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The Shape Matching Problem

Given surfaces M0 and M represented discretely as triangle meshes,
we seek a discrete representation of a smooth map φ : M0 → M.

Criteria for a “good” map:

• Geometric

→ Bijective
→ Continuous
→ Locally non-distorting

• Semantic

→ Feature-preserving
→ Meaningful

Triangle mesh: a standard
discrete representation of

embedded surfaces

(Flexible, simple, processable)

Example: feature- and region- preserving
map between humans in different poses



Difficulties with Point-to-Point Representations

An obvious discrete representation for a map is a vertex-to-vertex
correspondence. This is inherently combinatorial and has drawbacks.

• Huge search space.

• The vast majority of vx-to-vx maps
are in no way desirable.

• Continuity cannot be properly
defined and quantified.

• The mesh itself interferes at the
smallest scale!

So: These issues are often tackled by

• Subsampling.

• Pairwise distances and adjacency.

But: Many problems, e.g. symmetry.



Continuity

In principle: These problems should be detectable (thus
preventable!) at the infinitesimal level in some way.

• Loss of continuity (etc. — such as loss of local injectivity).

But: Vx-to-vx representations are not adequate at this scale.

Possible resolution: An alternate representation for smooth maps.

• It should make sense for smooth surfaces yet be easily
discretized, and should be convergent under mesh refinement.

• Continuity (etc.) should make sense both discretely and in the
smooth limit, and should be quantifiable.

• We should still be able to incorporate desirable map properties.



Soft Maps

We propose a representation that takes a probabilistic appoach.

Definition: A soft map from M0 to M is a map µ : M0 → Prob(M).

In this setting, every point of M0

maps to a probability distribution of
potential matches on M.

In other words:

µx(U) =
[
Probability that y ∈ U
corresponds to x ∈ M0

]
for all subsets U ⊆ M.

x

µx

µ−→



Advantages of Soft Maps

• They can be defined via scalar functions on M0 ×M.

→ Each µx has a positive density that integrates to one.

• They generalize point-to-point maps φ : M0 → M.

→ The associated soft map is x 7→ δφ(x)(y) dy .

• They permit blurring and superposition.

→ →

The “ideal” soft map is a convex combination of a small number
(associated with symmetries) of blurred point-to-point maps.



Constraints on Soft Maps

Soft maps can handle the “traditional” constraints on pt-to-pt maps.

• Descriptor matching.

Let f0 : M0 → R and f : M → R be descriptor functions that
we expect should match. Then we can require

f0 must be close to Eµ(f ) :=

ˆ
M
f (y)dµx(y)

which is the expected value of f at x under µx .

• Region constraints.

Let U0 ⊆ M0 and U ⊆ M be regions that we expect should
match. Then we can require

supp
(
µx
)
⊆ U

OR µx
∣∣
U

= given

}
∀ x ∈ U0



Quantifying Continuity for Soft Maps

Recall: Dirichlet energies quantify the “degree of continuity” of
mappings between domains in many different contexts.

• E.g. harmonic functions, geodesics, harmonic maps.

In general: These are instances of a universal framework for maps
φ : (M0, dist0)→ (M, dist) between any metric spaces:

ED(φ) :=

ˆ
M0

(
lim
ε→0

 
Bε(x)

dist2(φ(x), φ(x ′))

dist0
2(x , x ′)

dx ′
)
dx

Our idea: We can apply this framework to soft maps if we take
M0 = M0 with geodesic distance and M = Prob(M) with the
Wasserstein distance.



The Dirichlet Energy of a Soft Map

Definition:

Let µ : M0 → Prob(M) be a soft map.

The Dirichlet energy of µ is the quantity

ED(µ) :=

ˆ
M0

(
lim
ε→0

 
Bε(x)

W 2
2 (µx , µx ′)

dist2
0(x , x ′)

dx ′
)
dx

Key properties:

• Measures the “degree of continuity” of the map x 7→ µx .

• Convex in µ.

• Generalizes the Dirichlet energy for maps.
If φ is a map and µφ is the associated soft map then ED(µφ) = ED(φ).

• The Dirichlet energy of any constant soft map is zero.



Simplification of the Dirichlet Energy

But: This expression is cumbersome. Instead, we use a simpler one.

