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Completion / Compactification

A common practice in various fields of mathematic is to start studying
a certain class of ‘smooth’ or ‘nice’ objects, and to close it w.r.t. some
relevant topology.

In general, the study of the limit objects turns out to be useful to
understand the properties of the original ones.



Gromov’s plan

When the original class of objects are Riemannian manifolds with
some curvature bounds, this program has been proposed by Gromov.

Topology Synthetic notion

Bounds from
above/below on

Gromov-Hausdorff Alexandrov spaces
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convergence
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Ricci curvature

convergence
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Aim of the game

(1) To understand what it means for a metric measure space to have
Ricci curvature bounded from below

(2) To prove in the non-smooth setting ‘all’ the theorems valid for
manifolds with Ric ≥ K , dim ≤ N and their limits

(3) To better understand the geometry of smooth manifolds via the
study of non-smooth objects



The curvature condition

Theorem (Sturm-VonRenesse ’05) - see also Otto-Villani and Cordero
Erausquin-McCann-Schmuckenschlager
Let M be a smooth Riemannian manifold. Then the following are
equivalent:

i) The Ricci curvature of M is uniformly bounded from below by K
ii) The relative entropy functional is K -convex on the space

(P2(M),W2)

Definition (Lott-Villani and Sturm ’06) (X ,d,m) has Ricci curvature
bounded from below by K if the relative entropy is K -convex on
(P2(X ),W2). Called CD(K ,∞) spaces, in short.

Basic features of the CD(K ,∞) condition:
I Compatibility with the Riemannian case
I Stability w.r.t. mGH convergence
I More general CD(K ,N) spaces can be introduced
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Finsler structures are included

Cordero-Erasquin, Villani, Sturm proved that (Rd , ‖ · ‖,Ld ) is a
CD(0,∞) space (in fact CD(0,d)) for any norm.

Some differences between the Finsler and Riemannian worlds:

Analysis: Geometry:

Tangent / cotangent spaces no Abresch-Gromoll inequality
can’t be indentified

No natural Dirichlet form no Splitting theorem
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Some observations

I For a given Finsler manifold the following are equivalent:
I The manifold is Riemannian
I The Sobolev space W 1,2 is Hilbert
I The heat flow is linear

I The heat flow can be seen as:
I Gradient flow of the Dirichlet energy w.r.t. L2

I Gradient flow of the relative entropy w.r.t. W2



The idea

Restrict to the class of CD(K ,∞) spaces with linear heat flow.

What we have to do to show this makes sense:
I understand who is the heat flow on CD(K ,∞) spaces
I show that such flow is stable w.r.t. mGH convergence.

Plan pursued in:
G. ’09
G., Kuwada, Ohta ’10
Ambrosio, G., Savaré ’11
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Definition of Gradient Flow: the smooth case

Let (xt ) ⊂ Rd a smooth curve and f : Rd → R a smooth functional.
Then

f (x0)− f (xt ) ≤
∫ t

0
|x ′s||∇f |(xs) ds

≤ 1
2

∫ t

0
|x ′s|2 + |∇f |2(xs) ds.

Therefore

x ′t = −∇f (xt ), ∀t ≥ 0
m

f (x0) = f (xt ) +
1
2

∫ t

0
|x ′s|2 + |∇f |2(xs) ds, ∀t > 0.
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Definition of Gradient Flow: the metric setting

I |ẋt | := lim
h→0

d(xt+h, xt )

|h|
for an abs.cont. curve (xt )

I |∂−F |(x) := lim
y→x

(F (x)− F (y))+

d(x , y)
I The weak chain rule

F (x0) ≤ F (xt ) +
1
2

∫ t

0
|ẋs|2 + |∂−F |2(xs) ds, ∀t > 0.

holds for K -convex and l.s.c. F : X → R ∪ {+∞}.

Definition (xt ) is a Gradient Flow for the K -conv. and l.s.c. functional
F provided (xt ) ⊂ {F <∞} is a loc.abs.cont. curve and

F (x0) = F (xt ) +
1
2

∫ t

0
|ẋs|2 + |∂−F |2(xs) ds, ∀t > 0.
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|ẋs|2 + |∂−F |2(xs) ds, ∀t > 0.



General results about GF of K -convex functionals

Existence Granted if the space is compact and F (x0) <∞ (Ambrosio,
G., Savaré ’04 (after De Giorgi))

Uniqueness False in general



Basic facts about the GF of the Entropy

Thm. (G. ’09)
Let (X ,d,m) be a compact CD(K ,∞) space.

Then for µ ∈P2(X ) with Entm(µ) <∞ the GF of Entm starting from µ
exists and is unique.

Furthermore, such flow is stable w.r.t. mGH-convergence of the base
space.
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mGH convergence of compact spaces

(Xn,dn,mn) converges to (X∞,d∞,m∞) in the mGH sense if there is
(Y ,dY ) and isometric embeddings ιn, ι∞ of the X ’s into Y such that

(ιn)]mn weakly converges to (ι∞)]m∞

We say that n 7→ µn ∈ P(Xn) weakly converges to µ∞ ∈ P(X∞)
provided

(ιn)]µn weakly converges to (ι∞)]µ∞



mGH convergence of compact spaces

(Xn,dn,mn) converges to (X∞,d∞,m∞) in the mGH sense if there is
(Y ,dY ) and isometric embeddings ιn, ι∞ of the X ’s into Y such that

(ιn)]mn weakly converges to (ι∞)]m∞

We say that n 7→ µn ∈ P(Xn) weakly converges to µ∞ ∈ P(X∞)
provided

(ιn)]µn weakly converges to (ι∞)]µ∞



Γ-convergence of the entropies

Thm. (Lott-Sturm-Villani)
Let (Xn,dn,mn) be converging to (X∞,d∞,m∞). Then:

I Γ− lim inequality: for every sequence n 7→ µn ∈P(Xn) weakly
converging to µ∞P(X∞) we have

Entm∞(µ∞) ≤ lim
n→∞

Entmn (µn).

