Spaces with Ricci curvature bounded from below

Nicola Gigli

August 29, 2013

1) On the definition of spaces with Ricci curvature bounded from below

2) Analytic properties of *RCD*(*K*, *N*) spaces

3) Geometric properties of *RCD*(*K*, *N*) spaces

Quoting the first sentence of Cheng-Yau '75

'Most of the problems in differential geometry can be reduced to problems in differential equations on Riemannian manifolds'

Few things to forget about

 \blacktriangleright Forget about Lipschitz functions

 \blacktriangleright Forget about charts

 \triangleright Forget (for a second) about defining who tangent/cotangent vectors are: focus on defining ∇*f* · ∇*g* for Sobolev *f*, *g*

Analytic properties of *RCD*(*K*, *N*) spaces

 \triangleright Differential calculus on infinitesimally Hilbertian spaces

- \triangleright The heat flow on *RCD*(*K*, ∞) spaces again
- \blacktriangleright Bochner inequality
- \triangleright Optimal maps
- \triangleright Distributional Laplacian

Analytic properties of *RCD*(*K*, *N*) spaces

 \triangleright Differential calculus on infinitesimally Hilbertian spaces

- \triangleright The heat flow on *RCD*(*K*, ∞) spaces again
- \blacktriangleright Bochner inequality
- \triangleright Optimal maps
- \triangleright Distributional Laplacian

Infinitesimally Hilbertian spaces and the object ∇*f* · ∇*g*

We say that $(X, \mathsf{d}, \mathfrak{m})$ is infinitesimally Hilbertian if $\mathsf{W}^{1,2}(X)$ is Hilbert.

Infinitesimally Hilbertian spaces and the object ∇*f* · ∇*g*

We say that $(X, \mathsf{d}, \mathfrak{m})$ is infinitesimally Hilbertian if $\mathsf{W}^{1,2}(X)$ is Hilbert.

Let (X, d, \mathfrak{m}) be inf. Hilb. and $f, g \in S^2(X)$.

Infinitesimally Hilbertian spaces and the object ∇*f* · ∇*g*

We say that $(X, \mathsf{d}, \mathfrak{m})$ is infinitesimally Hilbertian if $\mathsf{W}^{1,2}(X)$ is Hilbert.

Let (X, d, \mathfrak{m}) be inf. Hilb. and $f, g \in S^2(X)$.

We define $\nabla f \cdot \nabla g : X \to \mathbb{R}$ as

$$
\nabla f \cdot \nabla g := \inf_{\varepsilon > 0} \frac{|D(g+\varepsilon f)|^2 - |Dg|^2}{2\varepsilon}
$$

Calculus rules

Thm. (G. '12. Ambrosio, G., Savaré '11) For (*X*, d, m) inf. Hilb. and $f,g\in S^2(X)$ we have

Cauchy-Schwarz $|\nabla f \cdot \nabla g| \leq |Df||Dg| \in L^1(X, \mathfrak{m})$ Locality $\nabla f \cdot \nabla g = \nabla \tilde{f} \cdot \nabla \tilde{g}$ m-a.e. on $\{f = \tilde{f}\} \cap \{g = \tilde{g}\}.$ Linearity $\nabla(\alpha_0 f_0 + \alpha_1 f_1) \cdot \nabla g = \alpha_0 \nabla f_0 \cdot \nabla g + \alpha_1 \nabla f_1 \cdot \nabla g$ Chain rule $\nabla(\varphi \circ f) = \varphi' \circ f \nabla f \cdot \nabla g$ for φ Lipschitz Leibniz rule $\nabla (f_1 f_2) \cdot \nabla g = f_1 \nabla f_2 \cdot \nabla g + f_2 \nabla f_1 \cdot \nabla g$. Symmetry $\nabla f \cdot \nabla g = \nabla g \cdot \nabla f$

Plan representing gradients: definition

For $g\in \mathcal{S}^2$ and $\pi\in \mathscr{P}(C([0,1],X))$ test plan it holds

$$
\varlimsup_{t\downarrow 0}\int\frac{g(\gamma_t)-g(\gamma_0)}{t}\,\mathrm{d}\pi\leq \frac{1}{2}\int |Dg|^2(\gamma_0)\,\mathrm{d}\pi+\varlimsup_{t\downarrow 0}\frac{1}{2t}\iint_0^t|\dot\gamma_s|^2\,\mathrm{d} s\,\mathrm{d}\pi
$$

