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Outline

@ Some motivations:
- Coarsening rates in critical mixture
- Branching in micromagnetics

- Branching in superconductors
@ Interpolation inequalities in weak form.

@ Interpolation inequalities in strong form:
- Ledoux method

- Geometric construction.
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Coarsening rates

o Configurations: Scalar order parameter
u(t, x) : (0,+00) x [0,A]? =€ [~1,1]

describes local composition of inhomogeneous binary mixture.

@ Free energy: Ginzburg-Landau energy density:

1 1
E(u) = ][§\VU|2 51— 2P

@ Regime: Critical mixture, i. e.,

][udx:O.
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Dynamic given by the Cahn-Hilliard equation

OE
- Ai =
O 4 0,

e preserves volume fraction  udx = 0,

@ decreases energy E(u).
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Coarsening

Coarsening — Generic solutions in simulations

Initial data: u = 0 4+ small amplitude white noise.

Qualitative observations:
o Initial stage: Phases separate and form two domains {u =~ 1} and {u ~ —1}.

o Late stages: Typical length scale / of domains increases with time.

Quantitative observations: ( ~ t!/3
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Consider the sharp-interface limit: u € {—1, +1}. Approximate energy density:

E =~ energy of 1-d interfacial layer

x area of sharp interface per system volume

1
~ ][|Vu\ dx ~ Tength”
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Kohn & Otto: The Cahn-Hilliard equation

0E
—A— =
8tu u 0

is the gradient flow for E with respect to the Euclidean structure given by

|[V|~1||;2. Define the length L as the induced distance,

2 = ][\|V|_1u|2dx,

/||V|_1u|2 '= min {/ P :V-J= u} = / IVl

with ¢ satisying

where

—Ap =u.
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Kohn & Otto (2002): in a time-average sense  ~ 1/E > t'/3.

Main ingredients in the proof:

@ An interpolation estimate:

EL = C.
@ An energy dissipation rate:

2
9 (d)
dt ~ ~ \dt

@ An ODE argument.
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Branching in micromagnetics

Branching in micromagnetics

(Hubert - Kohn and Mueller - Choksi, Kohn and Otto - Conti) Magnetization

m:Q — S?
Energy:
E(m,h) = d2/ |V m|?dx + Q/(mf + m3)dx + [ |h|?dx
Q Q R3

where

V- (h+m)=0 distributionally in R3

V x h=0 distributionally in R3
Thus

/\h|2dx:/ V|71V - m[?dx.
R3 R3
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Branching in micromagnetics

Consider

Q= (—1,1)*x(0,t).
Heuristic for the branched configuration:
E(m, h) ~ Ql/3d2/3/2t1/3

It is better than the unbranced Ansatz for t >> Q/2d.
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Branching in micromagnetics

Rigorous lower bound

Reduced model:
E(m, h):d2/ |V/m3|dx+/ |W'|?dx
Q R3

where

V' h 4+ 03m3 =0 distributionally in R3
V x b =0 distributionally in R3

(I —convergence-type result by Otto and Viehmann)
Choksi, Kohn and Otto:

E(m, h) > CQY3d*/32¢1/3,

Main ingredient: interpolation inequality.
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Branching in superconductors

Branching in superconductors

The variational problem has two unknown:

the magnetic flux B

the domain pattern which is described by a function

x: (=119 %x(~1,1) — {0, 1}.

Meissner effect: (1 — x)B = 0 (no flux in the superconducting phase).

The model is described by the continuity equation

Box + V- (xB) =0 in (—1,1)¢ x (~1,1)

X — ¢ as z — +1,

(1)
where ¢ > 0 is a constant that corresponds to the prescribed magnetic flux density.
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Branching in superconductors

The energy associated to the system is given by

£ = [ [ (V4B @

Using that )
W2(x, 6) < / / x|B[2dxdz,
—1J(=1,1)

to give a lower bound for the energy it is enough to bound from below the quantity

1
/ / |V x|dxdz + W2(X, o).
—1 S
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Branching in superconductors

Interpolation inequalities (in weak form)

Proposition

Let u: [0,A] — R satisfy [u=0, then

1/2 _ 1/2
ullw—pers < ClIVul[12][V] " ul[}42,

where [[ul],, a3 := sup,o ul{|u| > p}[*/* denotes the weak L*3—norm of u.
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Branching in superconductors

Interpolation inequalities (in weak form)

Sketch of the proof

Consider

X = 0 for we(—p,u)
-1 for u<—pu

and define a convolution kernel

- ek (3).

where K is a smooth compactly supported nonnegative function s.t f K=1.
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Branching in superconductors

We have
ol > ) < [xu= [t Kesupcr [(Ker
Estimate:
/|ufKR*u| §R/\Vu|,
and

IA

(/ ||V|1u|2)1/2 (/ v/<K *x)|2)1/2
(e [0 1)

Use Young inequality and optimize in R.

