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Optimal transport and vision - Teaser

Earth Mover’s Distance (EMD) between distributions.

Popularized by Rubner, Guibas and Tomasi at the end of the 90’s for image
and texture retrieval [Rubner et al., IJCV, 2000].

Very popular measure of similarity in computer vision :

• Image retrieval [Rubner et al. 2000], [Hurtut et al. 2008], [Rabin et al. 2010]

• Object recognition, comparison of local descriptors [Ling et al. 2006], [Pele

et al., 2008], [Rabin et al. 2008]

• Image registration and morphing [Haker et al. 2004], [Zhu et al. 2007]

• Junctions detection [Ruzon et al. 2001]

Reasons of popularity

• Robustness to small shifts in histograms

• Robustness to quantization



Optimal transport and vision - Teaser

[Hurtut, Gousseau, Schmitt], Analyse et recherche d’oeuvres d’art 2D selon le contenu
pictural, 2007.



Optimal transport and image processing - Teaser

Matching distributions between images

• Contrast and color transfer [Delon 2004], [Pitie et al., 2007], [Papadakis et al.,

2010], [Rabin et al., 2011]

• Movie restoration [Delon, Desolneux, 2010]

• Texture synthesis and interpolation [Rabin et al., 2011], [Ferrandans et al.,

2013].
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Optimal transport and image processing - Teaser

Or computing average distributions between images

Images from [Ferrandans et al., 2013]

• Contrast and color transfer [Delon 2004], [Pitie et al., 2007], [Papadakis et al.,

2010], [Rabin et al., 2011]

• Movie restoration [Delon, Desolneux, 2010]

• Texture synthesis and interpolation [Rabin et al., 2011], [Ferrandans et al.,

2013].



Notations

Two discrete probability measures µ and ν compactly supported, defined
over X . c(x , y) cost of moving one unit mass from x to y .

MKc(µ, ν) = inf
γ∈Π(µ,ν)

∫∫

X×X

c(x , y)dγ(x , y),

where Π(µ, ν) is the set of all transport plans between µ and ν (probability
measures on X × X with marginals µ and ν).

µ

ν

yx

Fathers of optimal transport

• G. Monge, Mémoire sur la théorie des déblais et des remblais, 1781.

• L. Kantorovich, On the transfer of masses, 1942.



Notations - Discrete measures

µ =
∑M

i=1 siδpi and ν =
∑N

j=1 djδqj

Transport plans γ in Π(µ, ν) can be written γ =
∑

i,j γijδ(pi ,qj ), where the
matrix (γij)1≤i≤M, 1≤j≤N satisfies the constraints

γij ≥ 0,

M∑

j=1

γij = si ,

N∑

i=1

γij = dj .

Linear Programming

MKc(µ, ν) = inf
γ∈Π(µ,ν)

∑

i,j

c(pi , qj)γij .

Unitary case : all masses si and dj are equal → optimal assignment.
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Part I

Applications of optimal transport in 1D: the line and the

circle



The basic setting of transport optimization in 1D

Assume that c is a strictly convex and increasing function of the distance
|x − y | on R.

x

y

µ:

ν:

If x1 < x2 and y1 < y2, c(x1, y1) + c(x2, y2) < c(x1, y2) + c(x2, y1).
Thus, any optimal plan preserves the ordering of the points.

The solution to the transportation problem is given by the monotone
rearrangement of µ onto ν.

M and N bins: O(M + N) operations



The basic setting of transport optimization in 1D

Cumulative distribution function of µ and its generalized inverse

Fµ(t) = µ[(−∞, t]], F
−1
µ (v) = inf{t ∈ R; Fµ(t) > v}, v ∈ [0, 1].

Theorem If c is a convex and increasing function of the distance |x − y | on R,

a solution to the transportation problem is given by the monotone

rearrangement of µ onto ν and

MKc(µ, ν) =

∫ 1

0

c(F−1
µ (v),F−1

ν (v))dv .



Application to histogram specification

Notations:

• u : Ω → R a discrete image, Ω ⊂ Z
2 is bounded.

• P = {p1, . . . , pN} ⊂ R set of values possibly taken by u(x). In practice,
P = {0, . . . , 255}.

Histogram (grey level distribution) of u

hu =

N∑

i=1

hiδpi , where hi =
1

|Ω| |{x ∈ Ω; u(x) = pi}|.

