An Optimal Transportation Approach For Discrete Mappings Between Meshed Surfaces

Adrian Butscher

Stanford University and Max Planck Institute for Informatics

August 2013

Outline

- 1. A brief sketch of the discrete shape matching problem.
- 2. A new representation for maps that is more convenient for the discretization of smooth maps between surfaces.

 \rightarrow Soft maps

- 3. Dirichlet energy of a soft map.
- 4. A variational formulation of the discretized mapping problem.
- 5. Preliminary computational results and theoretical questions.

* Joint work with Justin Solomon and Leonidas Guibas.

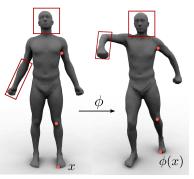
The Shape Matching Problem

Given surfaces M_0 and M represented discretely as triangle meshes, we seek a discrete representation of a smooth map $\phi : M_0 \to M$.

Criteria for a "good" map:

- Geometric
 - \rightarrow Bijective
 - \rightarrow Continuous
 - $\rightarrow\,$ Locally non-distorting
- Semantic
 - \rightarrow Feature-preserving
 - $\rightarrow \ {\sf Meaningful}$

Triangle mesh: a standard discrete representation of embedded surfaces (Flexible, simple, processable)

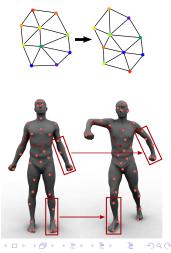


Example: feature- and region- preserving map between humans in different poses

Difficulties with Point-to-Point Representations

An obvious discrete representation for a map is a vertex-to-vertex correspondence. This is inherently combinatorial and has drawbacks.

- Huge search space.
- The vast majority of vx-to-vx maps are in no way desirable.
- Continuity cannot be properly defined and quantified.
- The mesh itself interferes at the smallest scale!
- So: These issues are often tackled by
 - Subsampling.
 - Pairwise distances and adjacency.
- But: Many problems, e.g. symmetry.



Continuity

In principle: These problems should be detectable (thus preventable!) at the infinitesimal level in some way.

• Loss of continuity (etc. — such as loss of local injectivity).

But: Vx-to-vx representations are not adequate at this scale.

Possible resolution: An alternate representation for smooth maps.

- It should make sense for smooth surfaces yet be easily discretized, and should be convergent under mesh refinement.
- Continuity (etc.) should make sense both discretely and in the smooth limit, and should be quantifiable.
- We should still be able to incorporate desirable map properties.

Soft Maps

We propose a representation that takes a probabilistic appoach.

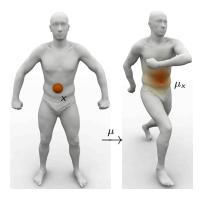
Definition: A soft map from M_0 to M is a map $\mu : M_0 \to Prob(M)$.

In this setting, every point of M_0 maps to a probability distribution of potential matches on M.

In other words:

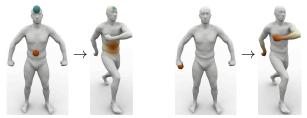
 $\mu_x(U) = \left[\begin{array}{c} \text{Probability that } y \in U \\ \text{corresponds to } x \in M_0 \end{array}\right]$

for all subsets $U \subseteq M$.



Advantages of Soft Maps

- They can be defined via scalar functions on M₀ × M.
 → Each μ_x has a positive density that integrates to one.
- They generalize point-to-point maps φ : M₀ → M.
 → The associated soft map is x ↦ δ_{φ(x)}(y) dy.
- They permit blurring and superposition.



The "ideal" soft map is a convex combination of a small number (associated with symmetries) of blurred point-to-point maps.

Constraints on Soft Maps

Soft maps can handle the "traditional" constraints on pt-to-pt maps.

• Descriptor matching.

Let $f_0: M_0 \to \mathbb{R}$ and $f: M \to \mathbb{R}$ be descriptor functions that we expect should match. Then we can require

$$f_0$$
 must be close to $\mathbb{E}_{\mu}(f) := \int_M f(y) d\mu_x(y)$

which is the expected value of f at x under μ_x .

