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Gradient flow and discrete gradient flow

• Consider (P2(Rd),W2) and E : P2(Rd)→ R ∪ {+∞} proper, lower
semicontinuous, coercive, and convex

• Assume µ << Ld , so by [Brenier] tνµ#µ = ν exists and

W2(µ, ν) =

(∫
|id− tνµ|2dµ

)1/2

Assume E (µ) <∞ =⇒ µ << Ld

• Formally, the gradient flow of E : P2(Rd)→ R ∪ {+∞} is

d

ds
µ(s) = −∇E (µ(s)) , µ(0) = µ

• If we were in Euclidean space, we could approximate the gradient flow

d

ds
x(s) = −∇E (x(s)) , x(0) = x

using the implicit finite difference scheme

=⇒ xn is a of y 7→ 1
2τ |y − xn−1|2 + E (y)
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Gradient flow and discrete gradient flow

• Analogously, define the discrete gradient flow sequence of E in W2 as

µn is a minimum of ν 7→ 1

2τ
W 2

2 (µn−1, ν) + E (ν) , µ0 = µ

• Unlike in the Euclidean case, ν 7→W 2
2 (µ, ν) is not convex [AGS, Example

9.1.5]. This is a recurring problem when trying to extend results from Banach
and Hilbert spaces to the Wasserstein metric.

• To compensate for this, I follow [AGS] and require E to be convex along
generalized geodesics (a class of curves in P2(Rd)—will define soon).
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Gradient flow and discrete gradient flow

• With this assumption, [AGS, Theorem 4.1.2] showed

E (µ) <∞ =⇒ ∀τ > 0 ,∃! minimizer of ν 7→ 1

2τ
W 2

2 (µ, ν) + E (ν)

• Write the minimizer as Jτµ and call Jτ : µ 7→ Jτµ the proximal map with
time step τ .
The nth term of the discrete gradient flow sequence with time step τ is Jn

τµ.
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Key elements of Crandall and Liggett’s method

Banach space (X , || · ||)
1 Contraction inequality: ||Jτx − Jτy || ≤ ||x − y ||

2 Proximal maps at different time steps: if 0 < h ≤ τ , Jτx = Jh
[
τ−h
τ Jτx + h

τ x
]

3 Combine these to get a recursive inequality:

||Jn
τ x − Jm

h x || =

∣∣∣∣∣∣∣∣Jh [τ − h

τ
Jn
τ x +

h

τ
Jn−1
τ x

]
− Jm

h x

∣∣∣∣∣∣∣∣ by 2

≤
∣∣∣∣∣∣∣∣[τ − h

τ
Jn
τ x +

h

τ
Jn−1
τ x

]
− Jm−1

h x

∣∣∣∣∣∣∣∣ by 1

≤ τ − h

τ
||Jn
τ x − Jm−1

h x ||+ h

τ
||Jn−1
τ x − Jm−1

h x ||
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m

n

(n,m)

(n,m-1)(n-1,m-1)

Monday, August 26, 13
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Goal
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1) Contraction Inequality

The W2 analogue of ||Jτx − Jτy || ≤ ||x − y || is

Almost contraction inequality [C.]

W 2
2 (Jτµ, Jτν) ≤W 2

2 (µ, ν) + τ 2|∂E |2(µ)

where |∂E |(u) := lim supv→u
(E(u)−E(v))+

d(u,v) is the metric slope.
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(E(u)−E(v))+

d(u,v) is the metric slope.

This is proved using the discrete variational inequality [AGS, Theorem 4.1.2]:

1

2τ
[W 2

2 (Jτµ, ν)−W 2
2 (µ, ν)] ≤ E (ν)− E (Jτµ)− 1

2τ
W 2

2 (µ, Jτµ)
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2) Proximal maps at different time steps

The W2 analogue of Jτx = Jh
[
τ−h
τ Jτx + h

τ x
]

is

Proximal maps at different time steps [Jost, Mayer, C.]

