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Analytic vs. Synthetic: an example

Def. (i) ϕ ∈ C2(Rn;R) is convex if for any x,

∇2ϕ(x) ≥ 0

Def. (ii) ϕ : Rn → R is convex if for any x, y, t,

ϕ
(
(1− t)x+ ty

)
≤ (1− t)ϕ(x) + t ϕ(y)

(i): simple, local, effective

(ii): useful, general, stable

– and implies some regularity in the end



Geometric meaning of curvature

Let u, v ∈ TxM be orthogonal unit vectors. κ(u, v)

measures the divergence of geodesics, w.r.t. to Euclidean

geometry: d(expx tu, expx tv) =
√
2 t

(
1− κ

12
t2 +O(t4)

)

v

δ(t)

t

u



Geometric meaning of curvature

Let u, v ∈ TxM be orthogonal unit vectors. κ(u, v)

measures the divergence of geodesics, w.r.t. to Euclidean

geometry: d(expx tu, expx tv) =
√
2 t

(
1− κ

12
t2 +O(t4)

)

v

δ(t)

t

u

Ricci curvature = “average sectional curvature”

(e, e2, . . . , en) orthonormal, then Ric(e) :=
n∑

j=2

κ(e, ej)

This extends to a quadratic form

(expressed in terms of second derivatives of the metric g)



Metric spaces of nonnegative sectional curvature

(Cartan–Alexandrov–Toponogov)

κ ≥ 0

⇐⇒
Triangles are puffier than Euclidean triangles
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Metric spaces of nonnegative sectional curvature

(Cartan–Alexandrov–Toponogov)

κ ≥ 0

⇐⇒
Triangles are puffier than Euclidean triangles
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Theory of Alexandrov spaces of positive curvature

Many results by Alexandrov, Burago, Perelman,

Petrunin, Ohta, Lytchak, Kuwae, Otsu, Shioya...

First and second-order calculus, parallel transport,

quasigeodesics (replacement for exponential map), basis,

gradient flows, smoothing ...

Theory of Alexandrov spaces of negative curvature

Also exists, very different



  



The meaning of Ricci curvature, I



E(t)

J(t)

J(0) = E(0)

γ(t) = expx(tv), (e1(t), . . . , en(t)) e1(0) = v/|v|
Rij(t) =

〈
Riemγ(t)

(
γ̇(t), ei(t)

)
γ̇(t), ej(t)

〉
γ(t)

J̈(t) +R(t)J(t) = 0

J(0) = In, J̇(0) = ∇2ψ, tr R = Ric



Rij(t) =
〈
Riemγ(t)

(
γ̇(t), ei(t)

)
γ̇(t), ej(t)

〉
γ(t)

J̈(t) +R(t)J(t) = 0

J(0) = In J̇(0) = ∇2ψ

J (t) = det J(t) J̇ /J = tr (J̇J−1) =: tr U(t)

... U̇(t) + U(t)2 +R(t) = 0 So U(t) is symmetric!

(tr U)·+tr U2+Ric = 0 =⇒ (tr U)·+
(tr U)2

n
+Ric ≤ 0

(J̇ /J )· + n−1(J̇ /J )2 + Ric ≤ 0

(J 1
n )··(t) ≤ − 1

n
Ric(γ̇(t))J (t)1/n



Lagrangian: If E(t) is an orthonormal matrix of Jacobi

fields (infinitesimal geodesic variations of a geodesic γ),

then U := E ′E−1 satisfies the Ricatti equation

(tr U)′ + tr (U2) + Ric(γ̇, γ̇) = 0

Eulerian: If u ∈ C3(M), then

−∇u · ∇∆u+∆
|∇u|2
2

= ‖D2u‖2 + Ric(∇u,∇u)

Bochner formula

The start of many theorems and estimates

Note: Passing from one to the other: Hamilton–Jacobi

theory ∂tψ + |∇ψ|2/2 = 0



The meaning of Ricci curvature, II
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the observer
location of

the light source looks like
how the observer thinks

the light source

by curvature effects

geodesics are distorted

Because of nonnegative curvature, the observer overestimates the

surface of the light source; in negative curvature this would be the

contrary.

