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Derivation of Semigeostrophic Model
Boussinesq system with Coriolis force in 3D:
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Derivation of Semigeostrophic Model
Strong Coriolis forcing:
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Derivation of Semigeostrophic Model

Rotation dominated motion: set ε = 0, thus drop inertial term
D
Dt
(u1, u2) to obtain Geostrophic Balance. This defines

Geostrophic Velocities (horizontal)

(vg1 , v
g
2) = (

∂p

∂x2
,−

∂p

∂x1
),

Substitute geostrophic velocities into inertial term D
Dt
(vg1 , v

g
2)

(where still D
Dt

= ∂
∂t
+ u · ∇), get Semigeostrophic System



Semigeostrophic System in 3D
Model with rigid boundaries i.e. in domain Ω ⊂ R

3.
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in (0, T )× Ω, with initial and boundary conditions:

u · ν = 0 on (0, T )× ∂Ω,

p(0, x) = p0(x) in {t = 0} × Ω.



Semigeostrophic System in 3D

Model was introduced by Eliassen(1948), Hoskins(1975).
Rewrite system:
Use (u1, u2, u3) =

D
Dt
(x1, x2, x3).

Introduce

P (t, x) := p(t, x) +
1

2
(x21 + x22),

P0(x) = p0(x) +
1

2
(x21 + x22),

and π
2
-rotation in horizontal plane matrix:

J =





0 −1 0
1 0 0
0 0 0



 .



Semigeostrophic System in 3D

SG system takes form:

DX

Dt
= J(X − x)

divu = 0,

X = ∇P,
D

Dt
=

∂

∂t
+ u · ∇,

in (0, T )× Ω, with initial and boundary conditions:

u · ν = 0 on (0, T )× ∂Ω,

P (0, x) = P0(x) in {t = 0} × Ω.

Cullen-Purser stability condition: P (t, ·) is convex



Dual Space

Dual space: change of variables:

(t, x) → (t, X), where X = ∇Pt(x),

where we use notation Pt(·) = P (t, ·).

If Pt(·) is strictly convex, then inverse transform is given by

x = ∇P ∗
t (X),

where P ∗
t (·) is the convex dual (Legendre transform) of Pt(·):

P ∗
t (X) = sup

x∈Ω
[x ·X − P (x, t)].



Velocity in Dual Space

u ∇Pt

U

Physical Space Dual Space

Let x(t) be a particle path in physical space: ẋ(t) = u(t, x(t)).
Then X(t) = ∇Pt(x(t)) is a particle path in physical space.
Then velocity in dual space is (using SG system):

U(t, X(t)) = Ẋ(t) =
d

dt
(∇Pt(x(t)))

=
∂

∂t
∇Pt(x) + (ẋ(t) · ∇)∇Pt(x)

=
∂

∂t
X + (u · ∇)X = J(X − x) = J(X −∇P ∗

t (X)).



Density in Dual Space
Recall: if µ, ν are measures on metric spaces X , Y , and
r : X → Y is Borel, then r pushes forward µ to ν, denoted
r#µ = ν if

µ(r−1(A)) = ν(A) for each Borel A ⊂ Y.

For t ≥ 0, denote αt = ∇Pt#χΩ. Then αt is density in dual
space.
Equation for α(t, X) = αt(X) (heuristic argument):
Equation divu = 0 in Ω together with condition u · ν = 0 on
∂Ω imply

∂tχΩ + div(uχΩ) = 0 in R
3.

Then changing variables X = ∇Pt(x), and using that velocity
in dual space is U(t, X) = J(X − x) = J(X −∇P ∗

t (X)),
yields

∂tα + div(Uα) = 0 in (0,∞)× R
3.



Semigeostrophic system in Dual Space

∂tα + div(Uα) = 0 in (0,∞)× R
3,

U(t, X) = J(X −∇P ∗
t (X)),

∇Pt#χΩ = αt,

α|t=0 = α0.

