:

|A2 ∩ aTxa−1| = |a−1A2a ∩ Tx| �K |a−1A4a ∩ Tx| > |A2 ∩ Tx|

If the Tx ∈ T , then the right handside is large. Hence the left handside too is large,
and is in particular > 1, so aTxa

−1 ∈ T as claimed.

Note from the way we defined A that A contains a non trivial translation (e.g. of
the form b−11 b2, where b1 and b2 have the same top-left matrix entry). Since p is prime,
Z/pZ has no non-trivial proper subgroup and it follows that 〈A〉 contains all translations.
Therefore every torus Tx belongs to T , and |T | = p.

To finish the proof it only remains to count A2 by slicing it into different tori. Since
tori are disjoint (except for the fact that they all contain the identity), we may write⋃

Tx∈T

(A2 ∩ Tx \ {1}) ⊂ A2,

thus

|T | |S|
O(KO(1))

6
∑
Tx∈T

|A2 ∩ Tx \ {1}| 6 |A2| 6 K|A| = O(KO(1))|S|2

hence

|S| > |T |
O(KO(1))

=
p

O(KO(1))

Thus (remember that K = |S|ε) choosing ε small enough (ε 6 δ
O(1)

will do) we obtain

|S| > p1−δ as claimed.

2.14. A proof of the product-theorem and the Larsen-Pink inequality. The
proof of the product theorem (in the form of the classification theorem for approximate
subgroups, i.e. Theorem 2.10) follows exactly the same path as the above geometric
proof of the sum product theorem. There will be here also two different actions of the
group and the tension between these two actions, via the orbit-stabilizer lemma for
approximate groups (Lemma 1.13), will yield the proof.
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It turns out that in order to implement this strategy, one needs one further ingredi-
ent, which was already present in a crucial way in Hrushovski’s proof of Theorem 2.9
(although used differently). This is the celebrated Larsen-Pink dimension inequality,
which was devised by Larsen and Pink in their 1995 preprint on finite subgroups of
linear groups (the same work which we already cited and has now appeared as [32]) and
then subsequently investigated in the model theoretic framework by Hrushovski and
Wagner in this article [28].

Theorem 2.15 (Larsen-Pink inequality). Let G be a simple algebraic group over an
algebraically closed field k. Let M > 1. Let A be a K-approximate subgroup of G(k)
and suppose that A is not contained in a proper algebraic subgroup of G with at most M
connected components. Then for every closed algebraic subvariety V of G with degree
at most M ,

|A ∩ V| 6 O(KO(1))|A|
dimV
dimG

where the implied constants depend on M and dim G only.

Larsen and Pink proved this inequality in [32] in the case when A is a genuine finite
subgroup of G(k). Hrushovski and Wagner [28] then gave a model theoretic proof (as
well as a vast generalization) and Hrushovski [27] used this generalized version in his
proof of Theorem 2.9. In turns out that the proof in the approximate group case is
no more difficult than in the group case and this is a very good example where the
philosophy of transfering group theoretical arguments to the approximate group setting
is particularly successful.

A word on the proof. There are at least two cases where the inequality is obvious:
when dimV = 0, because then V is finite and its degree is its number of elements; and
when dimV = dim G, obviously. Now the proof proceeds by a double induction on the
dimension of dimV . Starting with two possible counter-examples, one of smallest pos-
sible dimension V− and one of largest possible dimension V+ one uses the assumption
on A (that A is “sufficiently Zariski-dense”, or “sufficiently general” in the Larsen-Pink
terminology) and the simplicity of G to deduce that there is a ∈ Ak, where k depends
only on the degree bound, such that V−aV+ has dimension dimV+ + 1 at least. Indeed
assuming as we may that V− and V+ are irreducible, an equality between the dimensions
dimV−aV+ = dimV+ for all a ∈ Ak would imply that Ak is contained in the proper (be-
cause G is simple) subvariety of bounded degree {g ∈ G(k) | g−1V−−1V−g ⊂ Stab(V+)},
where Stab(V+) is the subgroup {g ∈ G(k)|gV+ = V+}. Then one can use the induction
hypothesis on V−aV+ to deduce a contradiction (it will have too many points in Ak+2).

