
Dynamics of units and
packing constants of ideals 

Curtis T McMullen
Harvard University

Perspectives

•  Continued Fractions in Q(√D)

• The Diophantine semigroup 

• Geodesics in SL2(R)/SL2(Z)

• (Classical) Arithmetic Chaos

• Well-packed ideals

• Dynamics of units on P1(Z/f)

• Link Littlewood & Zaremba conjectures

Continued Fractions

x = [a0, a1, a2, a3, ...] = a0 +       1                                 
  a1 +      1             
         a2 +      1      
                 a3 + ...

Q.  How to test if a real number x is in Q?

Q.  How to test if a real number x is in Q(√D)?

A.  x is in Q(√D) iff ai’s repeat.

Diophantine numbers

x = [a0, a1, a2, a3, ...] = a0 +       1                                 
  a1 +      1             
         a2 +      1      
                 a3 + ...

Conjecture:  x algebraic and Diophantine
                   iff x is rational or quadratic

              BN  = {x real : ai ≤N}  

BN-Q is a Cantor set of dim→1  as N→∞.



 B4

Diophantine sets in [0,1]

BN  = {x : ai ≤N} 

 B2

Examples

γ = golden ratio = (1+√5)/2 = [1,1,1,1....]  = [1]

  

Question:   Does Q(√5) contain infinitely many 
periodic continued fractions with ai ≤ M?

σ = silver ratio = 1+√2 = [2]

[1,2]    Q(√3)

[1,2,2]  Q(√85)

[1,1,2]  Q(√10)

[1,2,2,2]   Q(√30)

[1,1,2,2]    Q(√221)

[1,1,1,2]    Q(√6)

Theorem
Every real quadratic field contains infinitely

many uniformly bounded, periodic continued fractions.

Example:  [1,4,2,3], [1,1,4,2,1,3], [1,1,1,4,2,1,1,3]...
all lie in Q(√5).

Wilson, Woods (1978)

Thin group perspective

GN = Diophantine semigroup in SL2(Z)
generated by

Theorem
Infinitely many primitive A in GN have
eigenvalues in Q(√D), provided N ≫ 0. 

( 0 1
1 1 ) , (

0 1
1 2 ) , . . . (

0 1
1 N ) .



Thin group questions

GN = semigroup generated by

Open Question
Does {tr(A) : A in GN} have density one

in {1,2,3,4,...} for N ≫ 0?

( 0 1
1 1 ) , (

0 1
1 2 ) , . . . (

0 1
1 N ) .

Yes for (   )→d  instead of (a+d).
a b
c d

Bourgain-Kontorovich

Theorem
Given one loop of length L, there is a bounded 

set B ⊂ M containing ∞ many loops 
with lengths in {L, 2L, 3L, 4L, ...}.

Geometric perspective

x´

γ  ⊂  M = H / SL2(Z)

2 ∞

3
x

∈ Q(√D)

Even though most loops of with these lengths
are uniformly distributed (Duke).

Theorem
Again, there is a bounded set B ⊂ M made up 

of ∞ many loops with lengths in {L, 2L, 3L, 4L, ...}.

Hyperbolic 3-manifolds

γ  ⊂  M = H3 / SL2([Z√-D])

e.g.         M = S3 - K beyond
continued
fractions

Example:  Geodesic for 
[1,1,1,...,4,2,1,1,1...3]  ∈  Q(√5) 



Dynamical perspective

[1]

Infinite orbit

[....1,1,4,2,1,1,1....]

Finite orbit

Cross-section to geodesic flow

Same scenario

...

...

⟹ chaotic dynamics

positive entropy

Arithmetic chaos?

Does the number of [a1,...,ap] in ∈ Q(√D) with ai ≤ 2

grow exponentially as the period p →∞? 

Example:  
 [1],  [1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2], ...?...

lie in Q(√5).