Existence in dual space:
Benamou, Brenier (1998) for 3D rigid boundaries model, case
α0 ∈ Lq, q ≥ 3.
Cullen, Gangbo (2001) for 2D shallow water SG model, case
α0 ∈ Lq, q ≥ 1.
Lopes-Filho, Nussenzveig-Lopes (2002) extended to q = 1.
Loeper (2006) case α0 a measure. Then ∇P ∗ is replaced by
barycentric projection
Ambrosio, Gangbo (2008) case α0 a measure: SG in dual
space is a Hamiltonian ODE in the Wasserstein spaces.



Relation to Monge-Kantorovich mass transport

Semigeostrophic system in Dual Space

∂tα + div(Uα) = 0 in (0,∞)× R
3,

U(t, X) = J(X −∇P ∗
t (X)),

∇Pt#χΩ = αt,

α|t=0 = α0.

Recall: Pt(·) is convex. Thus ∇Pt(·) is the optimal map for
Monge’s problem between measures χΩ and αt with cost =
distance2:

I[∇Pt] = min
s#χΩ=αt

I[s], I[s] =

∫

Ω

|s(x)− x|2dx.



Solving Semigeostrophic system in Dual Space

∂tα + div(Uα) = 0 in (0,∞)× R
3,

U(t, X) = J(X −∇P ∗
t (X)),

∇Pt#χΩ = αt,

α|t=0 = α0.

Existence in dual space: time stepping (Benamou-Brenier,
Cullen-Gangbo): let ∆t = h.
Suppose, at time at tk = kh, the Pk(x) convex, and measure
αk(x) are given. Determine velocity

Uk(X) = J(X −∇P ∗
k (X))

(plus some regularization...). Solve transport equation

∂tα + div(Ukα) = 0 in (kh, (k + 1)h)× R
3,

α|t=kh = αk.



Solving Semigeostrophic system in Dual Space

Then define αk+1 = α((k + 1)h).

From divUk = 0 get
∫

αkdx =
∫

αk+1dx.

Determine Pk+1 by solving Monge-Kantorovich problem: Pk+1

is convex and ∇Pk+1 is the optimal map between χΩ and
αk+1.

Then send h to 0+. Using convexity, can pass to the limit in
equations.



Semigeostrophic system in Physical Space

Let (P, α) be a solution in dual space.
Obtain solution (P, u) in physical space, i.e. define physical
velocity u. Formally, use relation x(t) = ∇Pt(X(t)) for
particle paths. Differentiate:

u(t, x) =∂t∇P
∗
t (X) + U · ∇(∇P ∗

t (X))

=∂t∇P
∗(t,∇Pt(x)) +D2P ∗

t (∇Pt(x))[J(∇P (t, x)− x)],

Here Pt, P
∗
t are convex, i.e D2P ∗

t is a measure, and
∇Pt ∈ L∞. Their product is not well-defined.



Semigeostrophic system in Physical Space:

Eulerian solutions

Also, (P, u) is a weak (Eulerian) solution of SG if divu = 0 and

∫

(0,T )×Ω

{∇P (t, x) · [∂tφ(t, x) + (u(t, x) · ∇)φ(t, x)]

+ J [∇P (t, x)− x] · φ(t, x)}dtdx+

∫

Ω

∇P0(x) · φ(0, x)dx = 0.

for any φ ∈ C1
c ([0, T )× Ω;R3).

Since ∇Pt ∈ L∞, need u ∈ L1
loc.

Existence of u ∈ L1
loc is not known.

Apriori estimates of u as a measure: Loeper (2005).