If 0 < h ≤ τ , Jτµ = Jh
[(
τ−h
τ tJτµµ + h

τ id
)

#µ
]

= Jh
[
µµ→Jτµ
τ−h
τ

]
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αJτx + (1− α)x is the Banach space geodesic from x to Jτx at time α

(αtJτµµ + (1− α)id)#µ is the Wasserstein geodesic from µ to Jτµ at time α.

This follows from the Euler-Lagrange equation characterizing the minimizer Jτµ.

Euler-Lagrange equation [AGS, C.]

ν is the unique minimizer of 1
2τ W 2

2 (µ, ν) + E (ν) if and only if 1
τ (tµν − id) ∈ ∂E (ν)

is a strong subdifferential.
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Euler-Lagrange equation

Definition (Subdifferential)

ξ ∈ L2(µ) belongs to ∂E (µ) in case

E (ν)− E (µ) ≥
∫
〈ξ, tνµ − id〉dµ+ o(W2(µ, ν)) as ν

W2−−→ µ.
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W2−−→ µ.
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(tµν−id) ∈ ∂E (ν) is a strong subdifferential.
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1

τ
(tµν−id) ∈ ∂E (ν) is a strong subdifferential =⇒ ν minimizes

1
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W 2

2 (µ, ν)+E (ν),

define the quadratic perturbation Φτ,µ(ν) := 1
2τ W 2

2 (µ, ν) + E (ν).
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Goal

1 Contraction inequality: W 2
2 (Jτµ, Jτν) ≤W 2

2 (µ, ν) + τ 2|∂E |2(µ)

2 Proximal maps at different time steps: if 0 < h ≤ τ , Jτx = Jh
[
τ−h
τ Jτx + h

τ x
]

Will come back to this.

3 Combine these to get a recursive inequality:

||Jn
τ x − Jm

h x || =

∣∣∣∣∣∣∣∣Jh [τ − h

τ
Jn
τ x +

h

τ
Jn−1
τ x

]
− Jm

h x

∣∣∣∣∣∣∣∣ by 2

≤
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τ
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3) Recursive Inequality

Combining

1 the almost contraction inequality and

2 the relation between proximal maps at different time steps

we get

W 2
2 (Jn

τµ, J
m
h µ) = W 2

2 (Jh(µ
Jn−1
τ µ→Jn

τµ
τ−h
τ

), Jm
h µ) by 2

≤W 2
2 (µ

Jn−1
τ µ→Jn

τµ
τ−h
τ

, Jm−1
h µ) + h2|∂E |2(Jm−1

h µ) by 1
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requires the convexity of
ν 7→W 2

2 (µ, ν) .
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Generalized geodesics

[AGS] ran into the same problem. Their solution was to consider convexity along
a different class of curves. While ν 7→W 2

2 (µ, ν) is not convex along all geodesics,
it is convex along all generalized geodesics with base µ [AGS, Lemma 9.2.1].

15 / 30



Generalized geodesics

[AGS] ran into the same problem. Their solution was to consider convexity along
a different class of curves. While ν 7→W 2

2 (µ, ν) is not convex along all geodesics,
it is convex along all generalized geodesics with base µ [AGS, Lemma 9.2.1].

Definition (Generalized geodesic)

The generalized geodesic from µ0 to µ1 with base ω is

µα := ((1− α)tµ0
ω + αtµ1

ω ) #ω.

Note that if ω = µ0 or µ1, this is the standard geodesic from µ0 to µ1.

15 / 30



Generalized geodesics

[AGS] ran into the same problem. Their solution was to consider convexity along
a different class of curves. While ν 7→W 2

2 (µ, ν) is not convex along all geodesics,
it is convex along all generalized geodesics with base µ [AGS, Lemma 9.2.1].

Definition (Generalized geodesic)

The generalized geodesic from µ0 to µ1 with base ω is

µα := ((1− α)tµ0
ω + αtµ1

ω ) #ω.