/(KR * U)X
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Branching in superconductors

Interpolation inequalities (in weak form)

Proposition [Conti, Niethammer, Otto]
Let u: [0,A]> — R satisfy u > 0 with % J u=®. Suppose 1 > 2®, then

julog!/* |{|u|>u}|3/4<cnwu”ﬂnvrl( )12,

(crucial ingredient in the proof of the lower bound of the energy depending on the

volume fraction ®)
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Branching in superconductors

Interpolation inequalities (in weak form)

Sketch of the proof

Careful choice of the convolution kernel:

o if x| <R
log £ 3
Kr(x) = q -L; Iogg‘g if R<|x|<L
0 if |x| > L.
Write
wl{lo > )| < /Xu

/(uf¢)min{KR,L*X,1}+/¢mi”{KR7L*X71}

Jr/u(X—min{KR,L*Xal})'
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Branching in superconductors

Interpolation inequalities (in weak form)

Proceed as before and use that

2 1
in{K 1< = ——— .
19 minthr 3 0P < iz |
Choose L/R such that

use Young inequality and optimize in R.
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Branching in superconductors

Interpolation inequalities (in strong form)

Proposition
There exists a constant C < oo such that for all periodic functions

u:(0,A) - R, [u=0we have

1/2 1/4
fulls < ¢ ([19u) ([ 19172a2)
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Branching in superconductors

Interpolation inequalities (in strong form)

Sketch of the proof

Following an idea of Ledoux for the proof a similar interpolation inequality we

introduce a factor M > 1 to be adjusted later. We have:

/qu = /(X;L_X;L,R)u+/Xu,Ru

/ (Xu*Xu,R)“+/ (Xu*XuyR)“+/Xu7R“-
lul <My Jul> M

Using that ||x, — Xu,r|l < 2, we obtain the inequality

[l = [l +2 [l [

|u|>p [u]>Mp

M/LR/|VX#‘+2/ |u\+/x#7Ru.
|u]>Mp
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Branching in superconductors

Interpolation inequalities (in strong form)

_2
3

We multiply with 3. Integrating over 1 € (0,00), we get

/ %/ |uldxd
Jul>p
< /\/I/ /|qu|dxd,u+2/ ,u_%/ |u|dxdu
0 0 |u|>Mp
—l—// u*%XMRduudx
0
I\/I/ /|qu|dxdu+2/ ,r%/ |u| dxd
0 0 |lu|>Mp

i _2 _
LIV / 1 rdi) 2 191l

and choose R = 1

IA
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Interpolation inequalities (in strong form)

We have

.

w\m

lu(x)l 2 4
/ x)|dxdu = /| / /fid,udx:3/|u|§.
X)|>/t
Ji v

and

w\m

/ x)|dxdu
Ju(x) |>Mu

U(X 2 1 4
/|u(x)|/ ;fid,udx:3/\/lf§/|u|§.
0

By the coarea formula we get
(o) o
| [19xalddie = [ (Per(tu > )+ Per({u < ~u})dhs = |Vl
0 0
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Branching in superconductors

Interpolation inequalities (in strong form)

Integrating by parts and after some computations we get

190w SxmdilB < € [ b {lul > i
0 0

uGa)l

= C// w3 dpdx
0

= c/|u|%.
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Branching in superconductors

Interpolation inequalities (in strong form)

Collecting all the terms we have

3 [
4 4 %
< M||Vu||1+6/w—%/\u|a e </|u|3) =

We obtain the desired estimate by absorbing the middle right-hand side term for
M > 1 and absorbing the first factor of the last right-hand side term by Young's

inequality.
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Branching in superconductors

Interpolation inequalities (in strong form)