Packing Perspective

K/Q = number field of degree d

J ⊂ K  : an “ideal” in K    (J ≃ Zd) 

{ideals J} / K* = class ``group’’ (infinite)

Every J is an ideal for an order O(J) in K.



Packing constant

N(x) = Norm from K to Q = x1 ... xd 

N(J) = inf {|N(x)| :  x in J,  N(x) ≠0}

det(J) = √|disc(J)| = √|det Tr(ai aj)|

δ(J) = 
N(J)_____

det(J)

`sphere’ N(x)<1

Well-packed ideals

Theorem
In any real quadratic field K=Q(√D), there are

infinitely many ideal classes with δ(J) > δK > 0.

x in K       ⇔      J = Z + Zx

A in SL2(Z)       ⇔      J = Z2  as a Z[A]-module

Dictionary

Unit group rank 1

Conjecture
If K is a number field whose unit

group has rank one, then there are 
infinitely many ideal classes with δ(J) > δK > 0.

Cubic fields, 1 complex place

Quartic fields, 2 complex places

No cubic case is known
 (e.g. x3 = x+1 is open)

Higher rank

Conjecture [Cassel-Swinnerton-Dyer 1955 ]
In a total real cubic field K, only finitely many 

ideal classes satisfy δ(J) > δ > 0.

A·J
SL3(R)/SL3(Z)

Margulis Conjecture 2000 ⇒
Littlewood’s Conjecture &

Conjecture above

 Einsiedler, Katok, Lindenstrauss,
Michel, Venkatesh; 

CTM-, Minkowski’s Conjecture



Fibonacci orders

K = Q (√D) = real quadratic field

ε = unit in K

D fm2  =  discriminant of  Z[εm]

Z[εm] = mth Fibonacci order

OD

⋍ Z [x]/(x2+bx+c),     D = b2-4c

= the real quadratic order of discriminant D

D =  discriminant of  Z[ε]

∼= Of2
mD

Fibonacci orders for golden mean

K = Q (√5) = real quadratic field

ε = unit in K =  (1+√5)/2

D fm2  =  discriminant of  Z[εm]

(f1,f2,...) = (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,...)

              fm ~ εm,       ε > 1

Z[ε] ∼= OD D = 5

grows exponentially fast

Class numbers

Pic Z[εm] has order about fm ~ √(D fm2)

(as large as possible)

            Fibonacci Conjecture

Given α>0, there is a δ>0 such that
           |{J in Pic Z[εm] : δ(J) > δ}|  > fm1-α

for all m ≫ 0.

Lots of ideals ⇒ many well packed

(But not most)

Dynamics of units

Just as ε acts on Z[ε]U =

�
0 1
1 1

�
Acts on Z2

Acts on E = R2/Z2  and on E[ f ] ⋍ (Z/f )2

  KEY FACT:    U2m = Id on E[fm]

Um =

�
fm−1 fm

fm fm+1

�
≡ fm+1

�
1 0
0 1

�
mod fm.

Proof.



“Poincaré Recurrence”

f192 =  
597230427387774413556
9338397692020533504

= 256 x .... 

U2m = I 
mod fm

Dynamics of units (con’t)

U =

�
0 1
1 1

�
Acts on P1(Z/f)

{x = [a:b]}

J(x) = Z (a+b ε) + f Z[ε]   an ideal for      ODf2

ODf2Pic ≈ {orbits of U acting on P1(Z/f)}

Um = Id ⇒  Pic Z[εm] has order ≈ fm / m 

large class numbers

Height and packing

U =

�
0 1
1 1

�
Acts on P1(Z/f)

Height H(x) = inf a2+b2 : x = [a:b]

H(x) = O(f)

δ( J(x)) ≈  mini H(Ui x)/f

Events Ei  =  H(Ui x)/f > δ   Each have probability p ≈ 1 

⇒ |x : δ(J(x)) > δ| ≈ pm fm ≥ fm1-α

⇒ Fibonacci Conjecture

Assume more or less independent! [Arithmetic chaos]

The quadratic `field’ K = Q ! Q

This conjecture implies Zaremba’s conjecture.