Let µ be a soft map with smooth density ρ > 0. Then

ED(µ) =

¨
M0×M

ρ(x , y)‖∇Q(x , y)‖2dy dx

where Q is a section of T ∗M0 ⊗ C∞(M) and is defined by:

• For (x ,V ) ∈ TM0 let q be the function y 7→ Q(x , y) ·V .

• Then q satisfies the weak form of the equation

∇ ·
(
ρ(x , ·)∇q

)
= −〈∇0ρ(x , ·),V 〉ˆ

M
q(y)ρ(x , y)dy = 0

One equation in y
for each (x ,V ).

Linear in V .



Formal Derivation

Preliminaries: Let ν and ν̃ be two probability measures on M. The
theory of optimal transportation gives us the following:

• A W2-optimal map T : M → M with T#ν = ν̃ of the form

T (y) := expy (∇φ(y)) for a cvx function φ : M → R

• The Wasserstein distance is W 2
2 (ν, ν̃) =

ˆ
M
‖∇φ(y)‖2dν(y).

Next: Apply these results to a soft map µ.

• Choose nearby points x and x ′ := expx(εV ) for V ∈ TxM0.

• Take ν := µx and ν̃ := µx ′ with optimap Tε and potential φε.

• Expand in ε.

Hope: With some work, this derivation can be made rigorous and
extended to a much less regular class of measures.



Interpretation of Q

We have interpreted Q in terms of conservative mass flow.

• Each ρ(x , ·) is a swarm of particles.

• Consider the path given by
x ′(ε) := expx(εV ).

• Consider the optimal maps
of ρ(x , ·) into ρ(x ′(ε), ·).

• The instantaneous velocity of a
particle at y equals ∇Q(x , y) · V

• The Wasserstein distance is the instantaneous total kinetic energy.

ρ∇Q · V

Target

x
V −→

Source

W 2
2 (µx , µx′)

dist2
0(x , x ′)

≈
ˆ
M

ρ(x , y)‖∇Q(x , y) · V ‖2dy .



Optimal Soft Maps

Goal: We would like to pose a constrained optimization problem in
a space of soft maps.

• Inspiration: a harmonic map problem.

The energy: should promote “smoothness in the x-variable” via
the Dirichlet energy.

But: The global minimum of ED is µ = const with ED(µ) = 0. How
can we avoid the constant soft map?

• Add a descriptor matching term to the energy.

• Add region constraints.

Then: Develop a convergent discretization.



A Convex Optimization Problem

So: We would like to solve a discretization of the convex problem

Minimize

E(µ) := ED(µ) +
∑
s

∥∥f (s)
0 − Eµ(f (s))

∥∥2

L2(M0)
+ · · ·

subject to region constraints.

Some typical results:

Source, red
constraints

→

Optimal soft map distributions associated to the yellow points.

︸ ︷︷ ︸
Descriptor functions



Discretization

All objects introduced so far can be represented via scalar functions
so discretization can be done using a Finite Element Method.

• We introduce PL basis functions β0i : M0 → R+ and
βj : M → R+ where

´
M βj(y)dy = 1 for all j .

• Then we work with soft maps of the form

dµx(y) :=
∑
ij

Cijβ0i (x)βj(y)dy

with Cij ≥ 0 ∀ i , j and
∑
j

Cij = 1 ∀ j

• Region constraints are linear in C .

• A similar discretization can be carried out for Q.

• Solving for Q and optimizing for ρ — linear algebra problems!



Theoretical Questions

Elementary questions:

• In what space can we solve this problem (both the continuous
and discretized versions)?

• Characterization of the minimum (Euler-Lagrange equations)?

• Some exact solutions, or other intuition for the minimum?

• The qualitative behaviour of the PDE for Q? Especially at
points where ρ = 0 or where ρ = singular?

• Regularity of the solution?

• Convergence as the discretization is refined?

• Stability of the solution under perturbations of M0 and M?



Theoretical Questions

Deeper questions:

• Are there conditions that guarantee solutions of the “ideal”
form (convex combination of blurred maps)?

→ How to quantify “blurriness” and avoid overly blurry solutions?

→ Does “inconsistency” in the constraints correlate with
“blurriness” of the solution in some way?

→ How to extract the maps?

• The trivial solution, in the absence of soft/hard constraints, is

dµx(y) = ρ(y)dy
The “constant” soft map with
ED(µ) = 0. A global minimum!

→ How to avoid a trivial solution? How many constraints?

• How to correctly discretize this problem so that computational
costs are reduced? Will involve a smart theoretical approach!
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