Lagrangian Solutions for Semigeostrophic System with Singular Initial Data

Mikhail Feldman, University of Wisconsin-Madison

Joint works with Adrian Tudorascu, West Virginia **University**

October 14, 2013

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Derivation of Semigeostrophic Model

Boussinesq system with Coriolis force in 3D:

$$
\frac{D}{Dt}(u_1, u_2) + (\frac{\partial p}{\partial x_1}, \frac{\partial p}{\partial x_2}) = (u_2, -u_1),
$$

\n
$$
\frac{D}{Dt}\rho = 0,
$$

\ndivu = 0,
\n
$$
\frac{\partial p}{\partial x_3} + \rho = 0,
$$

where

$$
\begin{aligned}\n\frac{D}{Dt} &= \frac{\partial}{\partial t} + u \cdot \nabla, \\
u &= (u_1, u_2, u_3), \quad \nabla = (\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3})\n\end{aligned}
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 ◆ 9 Q Q →

Derivation of Semigeostrophic Model

Strong Coriolis forcing:

$$
\varepsilon \frac{D}{Dt}(u_1, u_2) + (\frac{\partial p}{\partial x_1}, \frac{\partial p}{\partial x_2}) = (u_2, -u_1),
$$

\n
$$
\frac{D}{Dt}\rho = 0,
$$

\ndivu = 0,
\n
$$
\frac{\partial p}{\partial x_3} + \rho = 0,
$$

where

$$
\begin{aligned}\n\frac{D}{Dt} &= \frac{\partial}{\partial t} + u \cdot \nabla, \\
u &= (u_1, u_2, u_3), \quad \nabla = (\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3})\n\end{aligned}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Derivation of Semigeostrophic Model

Rotation dominated motion: set $\varepsilon = 0$, thus drop inertial term $\frac{D}{Dt}(u_1,u_2)$ to obtain Geostrophic Balance. This defines Geostrophic Velocities (horizontal)

$$
(v_1^g, v_2^g) = (\frac{\partial p}{\partial x_2}, -\frac{\partial p}{\partial x_1}),
$$

Substitute geostrophic velocities into inertial term $\frac{D}{Dt}(v_1^g)$ $\frac{g}{1}, v_2^g$ $\binom{g}{2}$ (where still $\frac{D}{Dt} = \frac{\partial}{\partial t} + u \cdot \nabla$), get Semigeostrophic System

Semigeostrophic System in 3D

Model with rigid boundaries i.e. in domain $\Omega \subset \mathbb{R}^3$.

$$
\frac{D}{Dt}(v_1^g, v_2^g) + (\frac{\partial p}{\partial x_1}, \frac{\partial p}{\partial x_2}) = (u_2, -u_1),
$$

\n
$$
\frac{D}{Dt}\rho = 0,
$$

\ndivu = 0,
\n
$$
\frac{\partial p}{\partial x_3} + \rho = 0,
$$

\n
$$
\frac{D}{Dt} = \frac{\partial}{\partial t} + u \cdot \nabla, \quad (v_1^g, v_2^g) = (\frac{\partial p}{\partial x_2}, -\frac{\partial p}{\partial x_1}),
$$

in $(0, T) \times \Omega$, with initial and boundary conditions:

$$
u \cdot \nu = 0 \quad \text{on} \quad (0, T) \times \partial \Omega,
$$

$$
p(0, x) = p_0(x) \quad \text{in} \quad \{t = 0\} \times \Omega.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Semigeostrophic System in 3D

Model was introduced by Eliassen(1948), Hoskins(1975). Rewrite system:

Use
$$
(u_1, u_2, u_3) = \frac{D}{Dt}(x_1, x_2, x_3)
$$
.
Introduce

$$
P(t, x) := p(t, x) + \frac{1}{2}(x_1^2 + x_2^2),
$$

$$
P_0(x) = p_0(x) + \frac{1}{2}(x_1^2 + x_2^2),
$$

and $\frac{\pi}{2}$ -rotation in horizontal plane matrix:

$$
J = \left(\begin{array}{rrr} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).
$$

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

Semigeostrophic System in 3D

SG system takes form:

$$
\frac{DX}{Dt} = J(X - x)
$$

\n
$$
\text{div}u = 0,
$$

\n
$$
X = \nabla P, \qquad \frac{D}{Dt} = \frac{\partial}{\partial t} + u \cdot \nabla,
$$

in $(0, T) \times \Omega$, with initial and boundary conditions:

 $u \cdot \nu = 0$ on $(0, T) \times \partial \Omega$, $P(0, x) = P_0(x)$ in $\{t = 0\} \times \Omega$.