Hu = cumulative distribution function of hu.
For x ∈ Ω, Hu(u(x)) is the rank of x in u, when all grey levels are
ordered increasingly.



Application to histogram specification

Aim : an image u and a distribution µ being given, find a contrast change
(i.e. an increasing function) g such that hg(u) is as close as possible to µ.

In the sense of optimal transport for a quadratic cost c(x , y) = |x − y |2, it
means that we want to minimize

∫ 1

0

|H−1
g(u)(t)− F

−1
µ (t)|2dt,

The solution is given by

g(pi ) =
1

hi

∫ Hu [pi+1]

Hu [pi ]

F
−1
µ (t)dt.

• The values of g outside of {p1, . . . , pN} have no incidence on the result.

• Solution generally proposed in the image processing literature :

g = F
−1
µ ◦ Hu.



Application to histogram specification

Histogram equalization obtained for µ uniform on [0, 255]



Application to histogram specification

µ chosen as the grey level distribution of a second image.
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On the circle

[Rabin, Delon, Gousseau, 2011], [Delon, Salomon, Sobolesvskĭı 2010]

Distance along the circle, points represented by coordinates on [0, 1):

d(x , y) = min(|x − y |, 1− |x − y |).

Cumulative distribution functions defined on [0, 1) and extended to R by
Fµ(y + 1) = Fµ(y) + 1.

Theorem
Assume that c = h(d), with h positive, increasing and convex. The optimal

cost between µ and ν equals

MKc(µ, ν) = inf
θ∈R

∫ 1

0

c(F−1
µ (v), (F θ

ν )
−1(v))dv , (1)

where F θ
ν = Fν − θ.

Complexity O((M + N) log 1
ε
) to compute the infimum with a precision ε.



Application 1 : hue transfer between images

Using the optimal mapping to transfer the hue distribution from one image to
the other

Whirlwind, Malyavin and Jeunes filles au bord de la mer, Puvis de Chavannes.
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Application 2: matching of local descriptors
Geometry: SIFT-like descriptors [Lowe, 2004], [Rabin et al., 2009], composed of
M circular histograms of gradient orientation, extracted from a localization
grid.

Color: similar descriptors with additional circular histograms of hue [Mazin,

Delon, Gousseau, 2011].



Application 2: matching of local descriptors

[Mazin et al., 2011]
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[Mazin et al., 2011]



Part II

Computing optimal transport in dimension ≥ 2



Computing optimal transport in dimension ≥ 2

No analytic formulation for MKc(µ, ν) in dimension ≥ 2.

How can we match or interpolate distributions in this case ?

Some applications:

• Color transfer

• Feature matching

• Texture synthesis and mixing



Computing optimal transport in dimension ≥ 2

Solve the linear program

min
γ∈Γ

∑

i,j

c(pi , qj)γij ,

where

Γ = {γ, γij ≥ 0,

M∑

j=1

γij = si ,

N∑

i=1

γij = dj .}

Standard algorithms for linear programming

• Simplex [Dantzig 1998] exponential complexity in the worst cases.

• Interior point algorithms [Karmarkar 1984] : polynomial.

Not tractable as soon as M and N increase, the number of variables and
constraints being too large.



Computing optimal transport in dimension ≥ 2

Assignment algorithms

• Hungarian algorithm [Kuhn 1995]. O(N3).

• Auction algorithm [Bertsekas 1992], which solves the dual problem

max
v∈RN

N∑

j=1

vj +

N∑

i=1

min
j
(c(pi , qj)− vj).

Complexity O(N5/2 log(N.C)), where C = maxi,j(c(pi , qj)). Used in
cosmology. Still too greedy in its non sparse version to be used easily in
computer vision.

Approximation algorithms

• approximation using a wavelet decomposition [Shirdonkar et al., 2008]

• embedding in a L1 space [Indyk et al., 2003], [Grauman et al.2004]

• well chosen ground distances [Ling et al.2007], [Pele et al.2009]

Approaches using fluid mechanics tools [Brenier, Benamou, 2000] ; [Papadakis,

Peyré, Oudet, 2013]



Sliced transportation for assignement [Rabin et al., 2011]

PN(R
d) set of discrete probability measures on R

d made of N Dirac masses
with equal weights.
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Sliced transportation for assignement [Rabin et al., 2011]

PN(R
d) set of discrete probability measures on R

d made of N Dirac masses
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Sliced transportation for assignement [Rabin et al., 2011]

PN(R
d) set of discrete probability measures on R

d made of N Dirac masses
with equal weights.

