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[Bernis and Friedman, 1990]

ur = —(f(u) uggr)r, flu) ~|ul”, ur(ta,t) = ugypr(£a,t) =0,
P = @T({u — 0} U {t — O})v (1= <—CL, a)'

e weak generalized solution

//QTuqbt+// [ —

we CP@r),  fuuges € LX(P).

e strong generalized solution

/ /QT o / QTf W)Uz Pra — / QTf W) ugUzr gy = 0,

we L¥0,T; H*(Q



[Bernis and Friedman, 1990]
up = —(u" Uggr)z, Ur(E£a) = tugpe(Fa) =0, Q= (—a,a)
P =Qr({u=0}U{t=0})
Initial values and boundary conditions:

o u(z,0) = up(z), =z € Q and uy(.,t) — ug, strongly in L?(Q)
as t — 0.

® uy(+a) = uzzp(F£a) =0 at all points of the lateral boundary
where {h # 0}.



[Bernis, Peletier, Williams 1991, Otto, 1998; Carrillo, Toscani, 2002;
Carlen and Ulusoy, 2007; Mattes, McCann, Savare, 2009; |

up = —(Wlgps)e, €€ RY, >0, wu(z,0)=ug(z) >0

Explicit self-similar source type solution:
1
—1/5 2 —2/5 2\2
u(xz,t) =t / (—120(0, — 1725 )+> .

The equation defines a gradient flow u; = [ (%—5) }
rdx

5E denotes the L°-gradient of E(u) = 1/2 [ u’(x)dx.

Metrlc is the optimal transportatlon dlstance

For non-negative initial data v, that belongs to H'(R) and
also has a finite mass and second moment, the strong solu-
tion converges in H! norm to the unique self-similar source
type solution.



Lubrication equation:
We study nonnegative weak solutions of long-wave unstable
lubrication equation

ht = —(f(h) hgaa)z — (g(h) ha)a

with power-law coefficients f(h) = agh” and g(h) = a; h"™
that become singular in finite time ( h(z,t) gives the hight
of the evolving free-surface). The exponent n plays stabi-
lizing role due to fourth-order forward diffusion term and
the exponent m plays destabilizing role due to backward
second-order diffusion term.

Modeling of crystal growth: One of approaches to modeling
strongly anisotropic crystal and epitaxial growth is using
regularized, anisotropic Cahn-Hilliard-type equations (4th
order nonlinear PDE: h; + (M (h)(hyzzr + hz))z = 0 where mo-
bility M(h) = h(1 — h) ~ h). Such problems arise during the
growth and coarsening of thin films.



Long-wave unstable lubrication equation

ht = —ay (|h|n h:z:xx)x — Q] <|h|m h:v):z:a

where ag > 0, a1 > 0, and h is real valued.
Perturbing a constant steady state slightly,

ho(z) = h + ehy(z,0) = h + ecos(Ex + @),
and linearizing the equation about &, the small perturbation
hi(x,t) will (approximately) satisfy

ht = _a()‘mnh:c:mx — a1|B|mhx:c-

Hence the constant steady state is linearly unstable to long
wave perturbations:

B —anl2lhIn 2 aj BIm—n\¢
<" fay  — hi(at) ~e (e*=gler)

cos(éx+9)



Lubrication equation:
Long-wave unstable lubrication equation

ht = =(f(R) hawa)e — (9(h) ha)a
with power-law coefficients f(h) = agh” and g(h) = a; h'".

Energy functional:

m—n-+2
BUT) = [ $12(0,T) — aaDy(hla, T)) dr, Dofz) = ot
Q)
Entropy functional: S(T f G(u
—n+2
oot v 7 L2 y
G(z) = zlnz—zifn=1, - (G(2)" = o

—Inz if n=2.



Long-wave unstable lubrication equation
ht = —ag (|h|n haoga)r — a1 <|h|m ha)z,

where ag > 0, a1 > 0, and h is real valued.

