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This talk consists of three parts:

1. Review on the regularity under the strong A3 condition
(Ma-Trudinger-Wang, Loeper).

2. Regularity under the weak A3 condition
(Figalli-Kim-McCann, Wang)

3. Regularity in Monge’s problem
(Li-Santambrogio-Wang)

e | will not discuss in details the fundamental work of Caffarelli, it is
well known now.

e | will not discuss the regularity on manifolds, which was studied
by many people (Ph. Delanoe, A. Figalli, G. Loeper, Y.H. Kim-R.
McCann, L. Rifford, C. Villani)



1. Optimal transportation

Let Q and Q* be bounded domains in R".
Let f and g be mass densities on Q and Q* satisfying

. 0<fel'(Q),0<ge LN(QY),

/f— g.
Q Q*

e Jconstants fy, fi, go, g1 > 0 such that

h<f<fi, 9g<9g<o.



Let (u, v) be the potential functions.
The optimal mapping T, is given by

Du(x) = Dxc(x, Ty(x))
Differentiate the above formula,
D2u(x) = DZc(x, Tu(x)) + D3, ¢(x, Tu(x))DT.
We obtain the equation
det[DZc(x, Tu(x)) — D?u(x)] = |D5,c| - g

The boundary condition:

Tu(Q) = Q.



o If
c(x,y)=x-y,
we have the standard Monge-Ampere equation

detD?u = f(x,u, Du) in Q, (4)
subject to the boundary condition:

Du(Q) = Q° (5)

e For Monge’s cost

C(va):|xiy‘

D?c is singular and D?(yc = 0. The equation (2) has no
meaning and so a different treatment is needed.



Regularity of the standard Monge-Ampere equation has been
studied by many people, including
Calabi, Pogorelov, Nirenberg, Cheng-Yau, Caffarelli.
e Interior 2nd derivative estimate of Pogorelov.
Higher regularity by Calabi.
Higher regularity also follows from Evans-Krylov’s theory.

Minkowski problem by Pogorelov and Nirenberg in 2-dim.
by Pogorelov and Cheng-Yau in high dim.

Bernstein Thm by Jorgens, Calabi, Pogorelov, Cheng-Yau.

C?%“ and W?P by Caffarelli
(2-dim by Heinz, and Nikolaev-Shefel, resp).



As a result, Caffarelli obtained the regularity of optimal
mappings for the cost function

c(x,y) = x—yP

(a) If f,g > 0,e C* and Q* is convex, then u € C>*(Q)
(b) If f,g > 0,€ C° and Q* is convex, then u € W2P(Q)

loc
vV p > 1 (the continuity is needed for large p).
(c) Iff,g>0,€ C%, both Q and Q* are uniformly convex and
C2, then u € C?>(Q).

e Iff,ge C"1, 0Q,00" € C3', the global C3 regularity was
obtained by P. Delanoe (dim 2) and J. Urbas (all dim).

e lfcg<f<eq,thenue W,ifforsomep>1byDe

Philippis-Figalli-Savin, and Schmidt.



Caffarelli and Villani proposed to study the regularity of
potential functions for more general cost functions.

o Caffarelli (ICM2002): Geometry of optimal transportation
(local property of the potential function).

« Villani (Book2003): Regularity of the optimal
transportation.

e These two problems are closely related.

We need to study the regularity for

det[D5c(x, Tu(x)) — D?u(x)] = |DZ,c] - ST



Theorem 1 (Ma-Trudinger-Wang).

The potential function u is C® smooth if the cost function ¢ is
smooth, f, g are positive, f € C?(Q),g € C?(Q*), and

A1 Vx, &€ R" 31y e R" st &= Dxc(x,y) (for existence)
A2 |D2,c| # 0.

A3 dcg >0st.VEneR™ Eln

Z(Cij,rs - Cp’inj,qu,rs)Cr’kCS’Ififjnkm > 00’5‘2‘77‘2’

where the subscripts of ¢ before the comma mean
derivatives in x, after the comma mean derivatives in y,
and c'/ is the inverse of the matrix ¢; ;.