• Region constraints.

Let $U_0 \subseteq M_0$ and $U \subseteq M$ be regions that we expect should match. Then we can require

もしゃ 本語を 本語を 本日を

Quantifying Continuity for Soft Maps

Recall: Dirichlet energies quantify the "degree of continuity" of mappings between domains in many different contexts.

• E.g. harmonic functions, geodesics, harmonic maps.

In general: These are instances of a universal framework for maps $\phi : (\mathcal{M}_0, dist_0) \rightarrow (\mathcal{M}, dist)$ between any metric spaces:

$$\mathcal{E}_{D}(\phi) := \int_{\mathcal{M}_{0}} \left(\lim_{\varepsilon \to 0} \oint_{B_{\varepsilon}(x)} \frac{dist^{2}(\phi(x), \phi(x'))}{dist_{0}^{2}(x, x')} dx' \right) dx$$

Our idea: We can apply this framework to soft maps if we take $\mathcal{M}_0 = \mathcal{M}_0$ with geodesic distance and $\mathcal{M} = Prob(\mathcal{M})$ with the Wasserstein distance.

The Dirichlet Energy of a Soft Map

Definition:

Let
$$\mu: M_0 \to Prob(M)$$
 be a soft map.

The Dirichlet energy of $\boldsymbol{\mu}$ is the quantity

$$\mathcal{E}_{D}(\mu) := \int_{M_0} \left(\lim_{\varepsilon \to 0} \oint_{B_{\varepsilon}(x)} \frac{W_2^2(\mu_x, \mu_{x'})}{dist_0^2(x, x')} dx' \right) dx$$

Key properties:

- Measures the "degree of continuity" of the map $x \mapsto \mu_x$.
- Convex in μ .
- Generalizes the Dirichlet energy for maps. If ϕ is a map and μ_{ϕ} is the associated soft map then $\mathcal{E}_D(\mu_{\phi}) = \mathcal{E}_D(\phi)$.
- The Dirichlet energy of any constant soft map is zero.

Simplification of the Dirichlet Energy

But: This expression is cumbersome. Instead, we use a simpler one.

Let
$$\mu$$
 be a soft map with smooth density $\rho > 0$. Then $\mathcal{E}_D(\mu) = \iint_{M_0 imes M}
ho(x,y) \|
abla Q(x,y) \|^2 dy \, dx$

where Q is a section of $T^*M_0 \otimes C^{\infty}(M)$ and is defined by:

- For $(x, V) \in TM_0$ let q be the function $y \mapsto Q(x, y) \cdot V$.
- Then q satisfies the weak form of the equation

$$\nabla \cdot \left(\rho(x, \cdot) \nabla q \right) = -\langle \nabla_0 \rho(x, \cdot), V \rangle \\ \int_M q(y) \rho(x, y) dy = 0$$
 One equation in y for each (x, V) .
Linear in V.

Formal Derivation

Preliminaries: Let ν and $\tilde{\nu}$ be two probability measures on M. The theory of optimal transportation gives us the following:

• A W_2 -optimal map $T: M \to M$ with $T \# \nu = \tilde{\nu}$ of the form

 $T(y) := \exp_y(\nabla \phi(y))$ for a cvx function $\phi: M \to \mathbb{R}$

• The Wasserstein distance is $W_2^2(\nu, \tilde{\nu}) = \int_M \|\nabla \phi(y)\|^2 d\nu(y).$

Next: Apply these results to a soft map μ .

- Choose nearby points x and x' := exp_x(εV) for V ∈ T_xM₀.
- Take $\nu := \mu_x$ and $\tilde{\nu} := \mu_{x'}$ with optimap T_{ε} and potential ϕ_{ε} .
- Expand in ε .

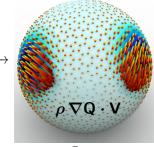
Hope: With some work, this derivation can be made rigorous and extended to a much less regular class of measures.

Interpretation of Q

We have interpreted Q in terms of conservative mass flow.

