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Weak and strong generalized solutions.

[Bernis and Friedman, 1990]

ut = −(f (u)uxxx)x, f (u) ∼ |u|n, ux(±a, t) = uxxx(±a, t) = 0,

P = QT ({u = 0} ∪ {t = 0}), Ω = (−a, a).

• weak generalized solution∫∫
QT

uφt +

∫∫
P
f (u)uxxxφx = 0,

u ∈ C1/2,1/8
x,t (QT ), f (u)uxxx ∈ L2(P ).

• strong generalized solution∫∫
QT

uφt −
∫∫

QT

f (u)uxxφxx −
∫∫

QT

f ′(u)uxuxxφx = 0,

u ∈ L2(0, T ;H2(Ω)).
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Initial values and boundary conditions.

[Bernis and Friedman, 1990]

ut = −(un uxxx)x, ux(±a) = uxxx(±a) = 0, Ω = (−a, a)

P = QT ({u = 0} ∪ {t = 0})

Initial values and boundary conditions:

• u(x, 0) = u0(x), x ∈ Ω and ux(., t) → u0x strongly in L2(Ω)
as t→ 0.

• ux(±a) = uxxx(±a) = 0 at all points of the lateral boundary
where {h 6= 0}.
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Some results for the case n = 1.

[Bernis, Peletier, Williams 1991, Otto, 1998; Carrillo, Toscani, 2002;

Carlen and Ulusoy, 2007; Mattes, McCann, Savare, 2009; ]

ut = −(uuxxx)x, x ∈ R1, t > 0, u(x, 0) = u0(x) ≥ 0

Explicit self-similar source type solution:

u(x, t) = t−1/5
(

1

120
(a2 − t−2/5 x2)2

+

)
.

The equation defines a gradient flow ut =
[
u
(
δE
δu

)
x

]
x
.

δE
δu denotes the L2-gradient of E(u) = 1/2

∫
u2
x(x)dx.

Metric is the optimal transportation distance.

For non-negative initial data u0 that belongs to H1(R) and
also has a finite mass and second moment, the strong solu-
tion converges in H1 norm to the unique self-similar source
type solution.
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Research motivation.

Lubrication equation:
We study nonnegative weak solutions of long-wave unstable
lubrication equation

ht = −(f (h)hxxx)x − (g(h)hx)x

with power-law coefficients f (h) = a0 h
n and g(h) = a1 h

m

that become singular in finite time ( h(x, t) gives the hight
of the evolving free-surface). The exponent n plays stabi-
lizing role due to fourth-order forward diffusion term and
the exponent m plays destabilizing role due to backward
second-order diffusion term.

Modeling of crystal growth: One of approaches to modeling
strongly anisotropic crystal and epitaxial growth is using
regularized, anisotropic Cahn-Hilliard-type equations (4th
order nonlinear PDE: ht + (M(h)(hxxx + hx))x = 0 where mo-
bility M(h) = h(1 − h) ∼ h). Such problems arise during the
growth and coarsening of thin films.
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Long-wave instability.

Long-wave unstable lubrication equation

ht = −a0 (|h|n hxxx)x − a1 (|h|m hx)x,

where a0 > 0, a1 > 0, and h is real valued.
Perturbing a constant steady state slightly,

h0(x) = h̄ + εh1(x, 0) = h̄ + ε cos(ξx + φ),

and linearizing the equation about h̄, the small perturbation
h1(x, t) will (approximately) satisfy

ht = −a0|h̄|nhxxxx − a1|h̄|mhxx.

Hence the constant steady state is linearly unstable to long
wave perturbations:

ξ2 < |h̄|m−na1/a0 → h1(x, t) ∼ e
−a0ξ

2|h̄|n
(
ξ2−a1

a0
|h̄|m−n

)
t
cos(ξx+φ) grows.
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Axillary functionals.

Lubrication equation:
Long-wave unstable lubrication equation

ht = −(f (h)hxxx)x − (g(h)hx)x

with power-law coefficients f (h) = a0 h
n and g(h) = a1 h

m.