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

Cullen-Purser stability condition: $P(t, \cdot)$ is convex

Dual Space

Dual space: change of variables:

 $(t, x) \rightarrow (t, X)$, where $X = \nabla P_t(x)$,

where we use notation $P_t(\cdot) = P(t, \cdot)$.

If $P_t(\cdot)$ is strictly convex, then inverse transform is given by

 $x = \nabla P_t^*(X),$

where $P_{t}^{*}(\cdot)$ is the convex dual (Legendre transform) of $P_{t}(\cdot)$:

$$
P_t^*(X) = \sup_{x \in \Omega} [x \cdot X - P(x, t)].
$$

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

Let $x(t)$ be a particle path in physical space: $\dot{x}(t) = u(t, x(t))$. Then $X(t) = \nabla P_t(x(t))$ is a particle path in physical space. Then velocity in dual space is (using SG system):

$$
U(t, X(t)) = \dot{X}(t) = \frac{d}{dt} (\nabla P_t(x(t)))
$$

= $\frac{\partial}{\partial t} \nabla P_t(x) + (\dot{x}(t) \cdot \nabla) \nabla P_t(x)$
= $\frac{\partial}{\partial t} X + (u \cdot \nabla) X = J(X - x) = J(X - \nabla P_t^*(X)).$

 $\mathbf{A} \equiv \mathbf{A} + \math$

 $2Q$

Density in Dual Space

Recall: if μ , ν are measures on metric spaces X, Y, and $r: X \to Y$ is Borel, then r pushes forward μ to ν , denoted $r_{\#}\mu = \nu$ if

 $\mu(r^{-1}(A))=\nu(A)\quad \text{for each Borel }\,\,A\subset Y.$

For $t\geq 0$, denote $\alpha_t = \nabla P_{t\#}\chi_\Omega$. Then α_t is density in dual space.

Equation for $\alpha(t, X) = \alpha_t(X)$ (heuristic argument): Equation div $u = 0$ in Ω together with condition $u \cdot \nu = 0$ on $\partial\Omega$ imply

$$
\partial_t \chi_{\Omega} + \text{div}(u\chi_{\Omega}) = 0 \quad \text{in} \quad \mathbb{R}^3.
$$

Then changing variables $X = \nabla P_t(x)$, and using that velocity in dual space is $U(t, X) = J(X - x) = J(X - \nabla P_t^*(X)),$ yields

 $\partial_t \alpha + \text{div}(U\alpha) = 0$ in $(0, \infty) \times \mathbb{R}^3$.

Semigeostrophic system in Dual Space

$$
\partial_t \alpha + \text{div}(U\alpha) = 0 \quad \text{in} \quad (0, \infty) \times \mathbb{R}^3,
$$

\n
$$
U(t, X) = J(X - \nabla P_t^*(X)),
$$

\n
$$
\nabla P_{t\#} \chi_{\Omega} = \alpha_t,
$$

\n
$$
\alpha_{|t=0} = \alpha_0.
$$

Existence in dual space:

Benamou, Brenier (1998) for 3D rigid boundaries model, case $\alpha_0 \in L^q$, $q \geq 3$. Cullen, Gangbo (2001) for 2D shallow water SG model, case $\alpha_0 \in L^q$, $q \ge 1$.

Lopes-Filho, Nussenzveig-Lopes (2002) extended to $q=1$. Loeper (2006) case α_0 a measure. Then ∇P^* is replaced by barycentric projection

Ambrosio, Gangbo (2008) case α_0 a measure: SG in dual space is a Hamiltonian ODE in the Wasserstein spaces.

Relation to Monge-Kantorovich mass transport

Semigeostrophic system in Dual Space

$$
\partial_t \alpha + \text{div}(U\alpha) = 0 \quad \text{in} \quad (0, \infty) \times \mathbb{R}^3,
$$

\n
$$
U(t, X) = J(X - \nabla P_t^*(X)),
$$

\n
$$
\nabla P_{t\#X\Omega} = \alpha_t,
$$

\n
$$
\alpha_{|t=0} = \alpha_0.
$$

Recall: $P_t(\cdot)$ is convex. Thus $\nabla P_t(\cdot)$ is the optimal map for Monge's problem between measures χ_{Ω} and α_t with cost = $distance²$:

$$
I[\nabla P_t] = \min_{s \neq \chi_{\Omega} = \alpha_t} I[s], \quad I[s] = \int_{\Omega} |s(x) - x|^2 dx.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Solving Semigeostrophic system in Dual Space

$$
\partial_t \alpha + \text{div}(U\alpha) = 0 \quad \text{in} \quad (0, \infty) \times \mathbb{R}^3,
$$

\n
$$
U(t, X) = J(X - \nabla P_t^*(X)),
$$

\n
$$
\nabla P_{t\#X\Omega} = \alpha_t,
$$

\n
$$
\alpha_{|t=0} = \alpha_0.
$$

Existence in dual space: time stepping (Benamou-Brenier, Cullen-Gangbo): let $\Delta t = h$.