In the proof of the product theorem Theorem 2.15 will be applied to only three kinds
of subvarieties V , all of them of bounded degree (maximal tori and their normalizers,
conjugacy classes of regular semisimple elements, and the set of non-regular semisimple
elements).
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We now move on to the proof of Theorem 2.10, which as we already said, is just
a matter of adapting the above geometric proof of the sum-product theorem. At this
point I only have to point out the words that need to be changed in order to turn the
above into a proof of Theorem 2.10. At the blackboard this was very easy to do by
simply erasing and replacing a couple of words here and there with a colored chalk. I
cannot do this in these notes, so let me briefly describe what remains to be done.

The group now is G = G(k) and as above we consider two actions of this group:

(a) the action of G on itself by conjugation, gh := hgh−1

(b) the action of G on the variety of maximal tori G/NG(T ), g · T := gTg−1.

Recall that maximal tori in G (i.e. maximal connected subgroups made of semisimple
elements) are all conjugate to each other (k is algebraically closed), so the stabilizer of
a maximal torus T in action (b) equals its normalizer NG(T ). Moreover recall that
NG(T )/T is finite (the Weyl group) and independent of k.

Now the stabilizers of action (a) are the centralizers of elements. Elements g ∈ G such
that the (connected component of the) centralizer of g ∈ G is a maximal torus are called
regular semisimple (e.g. the elements with distinct eigenvalues in case G = SLn). They
form a Zariski-open subset of G as well as of every maximal torus T (in a maximal torus
non regular semisimple elements are contained in a union of boundedly many proper
subtori, the root tori). So here, in order to define a notion of involved torus T , we
need to require A2 to intersect T not only non trivially, but in such a way that A2 ∩ T
contains a regular element. Denote by Treg the regular semisimple elements of T . Then
define

T := {T maximal torus |A2 ∩ Treg 6= ∅}

We can now apply the orbit-stabilizer lemma (Lemma 1.13) in combination with the
Larsen-Pink inequality to both action (a) and action (b).

Action (a) : suppose g ∈ A2∩Treg. The Larsen-Pink inequality applied to V = gG the
conjugacy class of g (it is a closed variety of bounded degree and of dimension dim G−
dimT because g is regular semisimple) yields |gA| 6 |A3 ∩ V| 6 O(KO(1))|A|1− dimT

dimG . So
by the orbit-stabilizer lemma, we conclude6:

|A2 ∩ T | > |A| dimT
dimG

O(KO(1))

6Note that [CG(g) : CG(g)◦] is bounded independently of the regular semisimple element g.
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Action (b) : we can apply directly the Larsen-Pink inequality to the variety V = T
and conclude that:

|A2 ∩ T | 6 O(KO(1))|A|
dimT
dimG .

Since non-regular elements form a proper Zariski closed subset of bounded degree, an-

other application of the Larsen-Pink inequality yields |A2∩(T\Treg)| 6 O(KO(1))|A| dimT
dimG

−1

and thus:

Conclusion: For every maximal torus T , if A2 ∩ Treg 6= ∅, then |A2 ∩ Treg| � |A|
dimT
dimG .

where as above we have used the shorthand |A1| �K |A2| if |A1| > |A2|/O(KO(1))
and vice-versa.

Then precisely the same proof as in the sum-product theorem above yields the anal-
ogous

Key claim: If |A| > CKC for some absolute constant C, then T is invariant under
conjugation by A (and hence by the subgroup 〈A〉 generated by A).

Finally the end of the proof is also the same: one can slice A2 into different maximal
tori and write, noting that Treg ∩ T ′reg = ∅ for two different tori T and T ′,⋃

T∈T

(A2 ∩ Treg) ⊂ A2,

thus

|T | |A|
dimT
dimG

O(KO(1))
6
∑
T∈T

|A2 ∩ Treg| 6 |A2| 6 K|A|

hence

|A|1−
dimT
dimG >

|T |
O(KO(1))

. (2.15.1)

However by the key claim and the orbit-stabilizer lemma (the original one for groups
this time!) we have for any T ∈ T

|T | > |T 〈A〉| = |〈A〉|
|〈A〉 ∩NG(T )|

Finally another application of the Larsen-Pink inequality (this time the original one

for genuine subgroups) gives |〈A〉 ∩ NG(T )| 6 O(KO(1))|〈A〉| dimT
dimG . So combining this

with (2.15.1) we obtain the desired conclusion:
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|A| > |〈A〉|
O(KO(1))

.

This ends the proof of the product theorem.
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