Energy functional:

E(T ) :=

∫
Ω

a0
2 h

2
x(x, T )− a1D0(h(x, T )) dx, D0(z) := zm−n+2

(m−n+1)(m−n+2)

Entropy functional: S(T ) :=
∫
Ω

G(u(x, T )) dx

G(z) :=


z−n+2

(−n+2)(−n+1)
if n 6= {1, 2},

z ln z − z if n = 1,

− ln z if n = 2.

; (G(z))′′ = 1
zn.
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Existence, finite speed and blow-up results.

Long-wave unstable lubrication equation

ht = −a0 (|h|n hxxx)x − a1 (|h|m hx)x,

where a0 > 0, a1 > 0, and h is real valued.

The main results are:

• short-time existence of nonnegative strong solutions on Ω
given nonnegative initial data

• finite speed of propagation for these solutions if their ini-
tial data had compact support within Ω

• finite-time blow-up for solutions of the Cauchy problem
that have initial data with negative energy
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Short-time existence.

Given nonnegative initial data that has finite entropy, we
prove the short-time existence of a nonnegative weak solu-
tion if n > 0 and m > n/2. (a short-time result for n > 0 and
m > n was known)

[Sketch of the proof] Given δ, ε > 0, a regularized parabolic
problem is considered:

ht +
(
fδε(h)(a0hxxx + a1D

′′
ε (h)hx)

)
x = 0,

∂ih
∂xi

(−a, t) = ∂ih
∂xi

(a, t) for t > 0, i = 0, 3,

h(x, 0) = h0,ε(x)

where

fδε(z) := fε(z) + δ =
|z|4+n

|z|4+ε|z|n + δ, D′′ε (z) :=
|z|m−n

1+ε|z|m−n, ε > 0, δ > 0.
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Approximation of initial data.

For ε > 0, the nonnegative initial data, h0, is approximated
via

h0 + εθ ≤ h0,ε ∈ C4+γ(Ω) for some 0 < θ < 2
5,

∂ih0,ε

∂xi
(−a) =

∂ih0,ε

∂xi
(a) for i = 0, 3,

h0,ε→ h0 strongly in H1(Ω) as ε→ 0.
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Finite speed of propagation.

We were successful in proving finite speed of propagation
for the range 0 < n ≤ 1/2, n/2 ≤ m < 6− n and for the range
1/2 < n < 3, n/2 ≤ m < 3n + 4.

If supp(h0) ⊆ [−r0, r0] ⊂ (−a, a) then there is a nondecreasing
function Γ(t) and a time Tspeed such that supp(h(·, t)) ⊆ [−r0−
Γ(t), r0 + Γ(t)] ⊂ (−a, a) for every time t ∈ [0, Tspeed]. For 0 <
n < 2 and m ≤ n + 2, there is a constant C such that Γ(t) 6
Ct1/(n+4).

[Sketch of the proof]

[Stampacchia’s lemma] Let the nonnegative continuous non-
increasing function f (s) : [s0,∞)→ R1 satisfies the following
functional relation:

f (s + f (s)) 6 ε f (s) ∀ s > s0, 0 < ε < 1.

Then f (s) ≡ 0 ∀ s > s0 + (1− ε)−1f (s0).
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Finite-time blow-up and critical exponents.

Whether or not there is a finite–time singularity, such as
‖u(·, t)‖∞ → ∞ as t → T ∗ < ∞, is strongly affected by the
nonlinearity in the PDE.

ut = uxx + up

• if p 6 1 then a solution of an initial value problem exists
for all time

• if 1 < p 6 3, then any non-trivial solution blows up in
finite time

• if p > 3 then some initial data yield solutions that exist
for all time and other initial data result in solutions that
have finite–time singularities

The blow-up is of a focussing type: there are isolated points in space

around which the graph of the solution narrows and becomes taller as

t ↑ T ∗, converging to delta functions centered at the blow–up points.
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Scaling argument. ht = −(f (h)hxxx)x − (g(h)hx)x

Consider a solution with a height-scale H and length-scale
L. Nonnegativity and volume conservation require that

HL ≤ V,

where V is the total fluid volume. The critical regime
should correspond to the balance of nonlinear terms:

f (H)H

L4
∼ g(H)H

L2
⇒ f (H)

g(H)
∼ L2.