Semigeostrophic system in Physical Space:

Eulerian solutions
Recent works: De Philippis, Figalli (2011) regularity for
Monge-Ampere: if Λ ≥ f(x) ≥ λ > 0 in Ω and

detD2u = f in Ω,

then u ∈ W 2,1(Ω) (and slightly better). Boundary regularity if
∂Ω is convex and smooth.
Ambrosio, Colombo, De Philippis, Figalli (2011, 2012):
existence of Eulerian solutions of SG in 2D-periodic and 3D
cases if the density in dual space α0 is strictly positive +...
In the case when the boundary of the support of α0 is
nonempty, say when supp(α0) is compact, existence of Eulerian
solutions is not known, not clear whether can be expected.
The case when the support of α0 is compact is physically
interesting: related to modeling of front formation in
atmospheric flows.



Weak Lagrangian Solutions in Physical Space
Cullen-F. 2006.
If (P, u) is smooth, then define flow map of u:
F : [0, T ]× Ω → Ω satisfying

∂tF (t, x) = u(t, F (t, x))

F|t=0 = Id.

Since u · ν = 0 on ∂Ω, it follows for each t ≥ 0 that
Ft : Ω → Ω is diffeomorphism. Then F determines u.

SG system in terms of (P, F ):

Ft#χΩ = χΩ for all t > 0,

F0 = Id,

and Z(t, x) = ∇P (t, Ft(x)) is a solution of the ODE

∂tZ(t, x) = J [Z(t, x)− F (t, x)] in [0, T )× Ω,

Z(0, x) = ∇P0(x).



Weak Lagrangian Solutions in Physical Space
Let Ω ⊂ R

3 be an open bounded set, and T > 0. Let
P0(x) ∈ W 1,∞(Ω) be convex. Let r ∈ [1,∞). Let

P ∈ L∞([0, T );W 1,∞(Ω)) ∩ C([0, T );W 1,r(Ω)),

Pt(·) is convex in Ω for each t ∈ [0, T ).

Let F : [0, T )× Ω → Ω satisfy F ∈ C([0, T );Lr(Ω;R3)).
(P, F ) is a weak Lagrangian solution of SG system if

Ft#χΩ = χΩ for all t > 0,

F0 = Id,

and Z(t, x) = ∇P (t, Ft(x)) is a weak solution of the ODE

∂tZ(t, x) = J [Z(t, x)− F (t, x)] in [0, T )× Ω,

Z(0, x) = ∇P0(x).



Existence of Weak Lagrangian Solutions in

Physical Space
Cullen, Feldman (2006): if α0 := ∇P0#χΩ ∈ Lq, q > 1, for
3D rigid boundaries and 2D shallow water SG models.
Outline of proof: Combining Cullen-Gangbo time-stepping
procedure, and Ambrosio theory of Hamilton-Jacobi equations
and ODE with BV vector fields, obtain Lagrangian flow
Φ(t, X) in dual space, and

αt = Φt#α0.

Here we use that U(t, X) = J(X −∇P ∗
t (X)) is BV (as a

gradient of convex function) and divergence-free (by
J∇-structure).
Then the flow in physical space is

Ft = ∇P ∗
t ◦ Φt ◦ ∇P0.

Faria, Lopes-Filho, Nussenzveig-Lopes (2009): q = 1 case.



Remark on condition α0 := ∇P0#χΩ ∈ Lq

This condition is a form of strict convexity of P0. For example,
if P0 is uniformly strictly convex, i.e. P0(x)− εx2 is convex,
then α0 ∈ L∞.
If P0 is affine on a set of positive measure, then α0 has a
delta-function (i.e. a point of nonzero measure).



Case of α0 := ∇P0#χΩ is a measure
This case is physically relevant.
Solutions in dual space Loeper (2006), Ambrosio, Gangbo
(2008): Pt is convex and αt is a measure, and satisfy:

∂tα + div(Uα) = 0 in (0,∞)× R
3,

U(t, X) = J(X − γ̄t(X)),

∇Pt#χΩ = αt,

α|t=0 = α0,

where γ̄t(X) is the barycentric projection of the optimal
Kantorovich plan γt :=

(

∇Pt × Id
)

#
χ having αt and χ as first

and second marginals, respectively. It is defined by
∫

R3

ξ(X) · γ̄t(X)dαt(X) =

∫∫

R3×Ω

ξ(X) · ydγt(X, y)

for all continuous ξ : R3 → R
3 of at most quadratic growth.



