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Lessons

1) On the definition of spaces with Ricci curvature bounded from
below

2) Analytic properties of RCD(K ,N) spaces

3) Geometric properties of RCD(K ,N) spaces



Geometric properties of RCD(K ,N) spaces

I The Abresch-Gromoll inequality

I The splitting theorem
I Statement
I The proof in the smooth case
I The proof in the non-smooth case

I The maximal diameter theorem

I Tangent spaces as mGH limits of blow-ups
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The Abresch-Gromoll inequality

On a Riemannian manifold with Ric ≥ K and dim ≤ N we have

E(x) ≤ fK ,N(h(x)), provided h(x) ≤ min{d(x , γ0),d(x , γ1)}
2

for some (explicitly given) fK ,N satisfying

lim
h↓0

fK ,N(h)

h
= 0.



Ingredients of the proof

Laplacian comparison estimates for the distance

Linearity of the Laplacian

Weak maximum principle



The non-smooth case

Repeating verbatim the proof on RCD(K ,N) spaces we obtain:

Thm. (G., Mosconi ’12) The Abresch-Gromoll inequality holds in the
non-smooth setting in the same form as in the smooth one.
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The splitting theorem

Thm. (Cheeger-Gromoll ’71)
Let M be a Riemannian manifold with Ric ≥ 0 which contains a line.
Then M = N × R for some Riemannian manifold N.



The almost splitting

Thm. (Cheeger-Colding ’96) Let M be a Riemannian manifold with
Ric ≥ −ε which contains a geodesic with length L, with ε,L−1 � 1

Then ‘a big portion of M is mGH-close to a product’

Cor. (Splitting for limit spaces) Let (X ,d,m) be a pmGH of
Riemannian manifolds (Mn) with uniformly bounded dimension and
with Ric(Mn) ≥ −εn, where εn ↓ 0.

Assume that X contains a line. Then it splits off a factor R
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The non-smooth splitting

Thm. (G. ’13) Let (X ,d,m) be an RCD(0,N) space containing a line.
Then there is a space (X ′,d′,m′) such that

(X ,d,m) is isomorphic to (X ′ × R,d′ ⊗ dEucl,m
′ × L1)

where

(d′ ⊗ dEucl)
(
(x ′, t), (y ′, s)

)
:=
√

d′(x ′, y ′)2 + |t − s|2

Moreover:
I If N ≥ 2 then (X ′,d′,m′) is an RCD(0,N − 1) space
I If N ∈ [1,2) then X ′ contains only one point
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The Busemann function

Let γ : [0,∞)→ M an half line.
The Busemann function b associated to it is

b(x) := lim
t→+∞

t − d(x , γt ) = sup
t≥0

t − d(x , γt )

If γ : (−∞,+∞) → M is a line we can associate to it 2 Busemann
functions

b+(x) := lim
t→+∞

t − d(x , γt )

b−(x) := lim
t→+∞

t − d(x , γ−t )
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Effect of Ric ≥ 0 on the Busemann function for an half
line

If Ric ≥ 0 and x̄ ∈ M

∆
d2(·, x̄)

2
≤ dim(M)

Hence
∆d(·, γt ) ≤

dim(M)

d(·, γt )

Passing to the limit we obtain

∆b ≥ 0,

i.e. the b is subharmonic.



What for the Busemann function for a line

b+ and b− are subharmonic, thus so is b+ + b−.
The triangle inequality gives

b+ + b− ≤ 0

and the fact that γ is a line ensures that

(b+ + b−)(γ0) = 0

hence (strong maximum principle) it holds

b+ + b− ≡ 0

and in particular b+ and b− are harmonic



Use of the Bochner equality and inequality

For any f smooth it holds

∆
|∇f |2

2
= ‖Hess f‖2

HS +∇f · ∇∆f + Ric(∇f ,∇f )

≥ (∆f )2

dim(M)
+∇f · ∇∆f

For b+ we have |∇b+| ≡ 1 and ∆b+ ≡ 0 and thus the equality

∆
|∇b+|2

2
=

(∆b+)2

dim(M)
+∇b+ · ∇∆b+

which yields

‖Hess b+‖2
HS ≡

(∆b+)2

dim(M)
≡ 0

i.e. b+ is both convex and concave.
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Isometries via gradient flows

Since b+ is convex, its gradient flow contracts distances.

Since b+ = −b− is concave, its gradient flow expands distances.

Thus the gradient flow of b+ produces a 1-parameter family of
isometries.



Conclusion of the argument

Put N := {b+ = 0}

For x ∈ N and v ∈ TxN it is obvious that v · ∇b+(x) = 0 and
the conclusion follows from the fact the gradient flow of b+ is a
1-parameter family of isometries.
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Harmonicity of b±

As in the smooth case, from the Laplacian comparison estimate we
deduce

∆b± ≥ 0,

and using the strong maximum principle (Bjorn-Bjorn ’07) we obtain

b+ + b− = 0

i.e.
∆b± = 0



Gradient flow of b± and geodesics

For every t ∈ R the function tb+ is c-concave and

(tb+)c = tb− − t2

2

Hence from existence and uniqueness of optimal maps we deduce
that

for m-a.e. x ∈ X there is a unique Ft (x) ∈ ∂c(tb+)(x)

and we can check that for m-a.e. x we have

t 7→ Ft (x), is a line
Ft+s(x) = Ft (Fs(x)), ∀t , s ∈ R
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Measure preservation

For every µ = ρm� m the map [0,1] 3 t 7→ (Ft )]µ is a W2-geodesic
induced by b+.