Note that if ω = µ0 or µ1, this is the standard geodesic from µ0 to µ1.

The assumption that E is convex along generalized geodesics means that E is
convex along all generalized geodesics, with any base.

15 / 30



Generalized geodesics

[AGS] ran into the same problem. Their solution was to consider convexity along
a different class of curves. While ν 7→W 2

2 (µ, ν) is not convex along all geodesics,
it is convex along all generalized geodesics with base µ [AGS, Lemma 9.2.1].

Definition (Generalized geodesic)

The generalized geodesic from µ0 to µ1 with base ω is

µα := ((1− α)tµ0
ω + αtµ1

ω ) #ω.

Note that if ω = µ0 or µ1, this is the standard geodesic from µ0 to µ1.

The assumption that E is convex along generalized geodesics means that E is
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Jn−1
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τµ
τ−h
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, Jm−1
h µ) ,

since µ
Jn−1
τ µ→Jn

τµ
τ−h
τ

is not a generalized geodesic with base Jm−1
h µ. For this reason,

consider a related notion, also introduced by [AGS, Equation 7.3.2]. 15 / 30



Transport Metric

Definition (Transport Metric)

Given ω, the transport metric from µ to ν with base ω is

W2,ω(µ, ν) :=

(∫
|tµω − tνω|2dω

)1/2
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Euler-Lagrange equation

We want to prove

1

τ
(tµν−id) ∈ ∂E (ν) is a strong subdifferential =⇒ ν minimizes

1

2τ
W 2

2 (µ, ν)+E (ν),

so we will have an Euler-Lagrange equation that characterizes Jτµ.
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Proximal maps at different time steps

Thus, we have shown,

Euler-Lagrange equation [AGS, C.]

ν is the unique minimizer of 1
2τ W 2

2 (µ, ν) + E (ν) if and only if 1
τ (tµν − id) ∈ ∂E (ν)

is a strong subdifferential.
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19 / 30



Proximal maps at different time steps

Thus, we have shown,

Euler-Lagrange equation [AGS, C.]

ν is the unique minimizer of 1
2τ W 2

2 (µ, ν) + E (ν) if and only if 1
τ (tµν − id) ∈ ∂E (ν)

is a strong subdifferential.

With this, we can now prove

Proximal maps at different time steps [Jost, Mayer, C.]

If 0 < h ≤ τ , Jτµ = Jh
[(
τ−h
τ tJτµµ + h

τ id
)

#µ
]

= Jh
[
µµ→Jτµ
τ−h
τ

]
Sketch of Proof.

• Define ν := (id + hξ)#Jτµ, where ξ := 1
τ (tµJτµ − id)

• Use cyclic monotonicity and the EL equation to conclude Jτµ = Jhν

• Rewrite ν as
(
τ−h
τ tJτµµ + h

τ id
)

#µ to conclude the result

19 / 30



Proximal maps at different time steps

Thus, we have shown,

Euler-Lagrange equation [AGS, C.]

ν is the unique minimizer of 1
2τ W 2

2 (µ, ν) + E (ν) if and only if 1
τ (tµν − id) ∈ ∂E (ν)

is a strong subdifferential.

With this, we can now prove

Proximal maps at different time steps [Jost, Mayer, C.]

If 0 < h ≤ τ , Jτµ = Jh
[(
τ−h
τ tJτµµ + h

τ id
)

#µ
]

= Jh
[
µµ→Jτµ
τ−h
τ

]
Sketch of Proof.