Case α0 := ∇P0#χΩ is a measure: Flow map in

physical space
(Tudorascu-F. 2012)
Define Lagrangian solutions in physical space when α0 is
singular: Since γ̄t replaces ∇P

∗
t , try

Ft = γ̄t ◦ Φt ◦ ∇P0.

Example: Ω = B1, P0(x) = 0.
Then Pt(x) = 0 on B1 for all t, and αt = δ0. Also
P ∗
t (X) = X .

Thus γ̄t(0) = 0 which defined γ̄t(X) for αt-a.e. X ∈ bR3.
Can set γ̄t(X) = ∇P ∗

t for X 6= 0.
Also, U(t, X) = J(X − γ̄t(X)), thus Φ(t, 0) = 0 is a solution
of ODE d

dt
Φ(t, 0) = U(t, U(t,Φ(t, 0). In fact, this is a

continuous extension to X = 0 of the regular flow Φ(t, X) for
vector field U(t, X) = J(X −∇P ∗

t ).



Case α0 := ∇P0#χΩ is a measure: Flow map in

physical space

We get Ft(x) = γ̄t ◦ Φt ◦ ∇P0(x) = 0 for any x ∈ B1, t > 0.
In particular, Ft#χΩ = δ0 6= χΩ.
Also can show: for regularizations P ε

0 = ε‖x|2 get F ε ⇀ F

weakly-* in L∞([0, T ]×B1), but not in L
p(B1) for each t.

Ft = γ̄t ◦ Φt ◦ ∇P0. Issues to address:
(i) If Φt is a Lagrangian flow ∇P ∗

t (or, equivalently, for γ̄t),
then it is not clear if αt = Φt#α0 holds (or even well-defined);
(ii) If αt = ∇Pt#χΩ is a singular measure, then
(γ̄t ◦ ∇Pt)#χΩ 6= χΩ. Thus F0#χΩ 6= χΩ. Then probably
Ft#χΩ 6= χΩ for t > 0. Instead, define ”reduced domain”
measures µt = (γ̄t ◦ ∇Pt)#χΩ. Then Ft#χΩ = µt, and
Ft#µ0 = µt. Note: if αt ∈ L1(R3), then µt = χΩ.



Case α0 := ∇P0#χΩ is a measure: Flow map in

physical space

(iii) Even if αt = Φt#α0, the continuity in time
F ∈ C([0, T );Lr(Ω;R3)) is unlikely to hold if αt are singular
measures.
We can prove weaker continuity of t→ Ft(·), related to ∇Pt:
for any φ ∈ C1

c (R
3;R3)

lim
t→t0

∫

Ω

φ(∇Pt0◦Ft0(x))·Ft(x)dx =

∫

Ω

φ(∇Pt0◦Ft0(x))·Ft0(x)dx,

in particular

lim
t→0+

∫

Ω

φ(∇P0(x)) · Ft(x)dx =

∫

Ω

φ(∇P0(x)) · xdx.

Call this P -continuity.



Case α0 := ∇P0#χΩ is a measure: Lagrangian

Solutions in Physical Space
Let P0(x) ∈ W 1,∞(Ω)) be convex. Let r ∈ [1,∞). Let

P ∈ C([0, T );W 1,r(Ω)),

Pt(·) is convex in Ω for each t ∈ [0, T ).

Let F : [0, T )× Ω → Ω be P -continuous.
(P, F ) is a weak Lagrangian solution of SG system if

Ft#χΩ = µt and Ft#µ0 = µt for all t ≥ 0,

where µt = (γ̄t ◦ ∇Pt)#χΩ,

and Z(t, x) = ∇P (t, Ft(x)) is a weak solution of the ODE

∂tZ(t, x) = J [Z(t, x)− F (t, x)] in [0, T )× Ω,

Z(0, x) = ∇P0(x).