B1 Q* is c-convex w.r.t. Q
(namely V xp € Q, Qf := Dxc(xp, Q") is convex)



Remarks on the conditions

e A1 is for the existence of optimal mappings.
e A2 is natural for regularity.
¢ A3 is a structural condition, equivalent to
D5, o, A (X, P)Eimrkmi = ColélPnf® V& L.
where A(x, Du) = D2¢(x, Ty(x)).
M-T-W: If Q* is not c-convex w.r.t. Q (namely if B1 is violated),
then3f,g > 0,€ C? suchthatu ¢ C'.

Loeper: If the structural condition A3 is violated (details shown
later), then 3 f,g > 0, € C?, such that u ¢ C'.



Proof of Theorem 1:

e A priori estimates + understanding the convexity of potentials
and domains wrt cost function.

e The idea is similar to that in my early paper on the reflector
problem (Inverse Problem 1996).



Geometric property of (A3) by Loeper
Let yp, y1 be two points in Q*. Let

Yoyi ={yt: cx(x0,yt) =pt,t €[0,1]}

be the c-segment relative to a point xg € Q, connecting yo, y1,

where p; = tpy + (1 — t)po, and py = Cx(Xo, ¥0), P1 = Cx(X0, ¥1)-
Let

hi(x) = c(x, 1) — a,
where t € (0,1) and a; are constants such that

hi(xo) = ho(x0) V t€0,1].
Then for x # Xy, near xg, and 0 < t < 1, we have the inequality

ht(X) > mil’]{ho(X)7 h1 (X)}



Further regularity

f(x)
9(Tu(x))
Theorem 2 (Liu-Trudinger-Wang): Suppose ¢y < f, g < ¢y and
Q* is c-convex. Then we have the estimate

ot ) < ofa [ [

det[D3c(x, Tu(x)) — DPu(x)] = |D3,c] -

where d = |x — y|, wy is the oscillation of f.

e If f is Dini, then u € C2.
o If f,g € C? then uc C%%(Q).



Proof.
The proof uses a perturbation argument and the regularity of
Ma-Trudinger-Wang (Theorem 1). We also need

e Strict c-convexity of u (Trudinger-Wang 2009)

e Interior second derivative estimate of Pogorelov type for
cost functions under A3w. Assume u = 0 on 92, then

(—u)P|D?ul < C inQ

for some p > 1. (under some technical conditions on ¢
which is satisfied in the perturbation argument)



Theorem 3 (Liu-Trudinger-Wang): If f,g € C° and f, g > 0, then
ue WP(Q)

loc

Proof.

o Normalization
(another step towards the understanding of the geometry).
YV X € Q,let yo = T(xp) and let

c(x,y) — [e(x,¥) = (X, yo)l = [c(X0, ¥) — (X0, o),
u(x) — [u(x) — u(xo)] - [c(x; ¥0) — c(X0, o),
v(y) = [v(y) = v(¥0)] — [c(x0, ¥) — c(x0, Yo),

Then
C(vaO) = 07 C(X07.y

u(xo) =0, Du(xp) :g
V(o) =0, Dv(y) =0



e Now we make the transform
x — Dyc(x,y0), ¥y — Dxc(xo,¥)
Then the level set of
S2(x0) = {u < h}
is convex (by the geometric property of A3),
c(x,y) =c-y+ (Cjkx — CjmCmki)XiXjyxyi + h.o.t.
Moreover in the level set we have
D2¢(x, Ty(x)) - 0 ash—0,
In particular

det[D2¢c(x, Ty(x)) — D?u(x)] — det[—D?u(x)]



e Asymptotic analysis
|Sh(x0)| ~ h"?

Moreover, as h — 0,

in the limit of normalization.

¢ With the above local properties, we then use Caffarelli’'s
method for the W?P estimate.