Suppose, at time at $t_k = kh$, the $P_k(x)$ convex, and measure $\alpha_k(x)$ are given. Determine velocity

$$
U_k(X) = J(X - \nabla P_k^*(X))
$$

(plus some regularization...). Solve transport equation

$$
\partial_t \alpha + \text{div}(U_k \alpha) = 0 \quad \text{in} \quad (kh, (k+1)h) \times \mathbb{R}^3,
$$

$$
\alpha_{|t=kh} = \alpha_k.
$$

ADD YEARS ARA YOUR

Solving Semigeostrophic system in Dual Space

Then define $\alpha_{k+1} = \alpha((k+1)h)$.

From div $U_k = 0$ get $\int \alpha_k dx = \int \alpha_{k+1} dx$.

Determine P_{k+1} by solving Monge-Kantorovich problem: P_{k+1} is convex and ∇P_{k+1} is the optimal map between χ_{Ω} and α_{k+1} .

Then send h to $0+$. Using convexity, can pass to the limit in equations.

ADD YEARS ARA YOUR

Semigeostrophic system in Physical Space

Let (P, α) be a solution in dual space. Obtain solution (P, u) in physical space, i.e. define physical velocity u. Formally, use relation $x(t) = \nabla P_t(X(t))$ for particle paths. Differentiate:

 $u(t, x) = \partial_t \nabla P_t^*(X) + U \cdot \nabla(\nabla P_t^*(X))$ $=\partial_t \nabla P^*(t, \nabla P_t(x)) + D^2 P_t^*(\nabla P_t(x))[J(\nabla P(t, x) - x)],$

ADD YEARS ARA YOUR

Here P_t , P_t^* are convex, i.e $D^2P_t^*$ is a measure, and $\nabla P_t \in L^\infty$. Their product is not well-defined.

Semigeostrophic system in Physical Space: Eulerian solutions

 ϵ

Also, (P, u) is a weak (Eulerian) solution of SG if $divu = 0$ and

$$
\int_{(0,T)\times\Omega} \{\nabla P(t,x) \cdot [\partial_t \phi(t,x) + (u(t,x)\cdot \nabla)\phi(t,x)]
$$

+ $J[\nabla P(t,x) - x] \cdot \phi(t,x)\} dt dx + \int_{\Omega} \nabla P_0(x) \cdot \phi(0,x) dx = 0.$

ADD YEARS ARA YOUR

for any $\phi \in C_c^1([0, T) \times \Omega; \mathbb{R}^3)$. Since $\nabla P_t \in L^{\infty}$, need $u \in L^1_{loc}$. Existence of $u \in L^1_{loc}$ is not known. Apriori estimates of u as a measure: Loeper (2005).

Semigeostrophic system in Physical Space: Eulerian solutions

Recent works: De Philippis, Figalli (2011) regularity for Monge-Ampere: if $\Lambda > f(x) > \lambda > 0$ in Ω and

$$
\det D^2 u = f \quad \text{in} \quad \Omega,
$$

then $u\in W^{2,1}(\Omega)$ (and slightly better). Boundary regularity if $\partial\Omega$ is convex and smooth.

Ambrosio, Colombo, De Philippis, Figalli (2011, 2012): existence of Eulerian solutions of SG in 2D-periodic and 3D cases if the density in dual space α_0 is strictly positive $+...$ In the case when the boundary of the support of α_0 is nonempty, say when supp (α_0) is compact, existence of Eulerian solutions is not known, not clear whether can be expected. The case when the support of α_0 is compact is physically interesting: related to modeling of front formation in atmospheric flows.4 L D + 4 P + 4 P + 4 P + B + 9 Q O Weak Lagrangian Solutions in Physical Space Cullen-F. 2006.