Plan representing gradients: definition

For $g\in \mathcal{S}^2$ and $\pi\in \mathscr{P}(C([0,1],X))$ test plan it holds

$$
\varlimsup_{t\downarrow 0}\int\frac{g(\gamma_t)-g(\gamma_0)}{t}\,\mathrm{d}\pi\leq \frac{1}{2}\int |Dg|^2(\gamma_0)\,\mathrm{d}\pi+\varlimsup_{t\downarrow 0}\frac{1}{2t}\iint_0^t|\dot\gamma_s|^2\,\mathrm{d} s\,\mathrm{d}\pi
$$

We say that π *represents* ∇g , provided it holds

$$
\varliminf_{t\downarrow 0}\int\frac{g(\gamma_t)-g(\gamma_0)}{t}\,\mathrm{d}\pi\geq \frac{1}{2}\int |Dg|^2(\gamma_0)\,\mathrm{d}\pi+\varlimsup_{t\downarrow 0}\frac{1}{2t}\iint_0^t|\dot\gamma_s|^2\,\mathrm{d} s\,\mathrm{d}\pi
$$

Plan representing gradients: existence

Thm (G. '12. Ambrosio, G., Savaré '11. G., Kuwada, Ohta '10). For $g\,\in\, S^2(X)$ and $\mu\,\in\,\mathscr{P}(X)$ such that $\mu\,\leq\,$ Cm, a plan π representing ∇g and such that $e_{0\mu}\pi = \mu$ exists.

First order differentiation formula

Let $f,g\in \mathcal{S}^2(\mathcal{X}),$ and π which represents $\nabla g.$

First order differentiation formula

Let $f,g\in \mathcal{S}^2(\mathcal{X}),$ and π which represents $\nabla g.$

Then

$$
\lim_{t\downarrow 0}\int\frac{f(\gamma_t)-f(\gamma_0)}{t}\,\mathrm{d}\pi=\int\mathbf{\nabla} f\cdot\mathbf{\nabla} g\left(\gamma_0\right)\mathrm{d}\pi
$$

Analytic properties of *RCD*(*K*, *N*) spaces

 \triangleright Differential calculus on infinitesimally Hilbertian spaces

- \triangleright The heat flow on *RCD*(*K*, ∞) spaces again
- \blacktriangleright Bochner inequality
- \triangleright Optimal maps
- \triangleright Distributional Laplacian

A property of GF of *K*-convex functions on R *d*

Let $E:\mathbb{R}^d \rightarrow \mathbb{R}$ be K -convex and $t \mapsto x_t$ be such that

$$
x'_t=-\nabla E(x_t).
$$

A property of GF of *K*-convex functions on R *d*

Let $E:\mathbb{R}^d \rightarrow \mathbb{R}$ be K -convex and $t \mapsto x_t$ be such that

$$
x'_t=-\nabla E(x_t).
$$

Pick $y \in \mathbb{R}^d$ and notice that

$$
\frac{\mathrm{d}}{\mathrm{d}t}\frac{1}{2}|x_t-y|^2=x'_t\cdot(x_t-y)=\nabla E(x_t)\cdot(y-x_t)
$$

and for $y_{t,s} := (1-s)x_t + sy$ we have

$$
\frac{\mathrm{d}}{\mathrm{d} s}|_{s=0}E(y_{t,s})=\nabla E(x_t)\cdot(y-x_t).
$$

A property of GF of *K*-convex functions on R *d*

Let $E:\mathbb{R}^d \rightarrow \mathbb{R}$ be K -convex and $t \mapsto x_t$ be such that

$$
x'_t=-\nabla E(x_t).
$$

Pick $y \in \mathbb{R}^d$ and notice that

$$
\frac{\mathrm{d}}{\mathrm{d}t}\frac{1}{2}|x_t-y|^2=x'_t\cdot(x_t-y)=\nabla E(x_t)\cdot(y-x_t)
$$

and for $y_{t,s} := (1-s)x_t + sy$ we have

$$
\frac{\mathrm{d}}{\mathrm{d} s}|_{s=0} E(y_{t,s}) = \nabla E(x_t) \cdot (y - x_t).
$$