[Distortion coefficients always ≥ 1] ⇐⇒ [Ric ≥ 0]



The meaning of Ricci curvature, III

Otto’s (formal) differential calculus on P2(M
n), which is

the “manifold” of probability measures on Mn, equipped

with the distance

W2(µ0, µ1) =

√

inf
{∫ 1

0

|v(t, x)|2 µt(dx); ∂tµ+∇x · (vµ) = 0
}

=

√
inf

T#µ0=µ1

∫
d(x, T (x))2 µ0(dx)



The meaning of Ricci curvature, III

Otto’s (formal) differential calculus on P2(M
n), which is

the “manifold” of probability measures on Mn, equipped

with the distance

W2(µ0, µ1) =

√

inf
{∫ 1

0

|v(t, x)|2 µt(dx); ∂tµ+∇x · (vµ) = 0
}

=

√
inf

T#µ0=µ1

∫
d(x, T (x))2 µ0(dx)

∂tρ+∇ · (ρ∇φ) = 0 =⇒〈
Hessρ vol(H) · ∂tρ, ∂tρ

〉
=

∫ (
‖D2φ‖2 + 〈Ric · ∇φ,∇φ〉

)
ρ dvol

H(ρ) =
∫
ρ log ρ dvol



Consequences of Ricci curvature lower bounds

• isoperimetric inequalities (Lévy–Gromov)

• heat kernel estimates (Li–Yau)

• Sobolev inequalities

• diameter control (Bonnet–Myers)

• spectral gap inequalities (Lichnérowicz)

• Poincaré inequalities (Cheeger...)

• volume growth estimates (Bishop–Gromov)

• compactness of families of manifolds (Gromov)

• concentration (Lévy, Gromov, Talagrand...)

• volume of intermediate points

(Brunn–Minkowski)



Example: curved Brunn–Minkowski for Ric ≥ 0

t = 1

t = 0

t = 1/2

vol
1
nm(X, Y ) ≥ vol

1
n (X) + vol

1
n (Y )

2
(midpoints)

NB: In R
n, recover classical B–M

|X + Y | 1n ≥ |X| 1n + |Y | 1n by homogeneity



Inequalities

−∇u · ∇∆u+∆
|∇u|2
2

= ‖D2u‖2 + Ric(∇u)

=⇒ −∇u · ∇∆u+∆
|∇u|2
2

≥ (∆u)2

N
+K |∇u|2

if n ≤ N , Ric ≥ K

−→ criterion CD(K,N): the inequality involving Ricci

curvature and dimension

(Also has Lagrangian counterparts of course)



Generalizations

If the reference volume is e−V (x) vol(dx) then CD(K,N)

(“Ricci ≥ K, dimension ≤ N”), should be changed into

−∇u · ∇∆νu+∆ν
|∇u|2
2

≥ (∆νu)
2

N
+K |∇u|2

where ∆ν = ∆−∇V · ∇

Equivalently, RicN,ν ≥ K g

where RicN,ν = Ric +∇2V − ∇V ⊗∇V
N − n



Theory of CD(K,N) bounds

Geometric/analytic consequences have been developed by

Bakry, Émery, Ledoux, Li & Yau, and many others.

There it is (often) considered a property of the Laplace

operator, or heat equation...

Ex: If CD(K,N) then

‖f‖2
L

2N
N−2

≤ ‖f‖2L2 +
4

KN (N − 2)
‖∇f‖2L2

Ex: CD(K,∞) corresponds to:

|∇Htf |2 ≤ e−2KtHt|∇f |2...



Theory of CD(K,N) bounds

Geometric/analytic consequences have been developed by

Bakry, Émery, Ledoux, Li & Yau, and many others.

Gromov: CD(K,N) can be seen as a property relating

distances and volumes, which in the absence of dimension

should be considered independent data



Theory of CD(K,N) bounds

Geometric/analytic consequences have been developed by

Bakry, Émery, Ledoux, Li & Yau, and many others.