• Define ν := (id + hξ)#Jτµ, where ξ := 1
τ (tµJτµ − id)

• Use cyclic monotonicity and the EL equation to conclude Jτµ = Jhν

• Rewrite ν as
(
τ−h
τ tJτµµ + h

τ id
)

#µ to conclude the result

19 / 30



Goal

1 Contraction inequality: W 2
2 (Jτµ, Jτν) ≤W 2

2 (µ, ν) + τ 2|∂E |2(µ)

2 Proximal maps at different time steps: if 0 < h ≤ τ ,Jτx = Jh
[
τ−h
τ Jτx + h

τ x
]

3 Combine these to get a recursive inequality:

||Jn
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h x || =
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h x
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Recursive Inequality

Proof.
Combining the contraction inequality with the relation between proximal maps at
different time steps, we get

W 2
2 (Jn

τµ, J
m
h µ)

= W 2
2 (Jh(µ

Jn−1
τ µ→Jn

τµ
τ−h
τ

), Jm
h µ)

≤W 2
2 (µ

Jn−1
τ µ→Jn

τµ
τ−h
τ

, Jm−1
h µ) + h2|∂E |2(Jm−1

h µ)

≤W 2
2,Jn−1

τ µ
(µ

Jn−1
τ µ→Jn

τµ
τ−h
τ

, Jm−1
h µ) + h2|∂E |2(Jm−1

h µ)

≤ h

τ
W 2

2,Jn−1
τ µ

(Jn−1
τ µ, Jm−1

h µ) +
τ − h

τ
W 2

2,Jn−1
τ µ

(Jn
τµ, J

m−1
h µ) + h2|∂E |2(Jm−1

h µ)

=
h

τ
W 2

2 (Jn−1
τ µ, Jm−1

h µ) +
τ − h

τ
W 2

2,Jn−1
τ µ

(Jn
τµ, J

m−1
h µ)+h2|∂E |2(Jm−1

h µ)

Now we need to go from the transport metric back to the W2 metric.
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Recursive Inequality

Lemma (Controlling transport metric in terms of W2 [C.])

W 2
2,Jn−1

τ µ
(Jm−1

h µ, Jn
τµ) ≤ τ

h

(
W 2

2 (Jm−1
h µ, Jn

τµ)−W 2
2 (Jm

h µ, J
n
τµ)
)

+ W 2
2 (Jn−1

τ µ, Jm−1
h µ) + τh|∂E |2(Jm−1

h µ)
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We can now finish the proof.

Proof.
Plugging this into the previous inequality, rearranging, and simplifying gives

W 2
2 (Jn

τµ, J
m
h µ) ≤ h

τ
W 2

2 (Jm−1
h µ, Jn−1

τ µ) +
τ − h

τ
W 2

2 (Jm−1
h µ, Jn

τµ) + 2h2|∂E |2(µ)
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Goal

1 Contraction inequality: W 2
2 (Jτµ, Jτν) ≤W 2

2 (µ, ν) + τ 2|∂E |2(µ)

2 Proximal maps at different time steps: if 0 < h ≤ τ ,

Jτµ = Jh
[(
τ−h
τ tJτµµ + h

τ id
)

#µ
]

= Jh
[
µµ→Jτµ
τ−h
τ

]
3 Combine these to get a recursive inequality:

||Jn
τ x − Jm

h x || =

∣∣∣∣∣∣∣∣Jh [τ − h

τ
Jn
τ x +

h

τ
Jn−1
τ x

]
− Jm

h x

∣∣∣∣∣∣∣∣ by 2

≤
∣∣∣∣∣∣∣∣τ − h

τ
Jn
τ x +

h

τ
Jn−1
τ x − Jm−1

h x

∣∣∣∣∣∣∣∣ by 1

≤ τ − h

τ
||Jn
τ x − Jm−1

h x ||+ h

τ
||Jn−1
τ x − Jm−1

h x ||
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Exponential formula

• Iterating the recursive inequality in a manner similar to [Rasmussen] gives

W 2
2 (Jn

τµ, J
m
h µ) ≤

[
(nτ −mh)2 + τhm + 2h2m

]
|∂E |2(µ)