Hence

$$
\frac{\mathrm{d}}{\mathrm{d}t}\frac{1}{2}|x_t-y|^2\leq E(y)-E(x_t)-\frac{K}{2}|x_t-y|^2
$$

EVI_K gradient flows

Def. On a metric space (*Y*, d_{*Y*}), we say that $(x_t) \subset Y$ is an EVI_{*K*}-GF of $E: Y \to [0, \infty]$ if it is loc. abs. cont. and for every $y \in Y$ we have

$$
\frac{d}{dt} \frac{1}{2} d^2(x_t, y) \leq E(y) - E(x_t) - \frac{K}{2} d^2(x_t, y), \quad a.e. t > 0
$$

EVI*^K* gradient flows

Def. On a metric space (*Y*, d_{*Y*}), we say that $(x_t) \subset Y$ is an EVI_K-GF of $E: Y \to [0, \infty]$ if it is loc. abs. cont. and for every $y \in Y$ we have

$$
\frac{d}{dt} \frac{1}{2} d^{2}(x_{t}, y) \leq E(y) - E(x_{t}) - \frac{K}{2} d^{2}(x_{t}, y), \quad a.e. t > 0
$$

(Savaré) If (x_t) is an EVI_K gradient flows it satisfies

$$
E(x_0) = E(x_t) + \frac{1}{2} \int_0^t |x_s'|^2 + |\partial^- E|^2(x_s) \, \mathrm{d} s, \qquad \forall t > 0
$$

The viceversa is not true

The heat flow as EVI_K gradient flow of the entropy

We want to prove that the heat flow is an EV_{K} gradient flow of the entropy.

The heat flow as EVI_K gradient flow of the entropy

We want to prove that the heat flow is an EVI_K gradient flow of the entropy.

Thus let $t \mapsto \mu_t = \rho_t \mathfrak{m}$ be an heat flow and $\nu = \eta \mathfrak{m}$ given.

The heat flow as EVI_K gradient flow of the entropy

We want to prove that the heat flow is an EV_K gradient flow of the entropy.

Thus let $t \mapsto \mu_t = \rho_t \mathfrak{m}$ be an heat flow and $\nu = \eta \mathfrak{m}$ given.

We want to compute

$$
\frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{2} W_2^2(\mu_t, \nu) \quad \text{and} \quad \frac{\mathrm{d}}{\mathrm{d}s} |_{s=0} \text{Ent}_{\mathfrak{m}}(\nu_{t,s})
$$

where $\bm{s} \mapsto \nu_{t,s}$ is a geodesic joining μ_t to $\nu.$

Derivative of $\frac{1}{2}W_2^2(\mu_t, \nu)$

Fix t_0 a point of differentiability of $t \mapsto \frac{1}{2}W_2^2(\mu_t, \nu)$ and let φ be a Kantorovich potential from $\mu_{\textit{t}_0}$ to $\nu.$ Then

$$
\frac{1}{2}W_2^2(\mu_{t_0}, \nu) = \int \varphi \, \mathrm{d}\mu_{t_0} + \int \varphi^c \, \mathrm{d}\nu
$$

$$
\frac{1}{2}W_2^2(\mu_{t_0+h}, \nu) \ge \int \varphi \, \mathrm{d}\mu_{t_0+h} + \int \varphi^c \, \mathrm{d}\nu
$$

Recalling that $\mu_t = \rho_t \mathfrak{m}$ we get

$$
\frac{\mathrm{d}}{\mathrm{d}t}|_{t=t_0}\frac{1}{2}W_2^2(\mu_t,\nu)=\frac{\mathrm{d}}{\mathrm{d}t}|_{t=t_0}\int\varphi\,\mathrm{d}\mu_t=\int\varphi\Delta\rho_{t_0}\,\mathrm{d}\mathfrak{m}
$$

Thm. (Regularity of interpolated densities Rajala '12) Let (X, d, m) be a compact $CD(K, \infty)$ space and $\mu, \nu \in \mathcal{P}(X)$ s.t. $\mu, \nu \leq C$ m.

Thm. (Regularity of interpolated densities Rajala '12) Let (X, d, m) be a compact $CD(K, \infty)$ space and $\mu, \nu \in \mathcal{P}(X)$ s.t. $\mu, \nu \leq C$ m.

Then there exists a geodesic (μ_t) such that $\mu_t \leq \textbf{\textit{C}}' \textbf{m}$ for every $t \in [0, 1]$ and $t \mapsto \text{Ent}_{m}(\mu_{t})$ is *K*-convex.