Gromov: CD(K,N) can be seen as a property relating

distances and volumes, which in the absence of dimension

should be considered independent data

Lott–Sturm–Villani

(Building on Otto–Villani,

Cordero-Erausquin–McCann-Schmuckenschläger,

Sturm–Von Renesse)

The synthetic CD(K,N) criterion goes through the

interplay of optimal transport and entropy-type

functionals

Recently pushed very far in the “Riemannian” setting



Optimal transport

inf
T#µ0=µ1

∫
d(x, T (x))2 µ0(dx)

Boltzmann Entropy

S(ρ) = −
∫
ρ log ρ = −H(ρ)



Optimal transport



The Kantorovich problem (Kantorovich, 1942)

• X , Y two complete separable metric spaces

• µ ∈ P (X ), ν ∈ P (Y)

• c ∈ C(X × Y ;R), say c(x, y) = d(x, y)2

Π(µ, ν) =
{
π ∈ P (X × Y); marginals of π are µ and ν

}

∀h
∫
h(x) π(dx dy) =

∫
h dµ

∫
h(y) π(dx dy) =

∫
h dν



The Kantorovich problem (Kantorovich, 1942)

• X , Y two complete separable metric spaces

• µ ∈ P (X ), ν ∈ P (Y)

• c ∈ C(X × Y ;R), say c(x, y) = d(x, y)2

Π(µ, ν) =
{
π ∈ P (X × Y); marginals of π are µ and ν

}

∀h
∫
h(x) π(dx dy) =

∫
h dµ

∫
h(y) π(dx dy) =

∫
h dν

(K) inf
π∈Π(µ,ν)

∫
c(x, y) π(dx dy)



Engineer’s interpretation

π(dx dy)

y

x

déblais
remblais

x

T

ν
µ

y

Given the initial and final distributions, transport

matter at lowest possible cost



Information theory

The Shannon–Boltzmann entropy S = −
∫
f log f

quantifies how much information there is in a “random”

signal Y , or a language.

Hµ(ν) =

∫
ρ log ρ dµ; ν = ρ µ.

... Entropy = mean value of log
1

ρ(Y )
...



Microscopic meaning of the entropy functional

Measures the volume of microstates associated,

to some degree of accuracy in macroscopic observables,

to a given macroscopic configuration (observable

distribution function)

=⇒ How exceptional is the observed configuration?



Microscopic meaning of the entropy functional

Measures the volume of microstates associated,

to some degree of accuracy in macroscopic observables,

to a given macroscopic configuration (observable

distribution function)

=⇒ How exceptional is the observed configuration?

Boltzmann’s formula

S = k log W



−→ How to go from S = k logW to S = −
∫
f log f ?

Famous computation by Boltzmann

N particles in k boxes

f1, . . . , fk some (rational) frequencies;
∑
fj = 1

Nj = number of particles in box #j

ΩN(f) = number of configurations such that Nj/N = fj



−→ How to go from S = k logW to S = −
∫
f log f ?

Famous computation by Boltzmann

N particles in k boxes

f1, . . . , fk some (rational) frequencies;
∑
fj = 1

Nj = number of particles in box #j

ΩN(f) = number of configurations such that Nj/N = fj

f = (0, 0, 1, 0, 0, 0, 0)

ΩN(f) = 1



−→ How to go from S = k logW to S = −
∫
f log f ?

Famous computation by Boltzmann

N particles in k boxes

f1, . . . , fk some (rational) frequencies;
∑
fj = 1

Nj = number of particles in box #j

ΩN(f) = number of configurations such that Nj/N = fj

f = (0, 0, 3/4, 0, 1/4, 0, 0)

Ω8(f) =
8!

6! 2!



−→ How to go from S = k logW to S = −
∫
f log f ?

Famous computation by Boltzmann

N particles in k boxes

f1, . . . , fk some (rational) frequencies;
∑
fj = 1

Nj = number of particles in box #j

ΩN(f) = number of configurations such that Nj/N = fj

f = (0, 1/6, 1/3, 1/4, 1/6, 1/12, 0)

ΩN(f) =
N !

N1! . . . Nk!



−→ How to go from S = k logW to S = −
∫
f log f ?