If (P, u) is smooth, then define flow map of u: $F : [0, T] \times \Omega \rightarrow \Omega$ satisfying

$$
\partial_t F(t, x) = u(t, F(t, x))
$$

$$
F_{|t=0} = Id.
$$

Since $u \cdot \nu = 0$ on $\partial \Omega$, it follows for each $t \geq 0$ that $F_t: \Omega \to \Omega$ is diffeomorphism. Then F determines $u.$

SG system in terms of (P, F) :

$$
F_{t\#}\chi_{\Omega} = \chi_{\Omega} \text{ for all } t > 0,
$$

$$
F_0 = Id,
$$

and $Z(t, x) = \nabla P(t, F_t(x))$ is a solution of the ODE

$$
\partial_t Z(t, x) = J[Z(t, x) - F(t, x)] \quad \text{in } [0, T) \times \Omega,
$$

$$
Z(0, x) = \nabla P_0(x).
$$

Weak Lagrangian Solutions in Physical Space Let $\Omega \subset \mathbb{R}^3$ be an open bounded set, and $T>0$. Let $P_0(x) \in W^{1,\infty}(\Omega)$ be convex. Let $r \in [1,\infty)$. Let

> $P \in L^{\infty}([0,T);W^{1,\infty}(\Omega)) \cap C([0,T);W^{1,r}(\Omega)),$ $P_t(\cdot)$ is convex in Ω for each $t \in [0, T)$.

Let $F: [0, T) \times \Omega \to \Omega$ satisfy $F \in C([0, T); L^r(\Omega; \mathbb{R}^3)).$ (P, F) is a weak Lagrangian solution of SG system if

$$
F_{t\#}\chi_{\Omega} = \chi_{\Omega} \text{ for all } t > 0,
$$

$$
F_0 = Id,
$$

and $Z(t, x) = \nabla P(t, F_t(x))$ is a weak solution of the ODE

 $\partial_t Z(t, x) = J[Z(t, x) - F(t, x)]$ in $[0, T] \times \Omega$, $Z(0, x) = \nabla P_0(x).$

Existence of Weak Lagrangian Solutions in Physical Space

Cullen, Feldman (2006): if $\alpha_0:=\nabla P_0 \# \chi_\Omega \in L^q$, $q>1$, for 3D rigid boundaries and 2D shallow water SG models. Outline of proof: Combining Cullen-Gangbo time-stepping procedure, and Ambrosio theory of Hamilton-Jacobi equations and ODE with BV vector fields, obtain Lagrangian flow $\Phi(t, X)$ in dual space, and

 $\alpha_t = \Phi_{t\#} \alpha_0.$

Here we use that $U(t,X)=J(X-\nabla P_t^*(X))$ is BV (as a gradient of convex function) and divergence-free (by $J\nabla$ -structure).

Then the flow in physical space is

 $F_t = \nabla P_t^* \circ \Phi_t \circ \nabla P_0.$

Faria, Lopes-Filho, Nussenzveig-Lopes (2009) : $q = 1$ case.

Remark on condition $\alpha_0 := \nabla P_0 \# \chi_\Omega \in L^q$

This condition is a form of strict convexity of P_0 . For example, if P_0 is uniformly strictly convex, i.e. $P_0(x)-\varepsilon x^2$ is convex, then $\alpha_0 \in L^{\infty}$. If P_0 is affine on a set of positive measure, then α_0 has a delta-function (i.e. a point of nonzero measure).

ADD YEARS ARA YOUR

Case of $\alpha_0 := \nabla P_0 \# \chi_{\Omega}$ is a measure

This case is physically relevant.

Solutions in dual space Loeper (2006), Ambrosio, Gangbo (2008): P_t is convex and α_t is a measure, and satisfy:

> $\partial_t \alpha + \text{div}(U\alpha) = 0$ in $(0,\infty) \times \mathbb{R}^3$, $U(t, X) = J(X - \overline{\gamma}_t(X)),$ $\nabla P_{t\#}\chi_{\Omega}=\alpha_t,$ $\alpha_{|t=0} = \alpha_0,$

where $\bar{\gamma}_t(X)$ is the barycentric projection of the optimal Kantorovich plan $\gamma_t := \big(\nabla P_t \times \text{Id}\big)_{\#}\chi$ having α_t and χ as first and second marginals, respectively. It is defined by

$$
\int_{\mathbb{R}^3} \xi(X) \cdot \bar{\gamma}_t(X) d\alpha_t(X) = \iint_{\mathbb{R}^3 \times \Omega} \xi(X) \cdot y d\gamma_t(X, y)
$$

for all continuous $\xi:\mathbb{R}^3\to\mathbb{R}^3$ of at most quadratic growth.