Thm. (Regularity of interpolated densities Rajala '12) Let (X, d, m) be a compact $CD(K, \infty)$ space and $\mu, \nu \in \mathcal{P}(X)$ s.t. $\mu, \nu \leq C$ m.

Then there exists a geodesic (μ_t) such that $\mu_t \leq \textbf{\textit{C}}' \textbf{m}$ for every $t \in [0, 1]$ and $t \mapsto \text{Ent}_{m}(\mu_{t})$ is *K*-convex.

Thm. (Metric Brenier's theorem Ambrosio, G., Savaré '11) Let (µ*t*) be a geodesic such that $\mu_t < C$ m for every $t \in [0, 1]$, $\pi \in \mathcal{P}(C([0, 1], X))$ a lifting of it and φ a Kantorovich potential inducing it.

Thm. (Regularity of interpolated densities Rajala '12) Let (X, d, m) be a compact $CD(K, \infty)$ space and $\mu, \nu \in \mathcal{P}(X)$ s.t. $\mu, \nu \leq C$ m.

Then there exists a geodesic (μ_t) such that $\mu_t \leq \textbf{\textit{C}}' \textbf{m}$ for every $t \in [0, 1]$ and $t \mapsto \text{Ent}_{m}(\mu_{t})$ is *K*-convex.

Thm. (Metric Brenier's theorem Ambrosio, G., Savaré '11) Let (µ*t*) be a geodesic such that $\mu_t < C$ m for every $t \in [0, 1]$, $\pi \in \mathcal{P}(C([0, 1], X))$ a lifting of it and φ a Kantorovich potential inducing it.

Then π represents the gradient of $-\varphi$.

Derivative of $Ent_{m}(\nu_{s})$

Let $s \mapsto \nu_s$ be a geodesic s.t. $\nu_s \leq Cm$ for every *s* and such that $\nu_0 = \eta$ **m** with $\eta \ge c > 0$, $\eta \in W^{1,2}(X)$. Let φ be a Kantorovich potential inducing it.

Derivative of $Ent_{m}(\nu_{s})$

Let $s \mapsto \nu_s$ be a geodesic s.t. $\nu_s \leq Cm$ for every *s* and such that $\nu_0 = \eta$ **m** with $\eta \ge c > 0$, $\eta \in W^{1,2}(X)$. Let φ be a Kantorovich potential inducing it. Then

$$
\lim_{s \downarrow 0} \frac{\text{Ent}_{\mathfrak{m}}(\nu_s) - \text{Ent}_{\mathfrak{m}}(\nu_0)}{s} \ge \lim_{s \downarrow 0} \frac{1}{s} \int \log \eta \, d(\nu_s - \nu_0)
$$

$$
= \lim_{s \downarrow 0} \int \frac{\log \eta(\gamma_s) - \log \eta(\gamma_0)}{s} \, d\pi(\gamma)
$$

$$
= - \int \nabla (\log \eta) \cdot \nabla \varphi(\gamma_0) \, d\pi(\gamma)
$$

$$
= - \int \nabla (\log \eta) \cdot \nabla \varphi \, \eta \, d\mathfrak{m}
$$

$$
= - \int \nabla \eta \cdot \nabla \varphi \, d\mathfrak{m}
$$

Derivative of $Ent_{m}(\nu_{s})$

Let $s \mapsto \nu_s$ be a geodesic s.t. $\nu_s \leq Cm$ for every *s* and such that $\nu_0 = \eta$ **m** with $\eta \ge c > 0$, $\eta \in W^{1,2}(X)$. Let φ be a Kantorovich potential inducing it. Then

$$
\lim_{s \downarrow 0} \frac{\text{Ent}_{\mathfrak{m}}(\nu_s) - \text{Ent}_{\mathfrak{m}}(\nu_0)}{s} \ge \lim_{s \downarrow 0} \frac{1}{s} \int \log \eta \, d(\nu_s - \nu_0)
$$

$$
= \lim_{s \downarrow 0} \int \frac{\log \eta(\gamma_s) - \log \eta(\gamma_0)}{s} \, d\pi(\gamma)
$$