Cost functions satisfying A3

—log |x — y/,
V1+‘X_y|27
\/1_|X_y|27

|x — y|?> on sphere,

c(x,y)

|X — y!2 + |f(X) — g(y)|2, f, g unif. convex, |Df|,|Dg| < 1,
Ix—ylP, -2<p<1p#0.

e Cost functions not satisfying A3
c(x,y)=Ix-ylP, p<-2o0rp>1.

e If c(x, y) satisfies A3, then —c(x, y) does not.



Further remarks on the condition A3
Recall the assumption A3:

D3, o, Ai(X, P)éimkm > ColéPnf? v & L.
where A(x, Du) = D2¢c(x, Ty(x)).

Loeper: If the structural condition A3 is violated,
namely if 3 &, n such that

D3, 5, Aii(X, P)&i&mim < 0
then3f,g > 0,e C? suchthatu ¢ C'.

e To prove the result, he observed a geometric property of
the condition (A3), and used an idea in
[Ma-Trudinger-Wang].

e The idea is that construct a sequence of mass densities gi
which converges to the Dirac measure 4y, + d,, for proper

Yo, V1.



Regularity under (A3w)
M-T-W:  Regularity if ¢ satisfies (A3):

D2, Aj(x, p)Eicjmen > Col€?[nl? V€ L.

Loeper:  Counterexample if 3 &, (¢ L ) such that
D3, o, A (X, P)Eimkm < O

Question— (closing the gap between M-T-W and Loeper)
Regularity under the weak A3:

(A3w) D3, 5, Aj(X, P)Si&mkm = 0 YV & L n?
Answer: Yes. We can establish

i). Strict c-convexity and C'-* of potential functions
ii). C%>~and W?P estimates.
e Parts i) was obtained by Figalli-Kim-McCann assuming that the
target domain is unif convex. The unif convexity can be removed.
e Part ii) follows if i) is proved.



Regularity under (A3w)

Theorem Assume that

e O, Q* bounded domains in R",

e QC Q,and Q,Q* are c-convex wrt each other,

o fo<f<f,go<g< g forconstfy,fi,go, g1,

e Cc € C™, satisfying (A1), (A2) and (A3w).
Then

e The potential function u is strictly c-convex in €.
o uc CH(Q)



Proof. The proof is similar to that of Caffarelli for cost |x — y|?
and that of Figalli-Kim-McCann for general costs.

e Introduce c-cone \/5"’ (cone relative to cost function ¢),
where p is the vertex, D is the base, and h is the height.
 Estimate size of sub-gradient 0_V(p) of the c-cone V.

Here the sub-gradient of a function is

d-p(x0) ={p € R"| ¢(x) > ¢(Xo)+p-(Xx—Xo)—0(|X—Xol)}.

We show that, after the normalization as above, and if
diamD < g,

~ D,h
0-V(p)| = [0-V, ()|

~Dh . .
where V, (p) is the standard cone in R"
(vertex p, base D and height h).



e Consider the Dirichlet problem

———— inQ

2 I
det{De(x. Tu(x) — Du(0)] = D el - sy

u=0o0n9oQ
By the estimate of |0_V (p)|, we have (if diam(Q2) < dp)
lu(xc)| =~ Q%" x. is the centre of Q,

u(xo)| ~ d |Q%" Xo is any point in Q,

where dy is a power of the distance from xo to 92 after
normalization.

e |f the potential function is not strictly c-convex, there exists
Xo € 2 such that u(xp) ~ u(xc) but dy, as small as we want.
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Proof of the C'* estimate.
By the strict c-convexity it follows that u € C'.
Hence V xp € Q, by normalization we assume that
u(xp) =0 and u>0
Then the strict c-convexity implies
u(x) > Clx — xp|™ near xg

for some m > 2. By duality it implies that dual potential function

veChwitha = 1.