Case $\alpha_0 := \nabla P_0 \# \chi_{\Omega}$ is a measure: Flow map in physical space

(Tudorascu-F. 2012)

Define Lagrangian solutions in physical space when α_0 is singular: Since $\bar{\gamma}_t$ replaces ∇P_t^* , try

 $F_t = \bar{\gamma}_t \circ \Phi_t \circ \nabla P_0.$

Example: $\Omega = B_1$, $P_0(x) = 0$. Then $P_t(x) = 0$ on B_1 for all t, and $\alpha_t = \delta_0$. Also $P_t^*(X) = X.$ Thus $\bar{\gamma}_t(0)=0$ which defined $\bar{\gamma}_t(X)$ for α_t -a.e. $X\in bR^3.$ Can set $\bar{\gamma}_t(X) = \nabla P_t^*$ for $X \neq 0$. Also, $U(t, X) = J(X - \bar{\gamma}_t(X))$, thus $\Phi(t, 0) = 0$ is a solution of ODE $\frac{d}{dt}\Phi(t,0) = U(t,U(t,\Phi(t,0)).$ In fact, this is a continuous extension to $X = 0$ of the regular flow $\Phi(t, X)$ for vector field $U(t, X) = J(X - \nabla P_t^*)$. 4 L D + 4 P + 4 P + 4 P + B + 9 Q O

Case $\alpha_0 := \nabla P_0 \# \chi_{\Omega}$ is a measure: Flow map in physical space

We get $F_t(x) = \overline{\gamma}_t \circ \Phi_t \circ \nabla P_0(x) = 0$ for any $x \in B_1, t > 0$. In particular, $F_{t\#}\chi_{\Omega} = \delta_0 \neq \chi_{\Omega}$. Also can show: for regularizations $P_0^\varepsilon = \varepsilon \| x \|^2$ get $F^\varepsilon \rightharpoonup F$ weakly-* in $L^{\infty}([0,T]\times B_1)$, but not in $L^p(B_1)$ for each $t.$

$F_t = \bar{\gamma}_t \circ \Phi_t \circ \nabla P_0$. Issues to address:

(i) If Φ_t is a Lagrangian flow ∇P_t^* (or, equivalently, for $\bar{\gamma}_t$), then it is not clear if $\alpha_t = \Phi_{t\#}\alpha_0$ holds (or even well-defined); (ii) If $\alpha_t = \nabla P_{t\#} \chi_{\Omega}$ is a singular measure, then $(\bar{\gamma}_t \circ \nabla P_t)_\# \chi_\Omega \neq \chi_\Omega$. Thus $F_0 \# \chi_\Omega \neq \chi_\Omega$. Then probably $F_{t\#}\chi_{\Omega} \neq \chi_{\Omega}$ for $t > 0$. Instead, define "reduced domain" measures $\mu_t = (\bar{\gamma}_t \circ \nabla P_t)_\# \chi_\Omega$. Then $F_{t\#} \chi_\Omega = \mu_t$, and $F_{t\#}\mu_0 = \mu_t$. Note: if $\alpha_t \in L^1(\mathbb{R}^3)$, then $\mu_t = \chi_{\Omega}$.

Case $\alpha_0 := \nabla P_0 \# \chi_{\Omega}$ is a measure: Flow map in physical space

(iii) Even if $\alpha_t = \Phi_{t\#}\alpha_0$, the continuity in time $F\in C([0,T);L^r(\Omega;\mathbb{R}^3))$ is unlikely to hold if α_t are singular measures.

We can prove weaker continuity of $t\to F_t(\cdot)$, related to $\nabla P_t{\bf{:}}$ for any $\phi \in C^1_c(\mathbb{R}^3; \mathbb{R}^3)$

$$
\lim_{t \to t_0} \int_{\Omega} \phi(\nabla P_{t_0} \circ F_{t_0}(x)) \cdot F_t(x) dx = \int_{\Omega} \phi(\nabla P_{t_0} \circ F_{t_0}(x)) \cdot F_{t_0}(x) dx,
$$

in particular

$$
\lim_{t \to 0^+} \int_{\Omega} \phi(\nabla P_0(x)) \cdot F_t(x) dx = \int_{\Omega} \phi(\nabla P_0(x)) \cdot x dx.
$$

ADD YEARS ARA YOUR

Call this P-continuity.