Idea: Replace the classical transportation cost MKc(µ, ν) by

SMK(µ, ν) :=

∫

‖θ‖=1

MKc ((pθ)#µ, (pθ)#ν) dθ,

where pθ is the projection on the direction θ and (pθ)#µ is defined as

(pθ)#µ =
1

N

N∑

i=1

δ<pi ,θ>·θ.

•

√
SMK is a distance over PN(R

d).

• The solution for each θ is given by the monotone rearrangement of
{< pi , θ > ·θ} onto {< qj , θ > ·θ}. Call σθ the corresponding optimal
permutation.
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∫

‖θ‖=1

N∑

i=1

‖ < pi − qσθ(i), θ > ‖2dθ.
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Sliced transportation for assignment [Rabin et al., 2011]

[Rabin, Peyré, Delon, Bernot 2011]

X = (X1, . . . ,XN) ∈ (Rd)N −→ µX = 1
N

∑
δXi

.

Gradient descent applied to

ESMK (X ) = SMK(µX , ν),

• ESMK continuous, piecewise C 1,

• ESMK (X ) = 0 iff µX = ν,

• Only global minimizers ?

• In practice, convergence towards X (∞) ∼ ν. Starting from X (0) such that
µX (0) = µ, we obtain an assignment between µ and ν.

• Assignments obtained are generally “close” to the optimal assignment.

In practice: Set Θ of directions uniformly distributed over Sd−1 and
ESMKΘ : X → ∑

θ∈Θ

∑N

i=1 ‖ < Xi − qσθ(i), θ > ‖2.



Results with gradient descent

Projection results with respectively |Θ| = 2d and |Θ| = 100d



A stochastic gradient descent for the assignment problem

The set Θ must be chosen with caution.

θ1

θ2

θ3

θ4
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A stochastic gradient descent for the assignment problem

At each step k of the gradient descent, draw Θk at random. |Θk | = 10d .



Application to color transfer

Two images u and v , apply the previous gradient descent to their color
distributions.

Source image Style image Result

In practice, some sort of regularization is necessary.



Application to texture synthesis

u a color texture exemplar u : Ω → R
3.

Goal: Generate a new random texture with the same visual aspect.

7→



Application to texture synthesis

u a color texture exemplar u : Ω → R
3.

Goal: Generate a new random texture with the same visual aspect.

7→

Inspired by Heeger and Bergen algorithm: Texture synthesis through
iterated projections on statistical sets.

Sketch of the algorithm: [Rabin et al., SSVM’2011]

1– The texture exemplar u image is analyzed via its projection on a set of
atoms (distribution of wavelet coefficients).

2– A random image is generated and analyzed, and its statistics are modified
to match the ones of u thanks to the previous gradient descent.

3– The texture is synthesized by reconstruction



Application to texture synthesis

This approach succeeds to synthesize “micro-textures”

Exemplar textures

Synthesis



Part III

Kantorovich Barycenters



Kantorovich Barycenter

Kantorovich barycenter of L discrete distributions (ν1, . . . νL) in PN(R
d), for

the positive weights (ρ1, . . . , ρL) s.t.
∑

ρl = 1.

inf
µ

L∑

l=1

ρlMK(µ, ν l) (2)

among all probability measures µ on R
d .

Remarks:

• The minimizers of (2) do not always belong to PN(R
d). They can have

NL atoms.

• A minimizer can be found by linear programming, but the number of
variables and constraints is prohibitive for real applications.

• In practice, for coherence reasons, we have to constrain the solution to be
in PN(R

d). The problem can be recast as a NP-hard integer program...



Kantorovich Barycenter - Easy cases

Two cases with (semi-) explicit solutions:

• 1D case

• Gaussian case



1D case

Midway cumulative histogram between distributions ν1, . . . νL for weights
ρ1, . . . ρL

Hmidway =
(

∑

ρiH
−1
i

)

−1
.



Application to image comparison
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Application to image comparison

Midway histogram between hu and hv obtained for L = 2 and ρ1 = ρ2 =
1
2
:

Hmidway =

(
H−1

u + H−1
v

2

)−1

.

Midway equalization between u and v , consists in applying the contrast
changes

gu = H
−1
midway ◦ Hu and gv = H

−1
midway ◦ Hv

grey level

Hu

Hv



Application to image comparison
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Application to image comparison



Flicker reduction

Les Aventures des Pieds Nickelés, Emile Cohl/Eclair, 1917-1918 (copyright:
Marc Sandberg).