Proposition
There exists a constant C < oo such that for all periodic functions

u:(0,A)? = R, with u > —1 and %jﬁ:o, we have

lutn® max{u, e}lls < ClIVull; V] ul3. 3)
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Branching in superconductors

Geometric Construction

Main ingredient in the proof is the following
GEOMETRIC CONSTRUCTION:
For x(x) € {0,1} and R < L there exists a potential ¢g (x) € [0, 1] such that

R/|VX\+/X¢R,L, (4)

R ) [ (5)

[ore = R [ (6)

This type of geometric construction was first used by Choksi, Conti, Kohn, and

—
=<
A

—
<
-
}U
N

Otto in the context of branched patterns in superconductors, but its main
ingredient goes back to De Giorgi.
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Branching in superconductors

Geometric Construction

Steps in the geometric construction:
o Define the set Qg = {x | [{x = 1} N Bz(x)| > %|B§(x)\}
@ Show that there exists a finite subset C C Qg such that
Qr C U, cc Br(y) while R?#C < [ x, where C is maximal with the
property that Bg,,(y) N Brj2(y') = 0 for every y,y' € C, y # y'.
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Branching in superconductors

Geometric Construction

We introduce the capacity potential ¢g ;. of Bg(0) in B.(0) given by

1 for k] < R

- n ok

?r,L(X) ln‘g for R < |8 < L p € [0,1].
0 for L < ¥

We define
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Branching in superconductors

Geometric Construction

With this choice, ¢r, satisfies

]
/XSR/IVXH/WR,L-
[+ ]
/ drL < 2R / X.
o

2SR ) [

Eleonora Cinti (Bologna) MSRI Berkeley, August, 2013 30/ 36



Branching in superconductors

Other inequalities...

The geometric contruction is used also in the proof of two other interpolation
inequalities (crucial ingredient in the proof of a lower bound for the energy in

superconductors):
ull w2 < CIIVull 77 W(u,1)55,
where W denotes the Wasserstein distance.
Ingredients in the proof:
@ geometric construcion,

@ Kantorovich duality for W.
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Branching in superconductors

Other inequalities...

The Wasserstein distance is given by

W?(u,v) := inf {// |x — y|2d7r(x,y)|/d7r(-,y) = u, /dw(x, )= v} .

The measure on the product space 7 is called transportation plan and it is
admissible if its projections to first and second coordinates are measures with
densities u and v respectively.

A useful property of the Wasserstein distance is the following Kantorovich duality:

W) =sup { [ udoac+ [V uaion) + o) < - y2).
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Branching in superconductors

Other inequalities...

Sketch of the proof

Step 1. We carry out the geometric construction in any dimension d. Given a
function y : [0,A] — {0,1} there exists a set Qg and a potential ¢r(x) € {0,1}
such that

Qr C | Br(y) and #c<i/x,

yeC
where C is maximal with the property that Bg/»(y) N Bg/2(y’) = 0 for every
vy eCy#y.

pr=1in Qr, ér=0 in R?\ Q.

/XSR/IVXH/WR.
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Branching in superconductors

Other inequalities...

Step 2. Using the geometric construction as before we write

/Xu S R/‘VXH|+/XN¢N,R

< R/‘VXMJFi/@L,RU- )

We multiply (2?) by p(2+39)/G9) we choose R = ;=239 and we integrate in
/ %“, to get

2134 d/l +oo
o oxpdx— < |Vxuldxdp
1% 0
+o0 d
+/ </ HéQS/L,R(X):) U(X)dX'
0

Using the coarea formula as before, the first term becomes

—+o0o
[ 193l = 170z
n .
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Branching in superconductors

Other inequalities...

Step 3. We use the Kantorovich duality to estimate the second term on the r.h.s.

. We set ¢(x) = [[" gy, R(X) . We have that

/qb x)dx < W?(u,1) + /1/; )dy,

where

+oo
60) = sup{60) ~ b=y =sp { [ iF im0 % -2}
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Branching in superconductors

Other inequalities...

Another interpolation inequality arising in superconductors:

3d+1
I max{u, v3e5 }| a0

1
3

25 (. 2 1—d
< CUTUlE (juf {oetr wou) + 0 vl )
V=
Ingredients in the proof:
@ geometric construction,
@ Kantorovich duality for W,
o H'/2_estimates.
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