$$
= - \int \nabla (\log \eta) \cdot \nabla \varphi(\gamma_0) \, d\pi(\gamma)
$$

$$
= - \int \nabla (\log \eta) \cdot \nabla \varphi \, \eta \, d\mathfrak{m}
$$

$$
= - \int \nabla \eta \cdot \nabla \varphi \, d\mathfrak{m}
$$

The heat flow is an EVI_K gradient flow of the entropy

We conclude that

$$
\frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{2} W_2^2(\mu_t, \nu) \leq \frac{\mathrm{d}}{\mathrm{d}s} \big|_{s=0} \text{Ent}_{\mathfrak{m}}(\nu_{t,s})
$$
\n
$$
\leq \text{Ent}_{\mathfrak{m}}(\nu) - \text{Ent}_{\mathfrak{m}}(\mu_t) - \frac{K}{2} W_2^2(\mu_t, \nu)
$$

The heat flow is an EVI_K gradient flow of the entropy

We conclude that

$$
\frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{2} W_2^2(\mu_t, \nu) \leq \frac{\mathrm{d}}{\mathrm{d}s} \vert_{s=0} \mathrm{Ent}_{\mathfrak{m}}(\nu_{t,s})
$$
\n
$$
\leq \mathrm{Ent}_{\mathfrak{m}}(\nu) - \mathrm{Ent}_{\mathfrak{m}}(\mu_t) - \frac{K}{2} W_2^2(\mu_t, \nu)
$$

We deduce that for $(\mu_t), (\nu_t) \subset \mathcal{P}(X)$ heat flows we have

$$
W_2^2(\mu_t,\nu_t) \leq e^{-2Kt} W_2^2(\mu_0,\nu_0)
$$

Heat Kernel and Bronian motion

We deduce that there exists the heat flow $t\mapsto \mu_t[\textsf{x}]$ starting from $\delta_{\textsf{x}}$ for any $x \in X$.

General constructions related to the theory of Dirichlet forms then grant existence and uniqueness of a Markov process **X***^t* with transition probabilities $\mu_t[\pmb{x}]$, i.e.:

$$
\mathbb{P}(\mathbf{X}_{t+s} \in A|\mathbf{X}_t = x) = \mu_t[x](A)
$$

Analytic properties of *RCD*(*K*, *N*) spaces

 \triangleright Differential calculus on infinitesimally Hilbertian spaces

- \triangleright The heat flow on *RCD*(*K*, ∞) spaces again
- \triangleright Bochner inequality
- \triangleright Optimal maps
- \triangleright Distributional Laplacian

A duality result

Thm. (Kuwada '09)

Let $\mathsf{H}_t:\mathscr{P}(X)\to\mathscr{P}(X)$ be the heat flow at level of measures and $h_t: L^1 \to L^1$ the one for densities.

A duality result

Thm. (Kuwada '09)

Let $\mathsf{H}_t:\mathscr{P}(X)\to\mathscr{P}(X)$ be the heat flow at level of measures and $h_t: L^1 \to L^1$ the one for densities. Then TFAE:

$$
W_2^2(H_t(\mu), H_t(\nu)) \le e^{-2Kt} W_2^2(\mu, \nu), \qquad \forall t \ge 0, \ \mu, \nu \in \mathcal{P}(X)
$$

$$
\text{lip}^2(h_t(f)) \le e^{-2Kt} h_t(\text{lip}^2(f)), \qquad \forall t \ge 0, \ f: X \to \mathbb{R} \text{ Lipschitz}
$$

where

$$
\mathrm{lip}(f)(x):=\overline{\lim_{y\to x}\frac{|f(x)-f(y)|}{d(x,y)}}
$$

Density in energy in $W^{1,2}$ of Lipschitz functions

Thm. (Ambrosio, G., Savaré '11) Let (X, d, m) be a mms.