Case α0 := ∇P0#χΩ is a measure: Existence of

Lagrangian Solutions in Physical Space

Proposition Given solution (Pt, αt) in dual space: If there
exists Lagrangian flow in dual space Φ(t, X) satisfying

∂tΦ(t, X) = J(Φ(t, X)− γ̄t(Φ(t, X))), Φ|t=0 = Id,

αt = Φt#α0,

then (P, F ) with Ft = γ̄t ◦ Φt ◦ ∇P0, is a Lagrangian solution
in physical space.
Theorem If P0 = maxk=1,...,nLk(X), where each Lk is an
affine function, then there exists a Lagrangian soluiton (P, F )
in physical space.
Remark In the conditions of theorem, α0 is a convex
combination of delta-functions.



Properties of Weak Lagrangian Solutions in

Physical Space
Geostrophic energy:

E(t) =

∫

Ω

|∇Pt(x)− x|2dx.

Formally E(t) = const on solutions of SG system.
Theorem, If (P, F ) is a weak Lagrangian solution. Then

I Let αt := ∇Pt#χΩ. Then (P, α) is a solution of SG in
dual space:

∂tα + div(Uα) = 0 in (0,∞)× R
3,

U(t, X) = J(X − γ̄t(X)).

I E(t) = const.

Remarks: (i) αt = ∇Pt#χΩ may be a singular measure;
(ii) Once we know (P, α) is a solution, then E(t) = const

follows from work of Ambrosio-Gangbo.



Relaxed Lagrangian solutions in physical space
(Tudorascu-F., 2013)
Existence for arbitrary (possibly non-strictly) convex initial P0:
replace flow map Ft : Ω → Ω by transport plan σt on Ω× Ω.

Let α0 = ∇P0#χΩ ∈ Lq and (Pt, Ft) is a Lagrangian solution.
Define measure σt = (Id× Ft)#χΩ on Ω× Ω. Then:
(i) σ0 = (Id× Id)#χΩ;
(ii) π1#σt = χΩ, π2#σt = χΩ, where πk(x) = xk for
x = (x1,x2) ∈ Ω× Ω, k = 1, 2.
(iii) for any ϕ ∈ C1

c ([0, T )× Ω; R3)
∫ T

0

∫

Ω×Ω

[∇Pt(y) · ∂tϕ(t, x) + J(∇Pt(y)− y) · ϕ(t, x)] dσt(x, y) dt

+

∫

Ω

∇P0(x) · ϕ(0, x) dx = 0.

To define relaxed solutions, note another property of (Pt, Ft)
when αt ∈ Lq:



Renormalized Lagrangian solutions
If α0 = ∇P0#χΩ ∈ Lq, q > 1 and P0 ∈ W 1,∞(Ω), then
Lagrangian solutions (P, F ) satisfy: Z, ∂tZ ∈ L∞([0, T )× Ω)
and

∂tZ(t, x) = J [Z(t, x)− F (t, x)] a.e. in [0, T )× Ω.

Thus if ξ ∈ C1(R3)

∂t(ξ(Z(t, x)) = ∇ξ(Z(t, x)) · J [Z(t, x)− F (t, x)]

a.e. in [0, T )× Ω.

Thus for any ξ ∈ C1
b (R

3), ϕ ∈ C1
c ([0, T )× Ω)

∫ T

0

∫

Ω

[

ξ(Z(t, x))∂tϕ(t, x) +∇ξ(Z(t, x)) · J
(

Z(t, x)

− F (t, x)
)

ϕ(t, x)
]

dx dt+

∫

Ω

ξ(∇P0(x)ϕ(0, x)) dx = 0.



Renormalized Relaxed Lagrangian solutions

Definition. Let P0 be convex on Ω. Let P : [0, T )× Ω → R
1,

and let σ =

∫ T

0

σtdt be a Borel measure on [0, T )× Ω× Ω.