Famous computation by Boltzmann

N particles in k boxes

f1, . . . , fk some (rational) frequencies;
∑
fj = 1

Nj = number of particles in box #j

ΩN(f) = number of configurations such that Nj/N = fj

Then as N → ∞

#ΩN(f1, . . . , fk) ∼ e−N
∑

fj log fj

1

N
log#ΩN(f1, . . . , fk) ≃ −

∑
fj log fj



Recall: Sanov’s Theorem

Mathematical translation of the Boltzmann formula

x1, x2, . . . (“microscopic r.v.”) i.i.d. law ν;

µ̂N :=
1

N

N∑

i=1

δxi
(random, “empirical” measure)

What measure shall we observe??

Informal: P [µ̂N ≃ µ] ∼ e−NHν(µ)

Hν(µ) =

∫
ρ log ρ dν, ρ =

dµ

dν

Rigorously: Hν = Large Deviation Rate Function of µ̂N .



The lazy gas experiment
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t = 1

t = 0

t = 1/2

t = 0 t = 1

S = −

∫
ρ log ρ



Relation between transport and Ricci

Ric ≥ 0

if and only if

H(µt) =

∫
ρt log ρt dvol is a convex function of t

ρt =
dµt

dvol

(convexity along geodesics of optimal transport!)





Metric-measure spaces of nonnegative Ricci curvature

(Lott–Sturm–Villani)

Definition: A compact metric-measured space (X , d, ν)
has Ricci curvature ≥ 0 (in weak sense) if

∀µ0, µ1 ∈ P (X ) ∃(µt)0≤t≤1, geodesic in P (X ), s.t.

∀ t ∈ [0, 1],
∫
ρt log ρt dν ≤ (1− t)

∫
ρ0 log ρ0 dν + t

∫
ρ1 log ρ1 dν

(Some slight variants: a.c. or not? More general

ρ log ρ-type nonlinearities?)



Metric-measure spaces of positive Ricci curvature

(Lott–Sturm–Villani)

Definition: A compact metric-measured space (X , d, ν)
has Ricci curvature ≥ K (in weak sense) if

∀µ0, µ1 ∈ P (X ) ∃(µt)0≤t≤1, geodesic in P (X ), s.t.

∀ t ∈ [0, 1],
∫
ρt log ρt dν ≤ (1− t)

∫
ρ0 log ρ0 dν + t

∫
ρ1 log ρ1 dν

−K
2
t(1− t)C(µ, ν)



General CD(K,N): no unanimity yet!

• Change the class of nonlinearities: in dimension N ,

replace ρ log ρ by U(ρ), where sNU(s−N) is convex

• Introduce distortion coefficients in the functional:∫
U(ρt) dν ≤

(1− t)

∫
U

(
ρ0(x)

βt(x, y)

)
βt(x, y) π(dy|x) ν(dx) + . . .

where π is optimal, βt(x, y) = reference distortion coeff

Two competing choices of reference distortion coefficients

βt(x, y) =

(
sin(tα)

t sinα

)N−1

, α =

√
K

N − 1
d(x, y) [CD]

βt(x, y) =

(
sin(tα)

t sinα

)N

, α =

√
K

N
d(x, y) [CD∗]



Consistency

The weak definition coincides with the usual one if the

space is smooth (Riemannian manifold)

Core of proof of (⇒) Take µ0 = ρ0 vol, µ1 = ρ1 vol.

1. The optimal transport takes the following form: each

starting point x is related to the final point y by a

minimizing geodesic γx(t), with initial velocity

γ̇x(0) = ∇ψ(x) for some function ψ having some

convexity-type properties.

2. The interpolation µt between µ0 and µ1 is obtained by

stopping the geodesic at time t: µt = (exp t∇ψ)#µ0

3. Change variables:

H(µt) = H(µ0)−
∫

log Jac(exp t∇ψ) dµ0



4. Ric ≥ 0 =⇒ d2

dt2
log Jac(exp t∇ψ) ≤ 0

.... All the rest is “analysis” and approximation...

Note:

• The entropy is an “integrated” way to involve the

logarithmic Jacobian determinant of the exponential map

• With optimal transport we have only access to

gradient velocity fields, which is rich enough

(Hamilton–Jacobi eq.)



Locality

With the second (weakest) definition of distortion

coefficients, the definition is local as soon as the space is

nonbranching. Probably the “right” def!

This is because of the underlying differential inequality

D̈ +
K

N
D ≤ 0

It is open whether the two choices of distortion

coefficients are equivalent (true for all examples – cones,

Finsler/Alexandrov spaces, warped products...)