Complete sequences available at
http://www.tsi.enst.fr/~delon/Demos/Flicker_stabilization/.

http://www.tsi.enst.fr/~delon/Demos/Flicker_stabilization/


Extension to flicker reduction

Global correction [Delon, IEEE IP, 2006]

STE[ut ](x) =
1√
2πσ2

∫

e
−(t−s)2/2σ2

H
−1
s ◦ Ht(ut(x))

︸ ︷︷ ︸

rank of x in ut
︸ ︷︷ ︸

grey level of the pixel having the same rank in us

ds.

Global reduction not always enough !



Extension to flicker reduction

• ut(Λx) patch centered at x , and Ht,Λx cumulative distribution function of
this patch,

• motion estimation : ϕt,s(x) = Argminy∈WD(ut(Λx), us(Λy )), where D is
robust to contrast changes and W is a search window.

Local correction [Delon, Desolneux, 2010]

LStab[ut ](x) =
1

Zt,x

∫

s

e
−(t−s)2/2σ2

wt,x(s, ϕt,s(x)) H
−1
s,Λϕt,s (x)

(Ht,Λx (ut(x))
︸ ︷︷ ︸

rank of x in ut (Λx )

)

︸ ︷︷ ︸

grey level with the same rank in us (Λϕt,s (x)
)

ds,

where

• wt,x(s, y) = e−D2(ut (Λx ),us (Λy ))/h
2

, h a parameter of the method,

• Zt,x is a normalization factor.



Flicker reduction

Before restoration After restoration



Barycenters between two Gaussian distributions

Two Gaussian distributions on R
M , µ0 = N (m0,Σ0) and µ1 = N (m1,Σ1).

OT distance between µ0 and µ1 (for a quadratic ground cost) [Dowson, Landau,

1982]

d(µ0, µ1)
2 = ‖m0 −m1‖2 + tr (Σ0 +Σ1 − 2Σ0,1) ,

with Σ0,1 =
(

Σ
1/2
1 Σ0Σ

1/2
1

)1/2

.

Geodesic Interpolation

∀t ∈ [0, 1], µt = argmin
µ

(1− t)d(µ0, µ)
2 + td(µ1, µ)

2
.

Proposition
If ker(Σ0) 6⊂ ker(Σ1)

⊥ and rank(Σ0) ≥ rank(Σ1), the unique Gaussian
OT-geodesic between µ0 and µ1 is µt = N (mt ,Σt), where

∀t ∈ [0, 1],

{
mt = (1− t)m0 + tm1

Σt = ((1− t)Id + tΠ)Σ0 ((1− t)Id + tΠ)

Where Π = Σ
1/2
1 Σ+

0,1Σ
1/2
1 , with Σ+

0,1 the Moore-Penrose pseudo-inverse of Σ0,1.



Barycenters between L Gaussian distributions
Gaussian distributions on R

M , µi = N (mi ,Σi ) and weights ρi .

Proposition [Agueh, Carlier, 2010]

If at least one of the Σi has full rank, then the OT barycenter µt exists, is
unique and is a Gaussian process N (mt ,Σt) where mt =

∑
ρimi and Σt is the

unique solution of the fixed point equation

Σt =
∑

ρi (Σ
1/2
t ΣiΣ

1/2
t )1/2.

Illustration from [Ferradans et al., 2013]



Texture mixing with Gaussian texture models [Ferradans et al., 2013]

Goal: synthetize the geodesics and barycenters between several texture images
fi ∈ R

N , i = 1 . . . L, with N the number of pixels.

Idea: model textures as realizations of Gaussian random fields µi = N (mi ,Σi );

1 Analyse: compute the parameters of these fields from the input texture
images fi . Assuming stationarity, learn mi (constant) and Σi (cyclic
matrix) from each input texture fi .

2 Compute Barycenters of these distributions.

3 Synthesis: synthetize the corresponding textures. A realization of N (m,Σ)
is obtained by computing AW +m, where W ∼ N (0, Id) and A a matrix
such that Σ = AA∗.



Texture mixing with Gaussian texture models [Ferradans et al., 2013]



General case - Sliced Kantorovich Barycenter [Rabin et al., 2011]

Replace the previous definition by

inf
µ∈PN (Rd )

L∑

l=1

ρlSMKΘ(µ, ν
l).