This suggests that solution can grow without bound only if

lim
y→∞

y2f (y)
g(y)

<∞.

Ḣ ≤ g(H)H

L2
∼ g(H)2

f (H)
H.

This suggests that any blow-up must take infinite time when-

ever lim
y→∞

g(y)2

f (y)
= A ≤ ∞ ( dominant eAt).
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Scaling argument. ht = −a0(h
n hxxx)x − a1(h

m hx)x

Ḣ ≤ g(H)H

L2
∼ g(H)2

f (H)
H.

This suggests that any blow-up must take infinite time when-

ever lim
y→∞

g(y)2

f (y)
= A ≤ ∞ ( dominant eAt).

This simple scaling argument suggests that if 0 < n ≤ m <
n + 2 then nonnegative solutions are bounded for all time
and if m > n + 2 than finite-time blow-up is possible.
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Exponents n = 2, m = 5.

The slow coarsening dynamic and finite speed of the support

propagation (left). One-point concentrated blow-up for compactly

supported initial data (right).
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Exponents n = 2, m = 5.

Convergence to a steady state for compactly supported initial data

(left). Plots of energy functions (right).
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Exponents n = 2, m = 5.

The coarsening dynamic (left) and one-point concentrated blow-up for

uniformly positive initial data (right).
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Exponents n = 4, m = 6.

One-point concentrated blow-up for uniformly positive initial data
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Exponents n = 1.5, m = 6.

Symmetric and non-symmetric two-point concentrated blow-up

solutions.
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Scaling argument. ht = −a0(h
n hxxx)x − a1(h

m hx)x

[M. C. Pugh and A. L. Bertozzi, 1999]
First analytical result (for the special case n = 1):

Let h0 be nonnegative and compactly supported, h0 ∈ H1(R).
If m ≥ 3 and

E(0) =
1

2

∫ +∞

−∞
h2

0x(x) dx− 1

m(m + 1)

∫ +∞

−∞
hm+1

0 (x) dx < 0,

then there is a singular time T ∗ < ∞ and a compactly
supported nonnegative weak solution on [0, T ∗) such that

lim sup
t→T ∗

||h(., t)||L∞(R) = lim sup
t→T ∗

||h(., t)||H1(R) =∞.
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Finite time blow-up n = 1. ht = −(hhxxx)x − (hm hx)x

[M. C. Pugh and A. L. Bertozzi, 1999]
First analytical result (for the special case n = 1):

Let h0 be nonnegative and compactly supported, h0 ∈ H1(R).
If m ≥ 3 and

E(0) =
1

2

∫ +∞

−∞
h2

0x(x) dx− 1

m(m + 1)

∫ +∞

−∞
hm+1

0 (x) dx < 0,

then there is a singular time T ∗ < ∞ and a compactly
supported nonnegative weak solution on [0, T ∗) such that

lim sup
t→T ∗

||h(., t)||L∞(R) = lim sup
t→T ∗

||h(., t)||H1(R) =∞.

Example of initial values:
h0(x) = λ(1 + cos(λx)) for (−π/λ ≤ x ≤ π/λ), λ > 0, m = 3,
E(0) = −11

48 πλ3.
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Outline of the proof. ht = −(hhxxx)x − (hm hx)x

• Given m ≥ 3 and nonnegative periodic initial data h0 there
exists a periodic weak solution on [−a, a]× [0, T0] (local in
time existence).

• Time T0 depends on m and ||h0||H1 only.

• Given compactly supported initial data the above solu-
tion has finite speed propagation of the support. This
speed is controlled by a function of m and ||h0||H1. One
can extend the weak solution to the line.

• The solution h can be continued in time if H1 norm of h
is bounded: (0 < T0 < T1 < T2... < Tn < ...).

• There is some time T ∗, determined by h0 and m past which
this solution can not exist. It then follows that H1 norm
and as a consequence L∞ norm must have blown up at or
before time T ∗.
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Outline of the proof. ht = −(hhxxx)x − (hm hx)x

• The solution h can be continued in time if H1 norm of h
is bounded: (0 < T0 < T1 < T2... < Tn < ...).