A Brief summary

Through works of many people, we have the regularity and
geometry of the optimal transportation:

Geometry of OT under A3w:

e geometry of the cost function under A3w (Loeper),
e normalization and convexity of level sets,

e c-cone close to convex cone,

e Strict c-convexity.

Regularity of OT under A3w:
e Cl,
. C20,
o W2P.



Monge’s Problem

Monge’s cost function ~ C(X,y) =[x — |
does not satisfy condition A1 (for existence of optimal maps)

Al: Vx,£€ R", 31y e R" st &= Dxc(x,y).
(@andVy,£ € R", 31 x € R" st & = Dyc(x,y).)

nor it satisfies assumptions A2 and A3 (for the regularity)
A2: \D,%yc\ # 0.
A3: dcg >0st.VEne R Eln

Z(Cij,rs - Cp’inj,quJs)Cr’kcs’/fifmknl > CO‘£|2‘77|27

It is at the borderline of these conditions:

X —y| = lim\/e2 4 |x — y]2 = lim |x — y|"=.
e—0 e—0



Existence of optimal mappings in Monge’s
Problem

The existence was extensively studied in history.
e Evans-Gangbo — Mem AMS, p-Laplace equation p — oo

(under some regularity conditions)

o Caffarelli-Feldman-McCann (JAMS2002),
Trudinger-Wang (Calc Var 2001).

e Sudakov-Ambrosio — probability approach



Uniqueness in Monge’s problem

The optimal mapping in Monge’s problem is not unique. In fact,
for Monge’s problem in R' from Q = [0, 1] to Q* = [1,2], all
mappings have the same total cost.

But by McCann-Feldman, there is a unique optimal mapping
which is monotone, namely

(y=x)-(s(y) = s(x)) = 0



Regularity in Monge’s problem

We wish to know whether the monotone mapping is smooth.
This is a rather difficult problem. Recall that Monge’s cost

c(x,y) =[x = y| = lim._o[e® + [x — y|7]"/2 = c.(x,y)
We wish to establish uniform estimates for potential functions
u. and optimal mappings w.r.t. the cost function c., as ¢ \ 0.

The potential function u. satisfies the equation

1 — |Dul? § Dyl
det{m(&-j — Uy Uy) — Ux,-x,] _[1—[Duf]= f

en g

When ¢ > 0 is small, it is a strongly singular equation.



Denote

1 —|Dul?

Wy - \/T[(;,j ~ Uyty] — DPugy
1 — |Dul?

a VTOE

Then (notethat T=T.,, W = W)
DT = [D5,c]'W, W = (w;)
Denote (A?) is the inverse of (Aj;) and

G= ZAaﬁWaﬁ

Denote \; > 0 the eigenvalues of DT.



The following result was obtained by Qi-Rui Li, Filippo
Santambrogio and myself.

Theorem: If u € C* is a solution, then
dist(x,9Q) \; < C, (")
where C is independent of ¢ > 0.

Proof: Consider the auxiliary function nG, where 7 is a cut-off
function such that nG attains its maximum at some interior
point. By very long computation, we obtain nG < C.



The above theorem implies

e Eigenvalues of DT is bounded.

e D?uis bounded in the region {x € Q: |T(x) — x| > 0}.

e 0,T" and 9 T* are bounded, where v = 7, ¢ is unit
vector and ¢ L v.

Question: Do we have the uniform estimate

|DT.| < C? (*)
i.e. \85T”| < C?
Answer: No. There exist convex smooth domains and smooth,

positive mass distributions f, g such that |DT.| is not uniformly
bounded.
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Question: Is T. uniformly continuous in ¢ if the target domain
Q* is star-shaped with respect to any point of Q.

We conjecture the answer is affirmative.

This problem is similar to the C' regularity of the co-Laplace
equation, which is another open problem attracted much
attention in the last two decades.

Fragala-Gelli-Pratelli studied the case in dim 2.
Assume that Q and Q* are convex, QN Q" = (). Then the
(monotone) optimal mapping is continuous .



Thank you