Gradient descent on the energy

barSMK (X ) =
L∑

l=1

ρlSMKΘ(µX , ν
l).

Step k of the gradient descent (still with H =
∑

θ∈Θ θθT )

X
(k+1) = X

(k) − λH
−1∇barSMKΘ(X

(k)).



Kantorovich Barycenter [Rabin et al., 2011]



Application to color midway

Color harmonization of several images
⊲ Step 1: compute Sliced Kantorovich Barycenter of color statistics;
⊲ Step 2: projection of each image onto the Barycenter.
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Part IV

Regularized optimal transport



Optimal transport for image modifications. Shortcomings.

Shortcomings of contrast and color modification : T (u) image obtained after
color modification.

• Noise enhancement: the variance of the noise in T (u) is amplified.



Optimal transport for image modifications. Shortcomings.

Shortcomings of contrast and color modification : T (u) image obtained after
color modification.

• Noise enhancement: the variance of the noise in T (u) is amplified.

• Detail loss: contrast reduction between u and T (u).



Optimal transport for image modifications. Shortcomings.

Shortcomings of contrast and color modification : T (u) image obtained after
color modification.

• Noise enhancement: the variance of the noise in T (u) is amplified.

• Detail loss: contrast reduction between u and T (u).

• Compression artifacts: when the image u is highly compressed and when
pixels with a very similar color are mapped to different colors.



Regularizing transportation maps. Variational approaches.

Variational problem

inf
u

F (u)
︸ ︷︷ ︸

data fidelity term

+ R(u)
︸ ︷︷ ︸

regularization term

+ W2(hu, ν)
︸ ︷︷ ︸

Transportation cost between hu and ν

,

Case of color transfer between an image u0 and another image v

• ν is the color distribution of v ;

• R(u) = TV(u), typically;

• F (u) = ‖u − u0‖2 − λ < ∇u, ∇u0
‖∇u0‖

> (the second term ensures the

consistency between the level sets of u0 and those of u).

Still complex to minimize.
To make the problem computationally tractable, a possibility is to replace W2

by a simpler term, for instance

• its sliced version [Rabin, Peyré, 2011],

• a term relying on cumulative histograms [Papadakis, Provenzi, Caselles,

2011].



Regularizing transportation maps. Post-processing solution.

Transportation Map Regularization [Rabin, Delon, Gousseau, 2011]: if T (u) is
the color-modified image, regularize the difference M(u) = T (u)− u

conditionally to the source image u.

Inspired by previous works on denoising: Neighborhood filter [Yarovslavski 1985]

and Non-Local means [Buades, Coll and Morel 2005]

TMRu[T (u)] := u + Yu [M(u)] = Yu

[
T (u)

]

︸ ︷︷ ︸

filtering of T (u)

+ u − Yu[u]
︸ ︷︷ ︸

Details from u

where Yu is the following guided filter

Yu [w ](x) =
1

C(x)

∫

y∈N (x)

w(y)e
−

||u(x)−u(y)||2

σ2 dy .



Regularizing transportation maps. Post-processing solution.
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Regularizing transportation maps. Post-processing solution.

Source Image

Style Image

Result of color transfer



Regularizing transportation maps. Post-processing solution.

Source Image

Style Image

Result after regularization



Beyond regularization. Transport relaxation.
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Beyond regularization. Transport relaxation.

Relaxation + regularization in [Ferradans et al., 2013].

Regularization not possible if one want to maintain a bijective assignment

between distributions ?

A bijective assignment is usually not necessary or desirable in image processing
problems. Relaxing this constraint permits to handle mass differences in the
distribution modes (for instance color distributions).

Relaxation
Assignment problem between two sets of points µ and ν replaced by

inf
γ∈Γ(µ,ν)

∑

i,j

c(pi , qj)γij .

where Γ(µ, ν) is the set of matrices γ satisfying the constraints

γij ≥ 0,

M∑

j=1

γij = 1,

N∑

i=1

γij ≤ α, with α > 1.



Conclusion

Natural framework for image processing and modeling with statistical
constraints

• generalization of histogram specification to color images; can be
embedded in a variationnal formulation;

• texture synthesis;

• Enables to define barycenters between distributions
• midway image processing, flicker reduction;
• texture mixing;

• Robust distances in computer vision.
• image retrieval;
• object recognition.

Need some form of relaxation or regularization in practice.