Case $\alpha_0 := \nabla P_0 \# \chi_{\Omega}$ is a measure: Lagrangian Solutions in Physical Space Let $P_0(x) \in W^{1,\infty}(\Omega)$ be convex. Let $r \in [1,\infty)$. Let $P \in C([0, T); W^{1,r}(\Omega)),$ $P_t(\cdot)$ is convex in Ω for each $t \in [0, T)$. Let $F : [0, T] \times \Omega \rightarrow \Omega$ be *P*-continuous. (P, F) is a weak Lagrangian solution of SG system if $F_{t\#}\chi_{\Omega}=\mu_t$ and $F_{t\#}\mu_0=\mu_t$ for all $t\geq 0,$ where $\mu_t = (\bar{\gamma}_t \circ \nabla P_t)_\# \chi_\Omega$, and $Z(t, x) = \nabla P(t, F_t(x))$ is a weak solution of the ODE

 $\partial_t Z(t, x) = J[Z(t, x) - F(t, x)]$ in $[0, T) \times \Omega$, $Z(0, x) = \nabla P_0(x).$

Case $\alpha_0 := \nabla P_0 \# \chi_{\Omega}$ is a measure: Existence of Lagrangian Solutions in Physical Space

Proposition Given solution (P_t,α_t) in dual space: If there exists Lagrangian flow in dual space $\Phi(t, X)$ satisfying

$$
\partial_t \Phi(t, X) = J(\Phi(t, X) - \bar{\gamma}_t(\Phi(t, X))), \quad \Phi_{|t=0} = Id,
$$

$$
\alpha_t = \Phi_{t\#}\alpha_0,
$$

then (P, F) with $F_t = \bar{\gamma}_t \circ \Phi_t \circ \nabla P_0$, is a Lagrangian solution in physical space.

Theorem If $P_0 = \max_{k=1,\dots,n} L_k(X)$, where each L_k is an affine function, then there exists a Lagrangian soluiton (P, F) in physical space.

4 L D + 4 P + 4 P + 4 P + B + 9 Q O

Remark In the conditions of theorem, α_0 is a convex combination of delta-functions.

Properties of Weak Lagrangian Solutions in Physical Space

Geostrophic energy:

$$
E(t) = \int_{\Omega} |\nabla P_t(x) - x|^2 dx.
$$

Formally $E(t) = const$ on solutions of SG system. Theorem, If (P, F) is a weak Lagrangian solution. Then

 \blacktriangleright Let $\alpha_t := \nabla P_{t\#} \chi_\Omega.$ Then (P, α) is a solution of SG in dual space:

$$
\partial_t \alpha + \text{div}(U\alpha) = 0 \quad \text{in} \quad (0, \infty) \times \mathbb{R}^3,
$$

$$
U(t, X) = J(X - \bar{\gamma}_t(X)).
$$

$$
\triangleright E(t) = const.
$$

Remarks: (i) $\alpha_t = \nabla P_{t\#}\chi_{\Omega}$ may be a singular measure; (ii) Once we know (P, α) is a solution, then $E(t) = const$ follows from work of Ambrosio-Gangbo. (B) ASA ASA REALLY ARRY

Relaxed Lagrangian solutions in physical space (Tudorascu-F., 2013)

Existence for arbitrary (possibly non-strictly) convex initial P_0 : replace flow map $F_t: \Omega \to \Omega$ by transport plan σ_t on $\Omega \times \Omega.$

Let $\alpha_0 = \nabla P_{0\#} \chi_{\Omega} \in L^q$ and (P_t, F_t) is a Lagrangian solution. Define measure $\sigma_t = (Id \times F_t)_\# \chi_\Omega$ on $\Omega \times \Omega$. Then: (i) $\sigma_0 = (Id \times Id)_{\#} \chi_{\Omega};$ (ii) $\pi_{1\#}\sigma_t = \chi_{\Omega}, \pi_{2\#}\sigma_t = \chi_{\Omega}$, where $\pi_k(\mathbf{x}) = \mathbf{x}_k$ for $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \Omega \times \Omega, k = 1, 2.$ (iii) for any $\varphi \in C_c^1([0,T)\times \Omega;\, {\mathbb R}^3)$

$$
\int_0^T \int_{\Omega \times \Omega} \left[\nabla P_t(y) \cdot \partial_t \varphi(t, x) + J(\nabla P_t(y) - y) \cdot \varphi(t, x) \right] d\sigma_t(x, y) dt + \int_{\Omega} \nabla P_0(x) \cdot \varphi(0, x) dx = 0.
$$

To define relaxed solutions, note another property of (P_t,F_t) when $\alpha_t \in L^q$: **ADD YEARS ARA YOUR**

Renormalized Lagrangian solutions

If $\alpha_0 = \nabla P_{0\#} \chi_{\Omega} \in L^q$, $q > 1$ and $P_0 \in W^{1,\infty}(\Omega)$, then $\mathsf{Lagrangian}$ solutions (P,F) satisfy: $Z, \partial_t Z \in L^\infty([0,T)\times\Omega)$ and

$$
\partial_t Z(t,x) = J[Z(t,x) - F(t,x)] \text{ a.e. in } [0,T) \times \Omega.
$$

Thus if $\xi \in C^1(\mathbb{R}^3)$

 $\partial_t(\xi(Z(t,x))) = \nabla \xi(Z(t,x)) \cdot J[Z(t,x) - F(t,x)]$ a.e. in $[0, T] \times \Omega$.