Arguing as in the proof of the Laplacian comparison estimates we
deduce

1
t
(
UN((Ft )]µ)− UN(µ)

)
≥ − 1

N

∫
∇(ρ1− 1

N ) · ∇b+ dm = 0

Switching b+ and b− we deduce

UN((Ft )]µ) = UN(µ), ∀t ∈ R

and thus
(Ft )]m = m, ∀t ∈ R
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How to use Bochner inequality

We have

∆
|∇f |2

2
≥ ∇f · ∇∆f

Write it with b+ + εf in place of f we obtain

∆(∇b+ · ∇f ) = ∇b+ · ∇∆f

for every f ‘smooth enough’.
Using this identity in computing d

dt
1
2

∫
|D(f ◦ Ft )|2 dm we get

d
dt

1
2

∫
|D(f ◦ Ft )|2 dm = 0

and thus
t 7→ 1

2

∫
|D(f ◦ Ft )|2 dm is constant
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Isomorphisms by duality

Let (X1,d1), (X2,d2) be metric spaces and T : X1 → X2 invertible.

Then T is an isometry if and only if

LipX1
(f ◦ T ) = LipX2

(f ), ∀f : X2 → R

Let (X1,d1,m1), (X2,d2,m2) be RCD(K ,∞) spaces and T : X1 → X2
Borel and a.e. invertible.
Then T is (up to a modification on a negligible set) an isomorphism if
and only if

‖f ◦ T‖W 1,2(X1) = ‖f‖W 1,2(X2), ∀f : X2 → R
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The quotient space

We deduce that the Ft ’s have representatives which are isometries.

We can then declare x ∼ y if x = Ft (y) for some t ∈ R, put
X ′ := X/ ∼ and define

d′
(
π(x), π(y)

)
:= inf

t∈R
d(x ,Ft (y)) ∀x , y ∈ X

and
m′(E) := m(π−1(E)) ∩ b−1([0,1]) ∀E ⊂ X ′ Borel

Define ι : X ′ → X as

ι(x ′) = x if π(x) = x ′ and b+(x) = 0.

Problem: is ι an isometry?
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How to gain C1 regularity

Let (µt ) be a geodesic such that µt ≤ Cm for every t ∈ [0,1] and ϕt
s.t. −(1− t)ϕt is a Kantorovich potential from µt to µ1

Then:
For f ∈W 1,2(X ) the map t 7→

∫
f dµt is C1 and

d
dt

∫
f dµt =

∫
∇f · ∇ϕt dµt , ∀t ∈ [0,1]

For ν ∈P2(X ) the map t 7→ 1
2 W 2

2 (µt , ν) is C1 and

d
dt

1
2

W 2
2 (µt , ν) =

∫
∇φt · ∇ϕt dµt , ∀t ∈ [0,1]

where φt is a Kantorovich potential from µt to ν.
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Basic properties of (X ′,d′,m′)

Arguing as in the smooth case but at the level of probability measures
µ, ν ≤ Cm we deduce that

the minimum of t 7→ 1
2

W 2
2 ((Ft )]µ, ν)

is attained at that t0 such that
∫

b+ d(Ft0 )]µ =

∫
b+ dν

Picking µ, ν with support going to a point we conclude that ι is indeed
an isometric embedding.

It is then easy to see that (X ′,d′,m′) is an RCD(0,N) space
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What remains to show

(1) That X is isometric to X ′ × R

(2) That X ′ is an RCD(0,N − 1) space

The first follows using again the duality with Sobolev functions

The second by a general dimension-reduction argument introduced
by Cavalletti-Sturm
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The statement

Thm. (Ketterer - announced) Let (X ,d,m) be an RCD∗(N − 1,N)
space containing two points at distance π.
Then it is isomorphic to a spherical suspension over a space
(X ′,d′,m′). Moreover:

I If N ≥ 2 then (X ′,d′,m′) is an RCD∗(N − 2,N − 1) space
I If N ∈ [1,2) then X ′ contains either only one point or two points

at distance π.

Crucial ingredient of the proof:
TFAE

I (X ,d,m) is an RCD∗(N − 1,N) space
I The metric cone built over (X ,d,m) is an RCD(0,N + 1) space

Proved via the study of the Bochner inequality
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Tangent spaces

What we expect:
Let (X ,d,m) be an RCD(K ,N) space. Then for m-a.e. point x
the rescaled space pointed at x converge to Rn, for some n ≤ N
independent on x .

What we have:
Thm. (G., Mondino, Rajala ’13)
Let (X ,d,m) be an RCD(K ,N) space. Then for m-a.e. point x there
exists a sequence of rescaling such that the rescaled space pointed
at x converge to Rn, for some n ≤ N possibly dependent on x and the
chosen sequence of scalings.
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Idea of the proof

(1) Pick x ∈ X which is the intermediate point of some geodesic γ
(note: m-a.e. point have this property)

(2) Blow up the space and use compactness to find a limit

(3) The limit space is RCD(0,N) and the geodesic γ in the limit is a
line

(4) Hence such tangent space splits off a factor R

(5) Use Preiss’ principle:
‘Iterated tangents are tangents’
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Thank you