The main results are:

e short-time existence of nonnegative strong solutions on ()
given nonnegative initial data

e finite speed of propagation for these solutions if their ini-
tial data had compact support within ()

e finite-time blow-up for solutions of the Cauchy problem
that have initial data with negative energy



Given nonnegative initial data that has finite entropy, we
prove the short-time existence of a nonnegative weak solu-
tion if n > 0 and m > n/2. (a short-time result for n > 0 and
m > n was known)

[Sketch of the proof| Given 9§, > 0, a regularized parabolic
problem is considered:

ht + (fse()(aohgae + a1 D2 (R)hy)) , =0,

&h_ _a’t :ﬂ a,,t fort>07i20737
oz’ oz’

h(x7o>::}”L€CE>

where
|Zﬁ+n |Zvn—n

f(SE(Z) = fg(Z) —|_5 — ‘Z‘4+€|Z|n —|_57 Dé‘/<z> = 1—|—8|Z|m_n’€ > 075 > (.




For ¢ > 0, the nonnegative initial data, hy, is approximated
via

ho + ¥ < hoe € C’4+7(§) for some 0 < 0 < %,

) 1
20 (—a) = L% (a) for i = 0,3,

ho . — hg strongly in Hl(Q) as ¢ — 0.

?




We were successful in proving finite speed of propagation
for the range 0 <n <1/2, n/2 <m < 6 —n and for the range
1/2<n<3,n/2<m<3n+4.

If supp(hg) C [—7rg,70] C (—a,a) then there is a nondecreasing
function I'() and a time T}).., such that supp(h(-,t)) C [—ro—
[(t),ro + T'(t)] C (—a,a) for every time t € [0,Ty)..q]. For 0 <
n < 2 and m < n+ 2, there is a constant C' such that I'(t) <
O/ (n+4)

[Sketch of the proof]

[Stampacchia’s lemma] Let the nonnegative continuous non-
increasing function f(s) : [sg, 00) — R! satisfies the following
functional relation:

f(s+ f(s) <ef(s) Vs =sg, 0<e<l.
Then f(s)=0Vs>sg+ (1—¢e) L f(sg).



Whether or not there is a finite—time singularity, such as
(-, t)||oo — 00 as t — T™ < o0, is strongly affected by the
nonlinearity in the PDE.

Ut = Ugy + u

o if p < 1 then a solution of an initial value problem exists
for all time

oif 1 < p < 3, then any non-trivial solution blows up in
finite time

e if p > 3 then some initial data yield solutions that exist
for all time and other initial data result in solutions that
have finite—time singularities

The blow-up is of a focussing type: there are isolated points in space
around which the graph of the solution narrows and becomes taller as

t 7T, converging to delta functions centered at the blow—up points.



Consider a solution with a height-scale H and length-scale
L. Nonnegativity and volume conservation require that

HL <V,

where V is the total fluid volume. The critical regime
should correspond to the balance of nonlinear terms:

fiH)H g(H)H _ f(H)

~ SRS 23
L L? 9(H)
This suggests that solution can grow without bound only if
lim v/ (y) < 0.
Y— 00 9(y)
. HYH g(H)?
g 9UH gH)?
L? f(H)
This suggests2 that any blow-up must take infinite time when-
ever lim 44— A < o0 ( dominant e4?).

Y— 00 f(w)



g(H)H g(H)

H< ~ H.
- L2 f(H)
This suggests that any blow-up must take infinite time when-
2
ever lim 44— A < o0 ( dominant e4?).

Yy—00 f(y)

This simple scaling argument suggests that if 0 <n < m <
n + 2 then nonnegative solutions are bounded for all time
and if m > n + 2 than finite-time blow-up is possible.
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The slow coarsening dynamic and finite speed of the support
propagation (left). One-point concentrated blow-up for compactly

supported initial data (right).
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(left). Plots of energy functions (right).
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Convergence to a steady state for compactly supported initial data
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The coarsening dynamic (left) and one-point concentrated blow-up for

uniformly positive initial data (right).
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One-point concentrated blow-up for uniformly positive initial data



Symmetric and non-symmetric two-point concentrated blow-up

solutions.



[M. C. Pugh and A. L. Bertozzi, 1999]
First analytical result (for the special case n = 1):

Let hy be nonnegative and compactly supported, hy € H'(R).