It is known that for the nonbranching spaces

CD∗(K,N) is equivalent to Boltzmann’s information H

satisfying H ′′ ≥ K + (H ′)2/N along geodesics



Stability

Def: (Xk, dk, νk)k∈N converges to (X , d, ν) in measured

Gromov–Hausdorff topology if there are fk : Xk → X




∣∣d(fk(x), fk(y))− dk(x, y)
∣∣ ≤ εk → 0

∀x ∈ X, d
(
x, fk(Xk)

)
≤ εk

(fk)#νk −→ ν weakly



Stability

Def: (Xk, dk, νk)k∈N converges to (X , d, ν) in measured

Gromov–Hausdorff topology if there are fk : Xk → X




∣∣d(fk(x), fk(y))− dk(x, y)
∣∣ ≤ εk → 0

∀x ∈ X, d
(
x, fk(Xk)

)
≤ εk

(fk)#νk −→ ν weakly

Thm: If (Xk, dk, νk) has Ric ≥ K and converges to

(X , d, ν) then (X , d, ν) has Ric ≥ K.

(no need for convergence of the second derivatives!)



Strategy of proof of stability (say for N = ∞)

Step 1: Reformulate the condition “Ric +∇2V ≥ 0”:

For any two probability measures µ0 and µ1, there is a

geodesic (µt)0≤t≤1 in the Wasserstein space (P (X ),W2),

s.t. Hν(µt) ≤ (1− t)Hν(µ0) + tHν(µ1)

Step 2: P2(X) is stable under MGH:

If fk : Xk → X is an approximate isometry, then

(fk)# : P2(Xk) → P2(X) also

Combining with a compactness argument, find a limit

geodesic in the space of measures.



Step 3: Use the properties of the entropy to pass to the

limit in the inequality.

If U : R+ → R+ is convex and continuous, then

Uν(µ) :=

∫
U

(
dµ

dν

)
dν

is lower semicontinuous w.r.t. µ and ν,

and satisfies a contraction principle:

for any f, Uf#ν(f#µ) ≤ Uν(µ)

Conclude that the same property holds true in the limit

space, deduce Ric +∇2V ≥ 0.



Compatibility (Petrunin 2009)

If (X , d) is a compact finite-dimensional Alexandrov

space with “sectional” curvature ≥ 0 then also (X , d, vol)
has “Ricci” curvature ≥ 0.

This establishes a direct link between

Cartan–Alexandrov–Toponogov and Lott–Sturm–V

and ensures the compatibility of weak definitions

This was generalized to “sectional curvature ≥ κ”,

providing examples of CD(K,N) spaces.

But weak CD(K,N) spaces are more general and include

all MGH limits of CD(K,N) manifolds, all normed R
N ...



Properties derived from the synthetic formulation

Sobolev inequalities, Brunn–Minkowski, Bishop–Gromov,

Poincaré, Lichnérowicz...

Example: Prove the Curved Brunn–Minkowski inequality

A0, A1 given

µ0 := ν|A0 , µ1 := ν|A1 ; (µt)0≤t≤1

∫
ρ
1−1/N
1/2 dν ≥ 1

2

(
|A0|1/N + |A1|1/N

)
,

Apply Jensen to conclude.



Isoperimetric inequalities, concentration

The transport approach gives a grip on measures/sets

Used for concentration inequalities

Recently used by Funano to prove: under CD(0,∞),

λk(M, ν) ≤ Ckλ1(M, ν) for some universal C.

The key is the entropy interpretation and a recursive

estimate on the separation: Sep(M, ν, α1, . . . , αN) :=

maximum min-distance between sets A1, . . . , AN

satisfying ν[Aj] = αj,

obtained through displacement convexity of H

Also inequalities on isoperimetric-type constants...



Isoperimetric inequalities, concentration

The transport approach gives a grip on measures/sets

Used for concentration inequalities

Recently used by Funano to prove: under CD(0,∞),

λk(M, ν) ≤ Ckλ1(M, ν) for some universal C.