Thus for any $\xi \in C_b^1(\mathbb{R}^3)$, $\varphi \in C_c^1([0, T) \times \Omega)$

$$
\int_0^T \int_{\Omega} \Big[\xi(Z(t,x)) \partial_t \varphi(t,x) + \nabla \xi(Z(t,x)) \cdot J\Big(Z(t,x) - F(t,x)\Big) \varphi(t,x) \Big] dx dt + \int_{\Omega} \xi(\nabla P_0(x) \varphi(0,x)) dx = 0.
$$

Definition. Let P_0 be convex on Ω . Let $P : [0, T) \times \Omega \to \mathbb{R}^1$, and let $\sigma = \int^T$ Then (P,σ) is a renormalized relaxed Lagrangian solution of σ_tdt be a Borel measure on $[0,T)\times \Omega \times \Omega.$ SG with initial data P_0 if (i) P_t is convex for each $t \in [0,T)$, (ii) $\pi_{1\#}\sigma_t = \chi_{\Omega}, \pi_{2\#}\sigma_t = \chi_{\Omega}$, where $\pi_k(\mathbf{x}) = \mathbf{x}_k$ for $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \Omega \times \Omega, k = 1, 2.$ (iii) for any $\xi \in C_b^1(\mathbb{R}^3)$, $\varphi \in C_c^1([0, T) \times \Omega)$

$$
\int_0^T \int_{\Omega \times \Omega} \left[\xi(\nabla P_t(y)) \partial_t \varphi(t, x) + \nabla \xi(\nabla P_t(y)) \cdot J(\nabla P_t(y)) - y \right] \varphi(t, x) \Big] d\sigma_t(x, y) dt + \int_{\Omega} \xi(\nabla P_0(x)) \varphi(0, x) dx = 0.
$$

Equation (iii) well-defined for $\nabla P \in L^{\infty}([0, T); L^{1}(\Omega))$ by (ii).

These solutions are somewhat underdeterminate: heuristically, $\sigma_t(x, y)$ can be modified on flat parts of P_0 and P_t resp. Example: $\Omega = B_1$, $P_0(x) = 0$. Then $P_t(x) = 0$ for all t. Equation is: for any $\xi \in C_b^1(\mathbb{R}^3)$, $\varphi \in C_c^1([0, T) \times \Omega)$

$$
\int_0^T \int_{\Omega \times \Omega} \left[\xi(0) \partial_t \varphi(t, x) - \varphi(t, x) \nabla \xi(0) \cdot Jy \right] d\sigma_t(x, y) dt
$$

+
$$
\int_{\Omega} \xi(0) \varphi(0, x) dx = 0,
$$

and using $\pi_{1\#} \sigma_t = \chi_{\Omega}$,

$$
\int_0^T \int_{\Omega \times \Omega} \varphi(t, x) \nabla \xi(0) \cdot Jy \, d\sigma_t(x, y) \, dt = 0.
$$

Thus any Borel family $\sigma_t(x, y)$ with marginals χ_{Ω} and y-barycenter $\bar{\sigma}_t(x) = 0$ works.

Such underdeterminacy is physically natural/expected.

Existence and stability. Let $P_0 \in W^{1,2}(\Omega)$ be convex. Then there exists a renormalized relaxed Lagrangian solution with initial data P_0 .

Moreover, if $q \in (1,\infty]$, and P_k^0 is convex in Ω and $\alpha_0^k:=\nabla P^{0\#}_k \chi_\Omega \in L^q(\Omega)$ for $k=1,\ldots,$ with $\alpha_0^k\rightharpoonup \alpha_0$ weakly in $\mathcal{M}(\Omega)$ as $k\to\infty$, then, denoting (P^k,F^k) Lagrangian solution for initial data P^k_0 , and $\sigma^k_t:=(Id\times\nabla P^k_t)_\#\chi_\Omega$

$$
\sigma^k = \int_0^T \sigma_t^k dt
$$
, and selecting a subsequence, get

$$
\nabla P_t^k \to \nabla P_t \text{ in } L^2(\Omega) \text{ for all } t \in [0, T);
$$

\n
$$
\alpha_t^k \to \alpha_t \text{ weakly in } \mathcal{M}(\Omega) \text{ for all } t \in [0, T);
$$

\n
$$
\sigma^k \to \sigma \text{ weakly in } \mathcal{M}([0, T) \times \Omega \times \Omega),
$$

and (P, σ) is a renormalized relaxed Lagrangian solution. Also, (P, α) is a distributional solution in dual space.