Density in energy in *W*¹,² of Lipschitz functions

Thm. (Ambrosio, G., Savaré '11) Let (X, d, m) be a mms. Then:

► for every (f_n) \subset LIP(X)converging in L^2 to some f, we have

 $|Df| \leq G$, where *G* is any *L*²-weak limit of $(\text{lip}(f_n))$

► for every $f \in W^{1,2}(X)$ there exists $(f_n) \subset \text{LIP}(X)$ L²-converging to *f* such that

$$
|Df| = \lim_{n} \text{lip}(f_n)
$$
 the limit being intended strong in L^2

(G., Kuwada, Ohta '10. Ambrosio, G., Savaré '11) Starting from

 $\text{lip}^2(\mathsf{h}_t(f))$ ≤ $e^{-2\mathcal{K}t} \mathsf{h}_t(\text{lip}^2(f)), \qquad \forall t \geq 0, \ f \in \text{LIP}(X)$

(G., Kuwada, Ohta '10. Ambrosio, G., Savaré '11) Starting from

 $\text{lip}^2(\mathsf{h}_t(f))$ ≤ $e^{-2\mathcal{K}t} \mathsf{h}_t(\text{lip}^2(f)), \qquad \forall t \geq 0, \ f \in \text{LIP}(X)$

and by relaxation we deduce

$$
|Dh_t(f)|^2 \le e^{-2Kt} h_t(|Df|^2) \qquad \forall t \ge 0, \ f \in W^{1,2}(X)
$$

(G., Kuwada, Ohta '10. Ambrosio, G., Savaré '11) Starting from

 $\text{lip}^2(\mathsf{h}_t(f))$ ≤ $e^{-2\mathcal{K}t} \mathsf{h}_t(\text{lip}^2(f)), \qquad \forall t \geq 0, \ f \in \text{LIP}(X)$

and by relaxation we deduce

$$
|Dh_t(f)|^2 \le e^{-2Kt} h_t(|Df|^2) \qquad \forall t \ge 0, \ f \in W^{1,2}(X)
$$

which gives

$$
\int \Delta g \frac{|Df|^2}{2} \, \mathrm{d}\boldsymbol{\mathfrak m} \geq \int (\nabla f \cdot \nabla \Delta f + K|Df|^2) g \, \mathrm{d}\boldsymbol{\mathfrak m}
$$

 f for every $f\in W^{1,2}(X)\cap D(\Delta)$ with $\Delta f\in W^{1,2}(X)$ and $g\in L^\infty(X)\cap D(\Delta)$ with $q > 0$ and $\Delta q \in L^{\infty}(X)$.

(G., Kuwada, Ohta '10. Ambrosio, G., Savaré '11) Starting from

 $\text{lip}^2(\mathsf{h}_t(f))$ ≤ $e^{-2\mathcal{K}t} \mathsf{h}_t(\text{lip}^2(f)), \qquad \forall t \geq 0, \ f \in \text{LIP}(X)$

and by relaxation we deduce

$$
|Dh_t(f)|^2 \le e^{-2Kt}h_t(|Df|^2) \qquad \forall t \ge 0, \ f \in W^{1,2}(X)
$$

which gives

$$
\int \Delta g \frac{|Df|^2}{2} \, \mathrm{d}\mathfrak{m} \ge \int (\nabla f \cdot \nabla \Delta f + K|Df|^2) g \, \mathrm{d}\mathfrak{m}
$$

 f for every $f\in W^{1,2}(X)\cap D(\Delta)$ with $\Delta f\in W^{1,2}(X)$ and $g\in L^\infty(X)\cap D(\Delta)$ with $g > 0$ and $\Delta g \in L^{\infty}(X)$.

Also the converse implication from Bochner to $RCD(K, \infty)$ holds (Ambrosio, G., Savaré '12)

(Erbar, Kuwada, Sturm '13) On an *RCD*(*K*, *N*) space we have

$$
\int \Delta g \frac{|Df|^2}{2} \, \mathrm{d}\mathfrak{m} \ge \int \Big(\frac{(\Delta f)^2}{N} + \nabla f \cdot \nabla \Delta f + K|Df|^2 \Big) g \, \mathrm{d}\mathfrak{m}
$$

(see also (Ambrosio, Mondino, Savaré - in progress))

(Mondino, Garofalo '13) Li-Yau inequality: for $f \geq 0$ on $RCD(0, N)$ spaces we have

$$
\Delta(\text{log}(\mathsf{h}_t f)) \geq \frac{N}{2t}
$$

(Kell '13, Jiang '11, Koskela, Rajala, Shanmugalingam '03) Local Lipschitz regularity of harmonic functions on *RCD*(*K*, *N*) spaces

Analytic properties of *RCD*(*K*, *N*) spaces

 \triangleright Differential calculus on infinitesimally Hilbertian spaces

- \triangleright The heat flow on *RCD*(*K*, ∞) spaces again
- \blacktriangleright Bochner inequality
- \triangleright Optimal maps
- \triangleright Distributional Laplacian

Optimal maps

Thm. (G., Rajala, Sturm '13) Let (*X*, d, m) be *RCD*(*K*, *N*), $\mu, \nu \in \mathscr{P}(X)$ with $\mu \ll \mathfrak{m}$.