The key is the entropy interpretation and a recursive

estimate on the separation: Sep(M, ν, α1, . . . , αN) :=

maximum min-distance between sets A1, . . . , AN

satisfying ν[Aj] = αj,

obtained through displacement convexity of H

Also inequalities on isoperimetric-type constants...

Why does the Lévy–Gromov inequality remain elusive?



Rough heat flow (Ambrosio–Gigli–Savaré 2011)

If (X , d, ν) has “Ricci” curvature ≥ −K, one can define a

(nonlinear) heat flow on the space of probability densities,

• either as gradient flow of Hν in P2

• or as L2 grad flow of Dirichlet form
∫
|∇ρ|2 dν



Origin: Jordan–Kinderlehrer–Otto (1998)

On M compact Riemannian manifold (or M = R
n)

there is a link between

• heat/Fourier equation
∂ρ

∂t
= ∆ρ on M

• Boltzmann’s H functional: H(ρ) =

∫
ρ log ρ

• optimal transport

C(µ, ν) = inf
T#µ=ν

∫
d
(
x, T (x)

)2
µ(dx)



Monge solution of Fourier equation

Unorthodox gradient flow scheme. Time discretize.

From time t to time t+∆t: Given ρ(t), search for

ρ(t+∆t) as the minimizer of H(ρ) +
C(ρ(t), ρ)

2∆t



Monge solution of Fourier equation

Unorthodox gradient flow scheme. Time discretize.

From time t to time t+∆t: Given ρ(t), search for

ρ(t+∆t) as the minimizer of H(ρ) +
C(ρ(t), ρ)

2∆t

Note: Interpretation (Peletier et al.)

The occurrence of H can be related to Sanov’s Theorem;

the exponent 2 to the (log) Central Limit Theorem

Theorem (Ambrosio–Gigli–Savaré)

This procedure works the same in weak CD(K,∞)

spaces. In fact as soon as |∇−Hν | is lower
semi-continuous; in that case this is the square root of

the Fisher information.



Side PDE remark

Nonsmooth Hamilton–Jacobi theory is crucial here!

For this purpose it was developed in general metric

spaces (Lott, V, Gozlan, Roberto, Samson, Ambrosio,

Gigli, Savaré...)

Qtf(x) = min
[
f(y) + d(x,y)2

2t

]

=⇒ In any geodesic space, ∂tQtf +
|∇Qtf |2

2
= 0 (except

at countably many times)



How wide is this generalization?

Nonbranching CD(K,N) spaces satisfy many properties

of smooth ones.

But the flow is in general nonlinear and the splitting

theorem does not hold; normed spaces are allowed,

Finsler geometry is included



RCD(K,N) Spaces / RCD∗(K,N) Spaces

If one makes the additional assumption that W 1,2 is

Hilbert (Ambrosio–Gigli–Savaré), or equivalently (!) that

the heat flow is linear, then one obtains a narrower class

of weak CD(K,N) spaces, which satisfies a lot, and is

still stable (!)

• Laplace operator

• Bochner inequality; link to Bakry–Émery formalism

(equivalence: Erbar–Kuwada–Sturm); cone property, etc.

• Splitting Theorem (Gigli), in quantitative form; sharp

inequalities for RCD∗

• Almost everywhere existence of (unique?)

finite-dimensional tangent spaces



An intermediate theory?

Can one develop a good calculus without restricting to

the “Riemannian” assumption, keeping Finsler spaces

along the way?

Maybe if the Sobolev space W 1,2 is strictly convex?

Note: Exponent 2 is there in the heat equation (even

nonlinear) and in the curvature!



Adaptation to discrete spaces

Many different theories in discrete spaces (approximate

geodesics, or change the distance through a discretized

Riemannian structure, etc.)

Ollivier, Sturm–Bonciocat, Maas, Erbar, Mielke,

Gozlan–Roberto–Samson–Tetali, Hillion...

The Ricci curvature of the discrete hypercube?
(Question by D. Stroock, 1998)

Ollivier–V: A and B two nonempty subsets of {0, 1}N .
M the set of midpoints of A and B. Then

log |M | ≥ 1

2

(
log |A|+ log |B|

)
+
K

8
d(A,B)2, K =

1

2N

Maas: Can be made more precise, K = 1/(2N) is (in

some sense) the discrete Ricci curvature of the hypercube.