If m > 3 and
+00 1

+00
E(0) = X / 18, () o = s / R () da < 0,

2 ) _oo —00

then there is a singular time 7" < oo and a compactly
supported nonnegative weak solution on |0, 7™) such that

limsup [|A(., )| oo g) = lmsup [[A(., )]| g1 p) = oo
t—1™ t—1T™



[M. C. Pugh and A. L. Bertozzi, 1999]
First analytical result (for the special case n = 1):

Let hy be nonnegative and compactly supported, hy € H'(R).
If m > 3 and

1 +00 1 +00
E(0) = 2 / B (x) d — / R (@) d < 0,

2 )0 m(m+1) J

then there is a singular time 7" < oo and a compactly
supported nonnegative weak solution on [0,7") such that

limsup [|A(., )] poo(g) = lmsup [[A(., )[| g1 p) = oc.
t—1™ t—1™

Example of initial values:
ho(x) = M1 +cos(Ax)) for (—n/A<x<7w/X), A>0, m=3,
E(0) = 2 7.



e Given m > 3 and nonnegative periodic initial data hg there
exists a periodic weak solution on |[—a,a] x [0,7)] (local in
time existence).

e Time 7 depends on m and ||hy||;1 only.

e Given compactly supported initial data the above solu-
tion has finite speed propagation of the support. This
speed is controlled by a function of m and ||hy||;1. One
can extend the weak solution to the line.

e The solution h can be continued in time if H! norm of h
is bounded: (0 < Ty < Ty <Th... <Ty < ...).

e There is some time 7", determined by hy and m past which
this solution can not exist. It then follows that H! norm
and as a consequence L°° norm must have blown up at or
before time T™.



e The solution h can be continued in time if H! norm of h
is bounded: (0 < Ty < Ty <Th... <Tp < ...).

e There is some time 7, determined by hy and m past which
this solution can not exist. It then follows that H! norm
and as a consequence L°° norm must have blown up at
or before time 7*. Time T* originates from the second
moment inequality.

+00 +00
/ 2? h(z, Tp,) dz < / x? ho(z) dz + 613, E(0)

— 00 — 00

1 +00 1 +00
E(0) == / h3 (x) dx — / h () de < 0,

2 ) oo m(m+1) J_



Let 0 <n <2, m > max{n +2,4—n}. Then a weak solution
h(x,t) satisfies the entropy second-moment inequality:

/:cQG(h(:E,T)) dz < BT (/ 2°G(hg) da—+

R! R!
T
/ (klE(O) + ko / 222, d:z;) e_B(t)dt)
0 Rl

for all T' € [0,1},.], where k| =2(4 —n), ko= 3%(3—1). Here

T
I a3 (1—-n)(2—n 2
G2 = 7k, BT) = S [ IhC I e
0



Second moment entropy inequality:
The second-moment inequality can be simplified:

T
/ 22G(h(z. T)) dz < BT) / 22G (hy) dz + ky E(0) / B0
R! 1 0
for all T € |0,7;,.], where k1 =2(4 — n).
Here

T
1 9— a3 (1—-n)(2—n 2
G = ke, B = S0 [ ar.
0

Introduce: ¢(t f e~ Bs)ds by a-priori estimates for T, we

obtain the low bound
g(T;) > C'T;.



Finite time blow-up:

Y

DO —

Let 4 —nmn<m<6—-—nwith 0 <n <
orm>4—nwith%<n§1,
orn+2<m<3n+4with1l<n<?2.

Assume that hg > 0, hy € HYR') and supphg C (—rg, 1),
where 7y < a. If the energy functional is negative on the
initial data hy, then there exists a critical time 7" and a
compactly supported at any time 7 : 0 < T < T* generalized
weak solution h such that

limsup ||h(., O)]| g1/ p1y = limsup ||A(., 1)]| 7 cof p1y = +00.
L HYR) = 7 Loo(RY)



Bourgain proved a mass concentration property for the so-
lution to cubic NLS (L?(R?))

i+ A u—+ Mulfu=0, wuye L*(R?)

that blows up at a finite time 7T7*.

The proof was based on the energy equality F(t) = Ej and
the result was:

limsup  sup (/ ]u\2daj)1/2 > C
t=T" J<(T*—¢)1/2

where (C 1s some universal constant.

We obtained a similar result for the thin-film equation and

Jo udz.



Existence of nonnegative weak and strong solutions for the
unstable thin film equation in multi-dimensional domain RN

was recently studied in [J.R. King, R. Taranets, Nonlinear
Differ. Eqn. Appl., 2013]

h + ag div(h"V A h) + ay div(h"'Vh) = 0.

Global existence was shown for n —2 <m <n+2/N and for
m =n + 2/N under an additional condition that M < M..

Finite time blow-up was predicted for the case m >n +2/N
and finite time rapture was predicted for the case m < n — 2.
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THE END.