- Each $\rho(x, \cdot)$ is a swarm of particles.
- Consider the path given by x'(ε) := exp_x(εV).
- Consider the optimal maps of ρ(x, ·) into ρ(x'(ε), ·).

The instantaneous velocity of a particle at y equals ∇Q(x, y) · V



• The Wasserstein distance is the instantaneous total kinetic energy.

$$\frac{W_2^2(\mu_x,\mu_{x'})}{dist_0^2(x,x')} \approx \int_M \rho(x,y) \|\nabla Q(x,y) \cdot V\|^2 dy.$$

Optimal Soft Maps

Goal: We would like to pose a constrained optimization problem in a space of soft maps.

• Inspiration: a harmonic map problem.

The energy: should promote "smoothness in the *x*-variable" via the Dirichlet energy.

But: The global minimum of \mathcal{E}_D is $\mu = const$ with $\mathcal{E}_D(\mu) = 0$. How can we avoid the constant soft map?

- Add a descriptor matching term to the energy.
- Add region constraints.

Then: Develop a convergent discretization.

A Convex Optimization Problem

So: We would like to solve a discretization of the convex problem

Minimize

$$\mathcal{E}(\mu) := \mathcal{E}_D(\mu) + \sum_{s} \left\| \underbrace{f_0^{(s)} - \mathbb{E}_{\mu}(f^{(s)})}_{\text{Descriptor functions}} \right\|_{L^2(M_0)}^2 + \cdots$$
subject to region constraints.

Some typical results:

Source, red Optimal soft map distributions associated to the yellow points.

Discretization

All objects introduced so far can be represented via scalar functions so discretization can be done using a Finite Element Method.

- We introduce PL basis functions $\beta_{0i} : M_0 \to \mathbb{R}_+$ and $\beta_j : M \to \mathbb{R}_+$ where $\int_M \beta_j(y) dy = 1$ for all j.
- Then we work with soft maps of the form

$$egin{aligned} d\mu_{x}(y) &:= \sum_{ij} C_{ij}eta_{0i}(x)eta_{j}(y)dy \ \end{aligned}$$
 with $C_{ij} \geq 0 \; orall \; i,j \; ext{ and } \; \sum_{j} C_{ij} = 1 \; orall \, j \end{aligned}$

- Region constraints are linear in C.
- A similar discretization can be carried out for Q.
- Solving for Q and optimizing for ρ linear algebra problems!

Theoretical Questions

Elementary questions:

- In what space can we solve this problem (both the continuous and discretized versions)?
- Characterization of the minimum (Euler-Lagrange equations)?
- Some exact solutions, or other intuition for the minimum?
- The qualitative behaviour of the PDE for Q? Especially at points where $\rho = 0$ or where $\rho = \text{singular}$?
- Regularity of the solution?
- Convergence as the discretization is refined?
- Stability of the solution under perturbations of M_0 and M?

Theoretical Questions

Deeper questions:

- Are there conditions that guarantee solutions of the "ideal" form (convex combination of blurred maps)?
 - $\rightarrow\,$ How to quantify "blurriness" and avoid overly blurry solutions?
 - $\rightarrow\,$ Does "inconsistency" in the constraints correlate with "blurriness" of the solution in some way?
 - $\rightarrow~$ How to extract the maps?
- The trivial solution, in the absence of soft/hard constraints, is

 $d\mu_x(y) =
ho(y)dy$ The "constant" soft map with $\mathcal{E}_D(\mu) = 0$. A global minimum!

 $\rightarrow\,$ How to avoid a trivial solution? How many constraints?

• How to correctly discretize this problem so that computational costs are reduced? Will involve a smart theoretical approach!

Thank you!

Acknowledgements: NSF grants IIS 914833, CCF 1161480, DMS 1228304, NSF/NIH grant 900700, AFOSR grant 1156110-1-TACAD, a Google Research Award, the National Defense Science and Engineering Graduate Fellowship, the Hertz Foundation Fellowship, the NSF GRF program, a Stanford Bio-X travel grant, and the Max Planck Center for Visual Computing and Communications.