Optimal maps

Thm. (G., Rajala, Sturm '13) Let (*X*, d, m) be *RCD*(*K*, *N*), $\mu, \nu \in \mathscr{P}(X)$ with $\mu \ll \mathfrak{m}$.

Then:

- \blacktriangleright There is only one optimal plan
- \triangleright Such plan is induced by a map τ
- For μ -a.e. *x* there is only one geodesic γ^x from *x* to $T(x)$
- For μ -a.e. $x \neq y$ we have $\gamma_t^x \neq \gamma_t^y$ for every $t \in [0, 1)$

Optimal maps

Thm. (G., Rajala, Sturm '13) Let (*X*, d, m) be *RCD*(*K*, *N*), $\mu, \nu \in \mathscr{P}(X)$ with $\mu \ll \mathfrak{m}$.

Then:

- \blacktriangleright There is only one optimal plan
- \triangleright Such plan is induced by a map τ
- For μ -a.e. *x* there is only one geodesic γ^x from *x* to $T(x)$
- For μ -a.e. $x \neq y$ we have $\gamma_t^x \neq \gamma_t^y$ for every $t \in [0, 1)$

In particular the *RCD*(*K*, *N*) condition can be localized along geodesics, and if $\mu \leq C$ m, then $\mu_t \leq C'$ m for every $t \in [0, \frac{1}{2}]$

Analytic properties of *RCD*(*K*, *N*) spaces

 \triangleright Differential calculus on infinitesimally Hilbertian spaces

- \triangleright The heat flow on *RCD*(*K*, ∞) spaces again
- \blacktriangleright Bochner inequality
- \triangleright Optimal maps
- \triangleright Distributional Laplacian

Distributional Laplacian

Let (X, d, m) be infinitesimally Hilbertian and locally compact, $\Omega \subset X$ open, *g* ∈ *S* 2 (Ω)

Distributional Laplacian

Let (X, d, m) be infinitesimally Hilbertian and locally compact, $\Omega \subset X$ open, *g* ∈ *S* 2 (Ω)

We say that $g \in D(\Delta, \Omega)$ if there exists a Radon measure μ on Ω such that

$$
-\int_{\Omega}\nabla f\cdot\nabla g\,\mathrm{d}\mathfrak{m}=\int_{\Omega}f\,\mathrm{d}\mu,
$$

holds for every *f* Lipschitz with supp(*f*) ⊂⊂ Ω.

In this case we put $\Delta g^{}_{| \Omega} := \mu$

Calculus rules

Linearity

$$
\Delta(\alpha_1 g_1 + \alpha_2 g_2) = \Delta g_1 + \Delta g_2
$$

Chain rule

$$
\Delta(\varphi\circ g)=\varphi'\circ g\,\Delta g+\varphi''\circ g|Dg|^2\mathfrak{m}
$$

Leibniz rule

$$
\Delta(g_1g_2)=g_1\Delta g_2+g_2\Delta g_1+2\nabla g_1\cdot\nabla g_2\mathfrak{m}
$$

Relations with nonlinear potential theory

Theorem (G. '12. G. Mondino '12) Let (X, d, m) be inf. Hilb., with doubling measure and supporting a 2-Poincaré inequality. Let $\Omega \subset X$ and $g \in S^2(\Omega)$.

Relations with nonlinear potential theory

Theorem (G. '12. G. Mondino '12) Let (X, d, m) be inf. Hilb., with doubling measure and supporting a 2-Poincaré inequality. Let $\Omega \subset X$ and $g \in S^2(\Omega)$. Then TFAE:

- \blacktriangleright *g* ∈ *D*(Δ , Ω) and Δ *g* ≤ 0
- ^I For every Lipschitz *f* ≥ 0 with supp(*f*) ⊂⊂ Ω we have

$$
\int_{\Omega}|Dg|^2\,\mathrm{d}\boldsymbol{\mathfrak m}\leq \int_{\Omega}|D(g+f)|^2\,\mathrm{d}\boldsymbol{\mathfrak m}
$$

Laplacian comparison

On a Riemannian manifold *M* with $Ric \geq 0$, dim $\leq N$ it holds

$$
\Delta \frac{1}{2} d^2(\cdot, \overline{x}) \leq N
$$

in the sense of distributions.