Return to dual space, conservation of geostrophic energy. Let (P, σ) be a renormalized relaxed Lagrangian solution and $\alpha_t = \nabla P_{t\#} \chi_{\Omega}$. Then (P, α) is a distribution solution in dual space. In particular geostrophic energy is conserved.

Renormalization property is used in this proof: for test function $\varphi(t)\xi(X)$ in dual space, with $\varphi(0) = 0$ for simplicity:

$$
\int_0^T \int_{\mathbb{R}^3} \varphi'(t) \xi(X) d\alpha_t dt = \int_0^T \int_{\Omega} \varphi'(t) \xi(\nabla P_t(y)) dy dt
$$

=
$$
\int_0^T \int_{\Omega \times \Omega} \varphi'(t) \xi(\nabla P_t(y)) d\sigma_t(x, y) dt
$$

=
$$
- \int_0^T \int_{\Omega \times \Omega} \varphi(t) \nabla \xi(\nabla P_t(y)) \cdot J(\nabla P_t(y) - y) d\sigma_t(x, y) dt
$$

=
$$
- \int_0^T \int_{\Omega} \varphi(t) \nabla \xi(\nabla P_t(y)) \cdot J(\nabla P_t(y) - y) dy dt = -I_1 - I_2.
$$

$$
I_1 = \int_0^T \int_{\Omega} \varphi(t) \nabla \xi(\nabla P_t(y)) \cdot J \nabla P_t(y) dy dt
$$

=
$$
\int_0^T \int_{\mathbb{R}^3} \varphi(t) \nabla \xi(X) \cdot J X d\alpha_t(X) dt
$$

Denote $\gamma_t = (Id \times \nabla P_t)_\# \chi_\Omega$:

$$
I_2 = -\int_0^T \int_{\Omega} \varphi(t) \nabla \xi(\nabla P_t(y)) \cdot Jy \, dy \, dt
$$

=
$$
- \int_0^T \int_{\Omega \times \mathbb{R}^3} \varphi(t) \nabla \xi(X) \cdot Jy \, d\gamma_t(y, X) \, dt
$$

=
$$
- \int_0^T \int_{\mathbb{R}^3} \varphi(t) \nabla \xi(X) \cdot J\bar{\gamma}_t(X) \, d\alpha_t(X) \, dt
$$

Get: $\int_{}^{T}$ $\overline{0}$ Z $\int_{\mathbb{R}^3}[\partial_t\zeta+\nabla\zeta\cdot U]d\alpha_t(X)dt=0,$ for $U(t, X) = J(X - \bar{\gamma}_t(X)), \ \ \zeta(t, x) = \varphi(t)\xi(X).$

Continuity in time. Let (P, σ) be a RRL solution with $\nabla P_0 \in L^2(\Omega)$. Then, on $[0,T]$:

Equation in dual space \Rightarrow

 $t \to \alpha_t$ continuous in Wasserstein W_2 metric;

 $t\rightarrow \nabla P_t$ is continuous in $L^2(\Omega)$ with $(\nabla P_t)_{|t=0}=\nabla P_0;$

Define $G_t : \Omega \times \Omega \to \mathbb{R}^3 \times \mathbb{R}^3$ by $G_t(x, y) = (x, \nabla P_t(y))$, then $t\to G_{t\#}\sigma_t$ is continuous with respect to narrow convergence on $\Omega\times\mathbb{R}^3$: From equation, for any $\psi,\xi\in C^1_c(\mathbb{R}^3)$

$$
t \to \int_{\Omega \times \Omega} \psi(x) \, \xi(\nabla P_t(x)) \, d\sigma_t(x, y) = \int_{\Omega \times \mathbb{R}^3} \psi(x) \, \xi(Y) \, d(G_t \# \sigma_t)(x, y)
$$

is continuous.

Also, for any $s\in[0,T]$: $t\to G_{s\#}\sigma_t$ is continuous at $t=s$ with respect to narrow convergence on $\Omega\times\mathbb{R}^3.$ Initial condition hold: $G_{0\#}\sigma_0 = G_{0\#}\delta_{\{x=u\}}$, where $\delta_{\{x=u\}} := (Id \times Id)_\# \chi_{\Omega}.$.
◆ ロ ▶ → 레 ▶ → 로 ▶ → 로 ▶ │ 로 │ ◆) Q (^

Open problems

- \triangleright Uniqueness of weak (renormalized) solutions. Possibly weak-strong uniqueness.
- \triangleright Existence of solutions for the case of variable Coriolis parameter: dual space is not defined.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어