• Therefore, taking τ = t
n and h = t

m with m ≥ n, so h ≤ τ , we obtain

W 2
2 (Jn

t/nµ, J
m
t/mµ) ≤

[
t2

n
+ 2

t2

m

]
|∂E |2(µ) ,

and the sequence Jn
t/nµ is Cauchy

• Since W2 is complete [AGS, Prop 7.1.5], limn→∞ Jn
t/nµ exists

• This gives a rate of convergence of

W2(Jn
t/nµ, µ(s)) ≤ O

(
1√
n

)
|∂E |(µ)

• This rate is not as good as the optimal rate showed by [AGS, Theorem 4.0.4]
W2(Jn

t/nµ, µ(s)) ≤ O
(
1
n

)
|∂E |(µ)

• This rate improves upon the metric space result of [Clément, Desch]
W2(Jn

t/nµ, µ(s)) ≤ O
(

1
n1/4

)
|∂E |(µ)

(though their result holds in greater generality)
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Generalizations and directions for future work

The previous results continue to hold if...

• E λ-convex along generalized geodesics, λ ∈ R

• variable time steps τi

• E (µ) <∞ for measures µ that give mass to small sets

• Gradient flow for irregular functionals

• How does the gradient flow behave as a regularization is removed?

• How can we tune time steps in the discrete gradient flow to avoid
irregularities?
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H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans
les espaces de Hilbert, North-Holland, Amsterdam, 1973. MR0348562 (50
#1060)

E. Carlen and K. Craig, Contraction of the proximal map and generalized
convexity of the Moreau-Yosida regularization in the 2-Wasserstein metric, Math.
and Mech. of Complex Systems 1 (2013), no. 1, 33–65.

27 / 30



References II
M. G. Crandall, Semigroups of nonlinear transformations in Banach spaces, in
Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center,
Univ. Wisconsin, Madison, Wis., 1971), 157–179. Publ. Math. Res. Center Univ.
Wisconsin, 27, Academic Press, New York. MR0470787 (57 #10532)

M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear
transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265–298.
MR0287357 (44 #4563)

E. De Giorgi, New problems on minimizing movements, in Boundary value
problems for partial differential equations and applications, 81–98, RMA Res.
Notes Appl. Math., 29 Masson, Paris. MR1260440 (95a:35057)

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the
Fokker-Planck equation, SIAM J. Math. Anal. 29 (1998), no. 1, 1–17.
MR1617171 (2000b:35258)

28 / 30



References III
J. Jost, Convex functionals and generalized harmonic maps into spaces of
nonpositive curvature, Comment. Math. Helv. 70 (1995), no. 4, 659–673.
MR1360608 (96j:58043)

Y. Kobayashi, Difference approximation of Cauchy problems for quasi-dissipative
operators and generation of nonlinear semigroups, J. Math. Soc. Japan 27
(1975), no. 4, 640–665. MR0399974 (53 #3812)

U. F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic
maps, Comm. Anal. Geom. 6 (1998), no. 2, 199–253. MR1651416 (99m:58067)

R. J. McCann, A convexity principle for interacting gases, Adv. Math. 128
(1997), no. 1, 153–179. MR1451422 (98e:82003)

F. Otto, Doubly degenerate diffusion equations as steepest descent, Manuscript
(1996).

29 / 30



References IV
F. Otto, The geometry of dissipative evolution equations: the porous medium
equation, Comm. Partial Differential Equations 26 (2001), no. 1-2, 101–174.
MR1842429 (2002j:35180)

S. Rasmussen, Non-linear semi-groups, evolution equations and product integral
representations, Various Publication Series, (1971), no. 2, Aarhus Universitet.

R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28
Princeton Univ. Press, Princeton, NJ, 1970. MR0274683 (43 #445)

C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, 58,
Amer. Math. Soc., Providence, RI, 2003. MR1964483 (2004e:90003)

K. Yosida, Functional analysis, reprint of the sixth (1980) edition, Classics in
Mathematics, Springer, Berlin, 1995. MR1336382 (96a:46001)

30 / 30