 Z ! Z = quadratic ring     of discriminant 1O1

 = {(a,b) : a = b mod f} ⊂ Z ! Z   Of2

                       Conjecture
Given α>0, there is a δ>0 s.t.
           |{ J in Pic        :  δ(J) > δ}  > f1-α

for all f ≫ 0.
Of2

[All class numbers large.]



Zaremba’s Conjecture

∃N : For any q>0, ∃ p/q = [a1,...,an] 
                                          with ai ≤ N.

Of2Pic  ⋍ (Z/f)*How it follows:

J(x) = {(a,b) : a=xb mod f}  ⊂  Z ! Z

δ( J(x))> δ   ⇔  

N( J(x)) = minp,q {|q| |xq-pf|} > δf     ⇔
 |x/f - p/q| > δ/q2          ⇔

continued fraction  of x/f is bounded by N(δ).

det J(x) = f

V(Xd) = {genus 2 covering spaces
             S → E = R2/Z2 ,

              branched over one point} 

Coda:  Expanders from Od2

SL2(Z) acts transitively ⇒   
Graphs Xd

T
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Jac(S) real multiplication byOd2

Conjecture:  These Xd are expanders.

Xd = SL2(Z)/Γd,  Γd not congruence!

Z*Z→Sd

Restrospective

• CF’s; Geodesics/A-orbits; Packing constants

• Arithmetic chaos in rank 1

• Margulis-Littlewood-CSD rigidity in higher rank

Uniformly Diophantine numbers in a fixed real quadratic field. 
Compos. Math. 145(2009)

slides online



Main construction. We can now explicitly construct lattices with uni-
formly bounded orbits under the action of 〈U〉.

Theorem 2.2 Given A ∈ GL2(Z) such that A2 = I, tr(A) = 0 and tr(A†U) =
±1, let

Lm = Um + U−mA.

Then for all m ≥ 0:

1. |det(Lm)| = f2m is a generalized Fibonacci number;

2. The lattice [Lm] is fixed by U2m;

3. We have L−m = LmA;

4. For 0 ≤ i ≤ m we have:

‖U iLmU−i‖, ‖U−iL−mU i‖ ≤ C
√

|detLm|, (2.7)

where C depends only on A and U .

Proof. Our assumptions imply det(A) = −1. Since UU † = ±I and U2m =
f2mU − nf2m−1I, (2.5) gives

det(Lm) = det(Um) + det(U−mA) + tr(UmA†(U−m)†)

= ± tr(A†U2m) = ±f2m

establishing (1). By construction Lm is integral, so Proposition 2.1 implies
(2). Since A2 = I we have (3). For (4) first recall that fi ( εi for i > 0; in
particular, ‖U±i‖ ≤ εi by (2.6). Thus for 0 ≤ i ≤ m we have

‖U iLmU−i‖ = ‖Um + U i−mAU−i‖ = O(εm) = O(
√

f2m) = O(
√

|det Lm|).

A similar bound holds for U iL−mU−i, which gives (4).

Corollary 2.3 There is a compact subset of PGL2(R)/GL2(Z) which con-
tains the lattices [U iLm] for all i,m ∈ Z.

Proof. Since A,U ∈ GL2(Z) and [U2mLm] = [Lm], the lattices [U iLm] are
represented in GL2(R) by the matrices

U iLmU−i

√
|det Lm|

and
U−iL−mU i

√
|detLm|

with 0 ≤ i ≤ m. These matrices in turn lie in a compact subset of GL2(R),
since they have determinant ±1 and their norms are uniformly bounded by
(2.7). Projecting, we obtain a compact set in PGL2(R)/GL2(Z) containing
the lattices [U iLm].
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