Laplacian comparison

On a Riemannian manifold *M* with *Ric* ≥ 0, dim ≤ *N* it holds

$$
\Delta \frac{1}{2} d^2(\cdot, \overline{x}) \leq N
$$

in the sense of distributions.

The same holds on *RCD*(0, *N*) spaces: **Thm** (G. '12) For (X, d, m) *RCD*(0, *N*) and $\overline{X} \in X$ we have

$$
\Delta \frac{\mathsf{d}^2(\cdot, \overline{x})}{2} \leq \mathsf{Nm}
$$

Idea of the proof (1/2)

Pick $f \geq 0$ Lipschitz with compact support and let $\rho := c f^{\frac{N}{N-1}}$

 $\mu_0 := \rho \mathfrak{m}, \qquad \mu_1 := \delta_{\overline{x}}, \qquad t \mapsto \mu_t$ the geodesic connecting them

The geodesic convexity of U_N gives

$$
\overline{\lim_{t\downarrow 0}}\frac{\mathcal{U}_{N}(\mu_t)-\mathcal{U}_{N}(\mu_0)}{t}\leq \mathcal{U}_{N}(\mu_1)-\mathcal{U}_{N}(\mu_0)=c^{1-\frac{1}{N}}\int f\, \mathrm{d}\mathfrak{m}
$$

Idea of the proof (2/2)

Let $\pi \in \mathcal{P}(C([0,1], X))$ be the lifting of (μ_t) and notice that

$$
U_N(\mu_t) - U_N(\mu_0) \ge \int u'_N(\rho) d(\mu_t - \mu_0)
$$

=
$$
\int u'_N(\rho)(\gamma_t) - u'_N(\rho)(\gamma_0) d\pi(\gamma)
$$

Idea of the proof (2/2)

Let $\pi \in \mathcal{P}(C([0,1], X))$ be the lifting of (μ_t) and notice that

$$
U_N(\mu_t) - U_N(\mu_0) \ge \int u'_N(\rho) d(\mu_t - \mu_0)
$$

=
$$
\int u'_N(\rho)(\gamma_t) - u'_N(\rho)(\gamma_0) d\pi(\gamma)
$$

Notice that π represents the gradient of $\varphi := -\frac{d^2(\cdot,\overline{x})}{2}$ $\frac{1}{2}$ to get

$$
\frac{\lim_{t\downarrow 0} \frac{\mathcal{U}_{N}(\mu_{t}) - \mathcal{U}_{N}(\mu_{0})}{t} \geq \int \nabla(u'_{N}(\rho)) \cdot \nabla \varphi(\gamma_{0}) d\pi(\gamma)
$$

$$
= \frac{c^{1-\frac{1}{N}}}{N} \int \nabla f \cdot \nabla \varphi d\mathfrak{m}
$$

Idea of the proof (2/2)

Let $\pi \in \mathcal{P}(C([0,1], X))$ be the lifting of (μ_t) and notice that

$$
U_N(\mu_t) - U_N(\mu_0) \ge \int u'_N(\rho) d(\mu_t - \mu_0)
$$

=
$$
\int u'_N(\rho)(\gamma_t) - u'_N(\rho)(\gamma_0) d\pi(\gamma)
$$

Notice that π represents the gradient of $\varphi := -\frac{d^2(\cdot,\overline{x})}{2}$ $\frac{1}{2}$ to get

$$
\frac{\lim_{t\downarrow 0} \frac{\mathcal{U}_{N}(\mu_{t}) - \mathcal{U}_{N}(\mu_{0})}{t} \geq \int \nabla(u'_{N}(\rho)) \cdot \nabla \varphi(\gamma_{0}) d\pi(\gamma)
$$

$$
= \frac{c^{1-\frac{1}{N}}}{N} \int \nabla f \cdot \nabla \varphi d\mathfrak{m}
$$

Hence

$$
-\frac{1}{N}\int \nabla f\cdot \nabla \frac{d^2(\cdot,\overline{x})}{2}\,dm \leq \int f\,dm, \qquad \forall f\geq 0, \text{ Lip with cpt supp}
$$

Thank you