I Γ− lim inequality: for every µ∞ ∈P(X∞) there is a sequence
n 7→ µn ∈P(Xn) weakly converging to µ∞ such that

Entm∞(µ∞) ≥ lim
n→∞

Entmn (µn).

Cor. The CD(K ,∞) condition is closed w.r.t. mGH convergence.
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Γ− lim for the slopes

Thm. (G. ’09) Let Xn be CD(K ,∞) spaces mGH-converging to X∞
and µn weakly converging to µ∞. Then

|∂−Entm∞ |(µ∞) ≤ lim
n→∞

|∂−Entmn |(µn).

Cor. 1 Let Xn be mGH-converging to X∞ and µn be weakly converging
to µ∞ be such that

lim
n→∞

Entmn (µn) = Entm∞(µ∞) <∞.

Then the GF of Entmn starting from µn converge to the GF of Entm∞

starting from µ∞.

Cor. 2 The condition ‘CD(K ,∞)+linearity of the GF of the entropy’ is
closed w.r.t. mGH convergence.
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Variational definition of |Df | on Rd

Let f : Rd → R be smooth.

Then |Df | is the minimum continuous function G for which

|f (γ1)− f (γ0)| ≤
∫ 1

0
G(γt )|γ̇t | dt

holds for any smooth curve γ



Test plans

Let π ∈P(C([0,1],X )). We say that π is a test plan provided:
I for some C > 0 it holds

et ]π ≤ Cm, ∀t ∈ [0,1].

I it holds ∫∫ 1

0
|γ̇t |2 dt dπ <∞



The Sobolev class S2(X ,d,m)

We say that f : X → R belongs to S2(X ,d,m) provided there exists
G ∈ L2(X ,m), G ≥ 0 such that∫ ∣∣f (γ1)− f (γ0)

∣∣ dπ(γ) ≤
∫∫ 1

0
G(γt )|γ̇t | dt dπ(γ)

for any test plan π.

Any such G is called weak upper gradient of f .

The minimal G in the m-a.e. sense will be denoted by |Df |



Basic properties
Lower semicontinuity From fn → f m-a.e. with fn ∈ S2 and |Dfn| → G
weakly in L2 we deduce

f ∈ S2, |Df | ≤ G

Locality
|Df | = |Dg| m-a.e. on {f = g}

Chain rule
|D(ϕ ◦ f )| = |ϕ′| ◦ f |Df |

for ϕ Lipschitz

‘Leibniz rule’
|D(fg)| ≤ |f ||Dg|+ |g||Df |

for f ,g ∈ S2 ∩ L∞



The Energy E and the Sobolev space W 1,2

We define E : L2(X ,m)→ [0,+∞] as

E(f ) :=
1
2

∫
|Df |2 dm if f ∈ S2(X ), +∞ otherwise.

Then E is convex and lower semicontinuous.

The Sobolev space W 1,2(X ) is W 1,2(X ) := L2(X ) ∩ S2(X ) endowed
with the norm

‖f‖2
W 1,2 := ‖f‖2

L2 + ‖|Df |‖2
L2

W 1,2(X ) is a Banach space.
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Laplacian (first definition)

We say that f ∈ D(∆) ⊂W 1,2(X ) if ∂−E(f ) 6= 0.

In this case we define ∆f := −v , where v is the element of minimal
norm in ∂−E(f ).



‘Integration by parts’

For f ∈ D(∆) and g ∈W 1,2(X ) we have∣∣∣∣∫ g∆f dm
∣∣∣∣ ≤ ∫ |Dg||Df | dm.

For a C1 map u : R→ R we have∫
u(f )∆f dm = −

∫
u′(f )|Df |2 dm.



Gradient flow of E w.r.t. L2

For any f0 ∈ L2(X ,m) there exists a unique map t 7→ ft ∈ L2(X ,m)
such that

d+

dt
ft = ∆ft , ∀t ≥ 0.
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The result

Thm. (G., Kuwada, Ohta ’10. Ambrosio, G. Savaré ’11)
Let (X ,d,m) be a CD(K ,∞) space and µ = fm ∈ P2(X ) with
f ∈ L2(X ,m). Let

I t 7→ ft be the GF of E w.r.t. L2

I t 7→ µt be the GF of Entm w.r.t. W2

Then
µt = ftm ∀t ≥ 0.

Idea of the proof: to show that t 7→ ftm is a GF of Entm w.r.t. W2 and
conclude by uniqueness of the latter.
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Spaces with Riemannian Ricci curvature bounded
from below

RCD(K ,N) := CD(K ,N) + linearity of the heat flow

= CD(K ,N) + W 1,2 is Hilbert



Thank you



Basic properties of the GF of E

Mass preservation
∫

ft dm =
∫

f0 dm for every t ≥ 0

Weak maximum principle If f0 ≤ C then ft ≤ C for every t ≥ 0

Entropy dissipation For 0 < c ≤ f0 ≤ C the map t 7→
∫

ft log ft dm is
absolutely continuous and it holds

d
dt

∫
ft log ft dm = −

∫
|Dft |2

ft
dm



A non-trivial property of the heat flow - Kuwada’s
lemma

Suppose that µ0 := fm is in P2(X ).

Then µt := ftm is in P2(X ) and the curve t 7→ µt is absolutely
continuous w.r.t. W2 and

|µ̇t |2 ≤
∫
|Dft |2

ft
dm
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