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The Shape Matching Problem

Given surfaces My and M represented discretely as triangle meshes,
we seek a discrete representation of a smooth map ¢ : My — M.

Criteria for a “good” map:

e Geometric

— Bijective

— Continuous

— Locally non-distorting
e Semantic

— Feature-preserving
— Meaningful

X
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Difficulties with Point-to-Point Representations

An obvious discrete representation for a map is a vertex-to-vertex
correspondence. This is inherently combinatorial and has drawbacks.

e Huge search space.

e The vast majority of vx-to-vx maps \\/\7\\ <\
are in no way desirable. /ﬁ ! ->
e Continuity cannot be properly

defined and quantified.
e The mesh itself interferes at the
smallest scale!
So: These issues are often tackled by
e Subsampling.

e Pairwise distances and adjacency.

But: Many problems, e.g. symmetry.



Continuity

In principle: These problems should be detectable (thus
preventable!) at the infinitesimal level in some way.

e Loss of continuity (etc. — such as loss of local injectivity).

But: Vx-to-vx representations are not adequate at this scale.

Possible resolution: An alternate representation for smooth maps.

e It should make sense for smooth surfaces yet be easily
discretized, and should be convergent under mesh refinement.

e Continuity (etc.) should make sense both discretely and in the
smooth limit, and should be quantifiable.

e We should still be able to incorporate desirable map properties.



Soft Maps

We propose a representation that takes a probabilistic appoach.

Definition: A soft map from My to M is a map p : My — Prob(M).

In this setting, every point of My - -
maps to a probability distribution of v “,
potential matches on M.

In other words: -
(U) = [ Probability that y & U < g e
Px " | corresponds to x € My .
—

for all subsets U C M.




Advantages of Soft Maps

e They can be defined via scalar functions on My x M.

— Each puy has a positive density that integrates to one.

e They generalize point-to-point maps ¢ : My — M.
— The associated soft map is x = dy(x)(y) dy.

e They permit blurring and superposition.

¢ . g

Mf;{ -

The "“ideal” soft map is a convex combination of a small number
(associated with symmetries) of blurred point-to-point maps.



Constraints on Soft Maps

Soft maps can handle the “traditional” constraints on pt-to-pt maps.
e Descriptor matching.

Let fo : Mg — R and f : M — R be descriptor functions that
we expect should match. Then we can require

fo must be close to E,(f) :—/ f(y)dux(y)
M

which is the expected value of f at x under .

¢ Region constraints.

Let Uy € My and U C M be regions that we expect should
match. Then we can require

C
supp(px) S UL
OR MX{U = given



Quantifying Continuity for Soft Maps

Recall: Dirichlet energies quantify the “degree of continuity” of
mappings between domains in many different contexts.

e E.g. harmonic functions, geodesics, harmonic maps.

In general: These are instances of a universal framework for maps
¢ : (Mo, distg) — (M, dist) between any metric spaces:

eot) = [ (im f, PN o

Our idea: We can apply this framework to soft maps if we take
Mo = My with geodesic distance and M = Prob(M) with the
Wasserstein distance.




The Dirichlet Energy of a Soft Map

Definition:

Let u: My — Prob(M) be a soft map.

The Dirichlet energy of p is the quantity

2
Ep(p) ::/ <|im ][ W_2(éux"ux)dx’> dx
Mo \e0 /B, (x) disty(x, x’)

Key properties:
e Measures the “degree of continuity” of the map x — .
e Convex in u.

e Generalizes the Dirichlet energy for maps.
If ¢ is a map and py is the associated soft map then Ep(ug) = Ep(¢).

e The Dirichlet energy of any constant soft map is zero.



Simplification of the Dirichlet Energy

But: This expression is cumbersome. Instead, we use a simpler one.

Let i be a soft map with smooth density p > 0. Then

Ep(u) = //M QU y) Py d

where Q is a section of T*My ® C°°(M) and is defined by:

e For (x, V) € TMy let q be the function y — Q(x,y)- V.
e Then g satisfies the weak form of the equation
V- (p(X, )Vq) = —<Vop(X, ')? V) One equation in y

for each (x, V).
/l\/l q(y)p(x, y)dy =0 Linear in V.




Formal Derivation

Preliminaries: Let v and U be two probability measures on M. The
theory of optimal transportation gives us the following:

e A Wh-optimal map T : M — M with T#v = I of the form
T(y) :=exp,(Vo(y)) fora cvx function ¢: M — R

e The Wasserstein distance is WZ(v,7) = / IVo(y)|2dv(y).
M

Next: Apply these results to a soft map pu.
e Choose nearby points x and x" := exp,(¢V) for V € T, Mp.
e Take v := uyx and ¥ := u,s with optimap T. and potential ¢..
e Expand in €.

Hope: With some work, this derivation can be made rigorous and
extended to a much less regular class of measures.



Interpretation of @

We have interpreted @ in terms of conservative mass flow.

e Each p(x,-) is a swarm of particles.

o Consider the path given by

x'(e) := exp,(eV). X -
o Consider the optimal maps w !
of p(X, ) into p(X/(E), ) Source

e The instantaneous velocity of a
particle at y equals VQ(x,y) -V

Target

e The Wasserstein distance is the instantaneous total kinetic energy.

W2 (1, pixr) / 5
[ U SR S AP , \Y% ,y) - V]|“dy.
i) s [ e nIvQy) - VIPdy



Optimal Soft Maps

Goal: We would like to pose a constrained optimization problem in
a space of soft maps.

e Inspiration: a harmonic map problem.

The energy: should promote “smoothness in the x-variable” via
the Dirichlet energy.

But: The global minimum of £p is u = const with Ep(p) = 0. How
can we avoid the constant soft map?

e Add a descriptor matching term to the energy.

e Add region constraints.

Then: Develop a convergent discretization.



A Convex Optimization Problem

So: We would like to solve a discretization of the convex problem

Minimize

() = Ep() + Y 157 = BulF) Loy +
s —,_/

Descriptor functions

subject to region constraints.

Some typical results:

CExX

Source, red  Optimal soft map distributions associated to the yellow points.
constraints




Discretization

All objects introduced so far can be represented via scalar functions
so discretization can be done using a Finite Element Method.

e We introduce PL basis functions Boi : My — R4 and
B+ M — Ry where [, 8i(y)dy =1 for all j.

Then we work with soft maps of the form

d,ux Z CI_]BOI )

with c,-jzov/,J and Y Cj=1V;
J
e Region constraints are linear in C.

A similar discretization can be carried out for Q.

Solving for Q and optimizing for p — linear algebra problems!



Theoretical Questions

Elementary questions:

In what space can we solve this problem (both the continuous
and discretized versions)?

Characterization of the minimum (Euler-Lagrange equations)?
Some exact solutions, or other intuition for the minimum?

The qualitative behaviour of the PDE for Q7 Especially at
points where p = 0 or where p = singular?

Regularity of the solution?
Convergence as the discretization is refined?

Stability of the solution under perturbations of My and M?



Theoretical Questions

Deeper questions:
e Are there conditions that guarantee solutions of the “ideal”
form (convex combination of blurred maps)?
— How to quantify “blurriness” and avoid overly blurry solutions?

— Does "“inconsistency” in the constraints correlate with
“blurriness” of the solution in some way?

— How to extract the maps?

e The trivial solution, in the absence of soft/hard constraints, is

The “constant” soft map with

dpx(y) = p(y)dy Ep(p) = 0. A global minimum!
— How to avoid a trivial solution? How many constraints?

e How to correctly discretize this problem so that computational
costs are reduced? Will involve a smart theoretical approach!
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