• There is some time T ∗, determined by h0 and m past which
this solution can not exist. It then follows that H1 norm
and as a consequence L∞ norm must have blown up at
or before time T ∗. Time T ∗ originates from the second
moment inequality.

∫ +∞

−∞
x2 h(x, Tn) dx ≤

∫ +∞

−∞
x2 h0(x) dx + 6TnE(0)

E(0) =
1

2

∫ +∞

−∞
h2

0x(x) dx− 1

m(m + 1)

∫ +∞

−∞
hm+1

0 (x) dx < 0.
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New second moment inequality. ht = −a0(hn hxxx)x − a1(hm hx)x

Let 0 < n < 2, m > max{n + 2, 4 − n}. Then a weak solution
h(x, t) satisfies the entropy second-moment inequality:∫
R1

x2G(h(x, T )) dx 6 eB(T )
(∫
R1

x2G(h0) dx+

T∫
0

(
k1E(0) + k2

∫
R1

x2h2
xx dx

)
e−B(t)dt

)
for all T ∈ [0, Tloc], where k1 = 2(4− n), k2 =

3a0(n−1)
2 . Here

G(z) = 1
2−nz

2−n, B(T ) :=
a2

1(1−n)(2−n)

2a0(m−n+1)2

T∫
0

‖h(., τ )‖2m−n
L∞(R1)

dτ .
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Case 0 < n ≤ 1. ht = −a0(hn hxxx)x − a1(hm hx)x

Second moment entropy inequality:
The second-moment inequality can be simplified:∫
R1

x2G(h(x, T )) dx 6 eB(T )

∫
R1

x2G(h0) dx + k1E(0)

T∫
0

e−B(t)dt


for all T ∈ [0, Tloc], where k1 = 2(4− n).
Here

G(z) = 1
2−nz

2−n, B(T ) :=
a2

1(1−n)(2−n)

2a0(m−n+1)2

T∫
0

‖h(., τ )‖2m−n
L∞(R1)

dτ ,

Introduce: g(t) :=
t∫

0
e−B(s)ds by a-priori estimates for Ti we

obtain the low bound:

g(Ti) ≥ C Ti.
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General result. ht = −a0(h
n hxxx)x − a1(h

m hx)x

Finite time blow-up:

Let 4− n 6 m < 6− n with 0 < n 6 1
2,

or m > 4− n with 1
2 < n ≤ 1,

or n + 2 ≤ m < 3n + 4 with 1 < n < 2.
Assume that h0 ≥ 0, h0 ∈ H1(R1) and supph0 ⊂ (−r0, r0),
where r0 < a. If the energy functional is negative on the
initial data h0, then there exists a critical time T ∗ and a
compactly supported at any time T : 0 < T < T ∗ generalized
weak solution h such that

lim sup
t→T ∗

‖h(., t)‖H1(R1) = lim sup
t→T ∗

‖h(., t)‖L∞(R1) = +∞.

26



Mass concentration property

Bourgain proved a mass concentration property for the so-
lution to cubic NLS (L2(R2))

iut+ M u + λ|u|2u = 0, u0 ∈ L2(R2)

that blows up at a finite time T ∗.

The proof was based on the energy equality E(t) = E0 and
the result was:

lim sup
t→T ∗

sup
I<(T ∗−ε)1/2

(

∫
|u|2dx)1/2 > C

where C is some universal constant.

We obtained a similar result for the thin-film equation and∫
Ω udx.
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Multidimensional case

Existence of nonnegative weak and strong solutions for the
unstable thin film equation in multi-dimensional domain RN

was recently studied in [J.R. King, R. Taranets, Nonlinear
Differ. Eqn. Appl., 2013]

ht + a0 div(hnO M h) + a1 div(hmOh) = 0.

Global existence was shown for n− 2 < m < n + 2/N and for
m = n + 2/N under an additional condition that M < Mc.

Finite time blow-up was predicted for the case m > n + 2/N
and finite time rapture was predicted for the case m < n− 2.
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Multidimensional case (R2, n = 2, m = 7/2).
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Multidimensional case (R2, n = 2, m = 7/2).
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Thank you !

THANK YOU FOR YOUR ATTENTION

THE END.
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