Then (P, σ) is a renormalized relaxed Lagrangian solution of
SG with initial data P0 if
(i) Pt is convex for each t ∈ [0, T ),
(ii) π1#σt = χΩ, π2#σt = χΩ, where πk(x) = xk for
x = (x1,x2) ∈ Ω× Ω, k = 1, 2.
(iii) for any ξ ∈ C1

b (R
3), ϕ ∈ C1

c ([0, T )× Ω)

∫ T

0

∫

Ω×Ω

[

ξ(∇Pt(y))∂tϕ(t, x) +∇ξ(∇Pt(y)) · J
(

∇Pt(y)

− y
)

ϕ(t, x)
]

dσt(x, y) dt+

∫

Ω

ξ(∇P0(x))ϕ(0, x) dx = 0.

Equation (iii) well-defined for ∇P ∈ L∞([0, T );L1(Ω)) by (ii).



Renormalized Relaxed Lagrangian solutions
These solutions are somewhat underdeterminate: heuristically,
σt(x, y) can be modified on flat parts of P0 and Pt resp.
Example: Ω = B1, P0(x) = 0. Then Pt(x) = 0 for all t. Equation
is: for any ξ ∈ C1

b (R
3), ϕ ∈ C1

c ([0, T ) × Ω)

∫ T

0

∫

Ω×Ω

[

ξ(0)∂tϕ(t, x) − ϕ(t, x)∇ξ(0) · Jy
]

dσt(x, y) dt

+

∫

Ω
ξ(0)ϕ(0, x) dx = 0,

and using π1#σt = χΩ,

∫ T

0

∫

Ω×Ω
ϕ(t, x)∇ξ(0) · Jy dσt(x, y) dt = 0.

Thus any Borel family σt(x, y) with marginals χΩ and y-barycenter
σ̄t(x) = 0 works.

Such underdeterminacy is physically natural/expected.



Renormalized Relaxed Lagrangian solutions
Existence and stability. Let P0 ∈ W 1,2(Ω) be convex. Then
there exists a renormalized relaxed Lagrangian solution with
initial data P0.
Moreover, if q ∈ (1,∞], and P 0

k is convex in Ω and
αk
0 := ∇P 0#

k χΩ ∈ Lq(Ω) for k = 1, . . . , with αk
0 ⇀ α0 weakly

in M(Ω) as k → ∞, then, denoting (P k, F k) Lagrangian
solution for initial data P k

0 , and σ
k
t := (Id×∇P k

t )#χΩ

σk =

∫ T

0

σk
t dt, and selecting a subsequence, get

∇P k
t → ∇Pt in L2(Ω) for all t ∈ [0, T );

αk
t ⇀ αt weakly in M(Ω) for all t ∈ [0, T );

σk ⇀ σ weakly in M([0, T )× Ω× Ω),

and (P, σ) is a renormalized relaxed Lagrangian solution. Also,
(P, α) is a distributional solution in dual space.



Renormalized Relaxed Lagrangian solutions
Return to dual space, conservation of geostrophic energy. Let
(P, σ) be a renormalized relaxed Lagrangian solution and
αt = ∇Pt#χΩ. Then (P, α) is a distribution solution in dual
space. In particular geostrophic energy is conserved.

Renormalization property is used in this proof: for test
function ϕ(t)ξ(X) in dual space, with ϕ(0) = 0 for simplicity:
∫ T

0

∫

R3

ϕ′(t)ξ(X)dαtdt =

∫ T

0

∫

Ω

ϕ′(t)ξ(∇Pt(y))dydt

=

∫ T

0

∫

Ω×Ω

ϕ′(t)ξ(∇Pt(y))dσt(x, y)dt

= −

∫ T

0

∫

Ω×Ω

ϕ(t)∇ξ(∇Pt(y)) · J
(

∇Pt(y)− y
)

dσt(x, y) dt

= −

∫ T

0

∫

Ω

ϕ(t)∇ξ(∇Pt(y)) · J
(

∇Pt(y)− y
)

dy dt = −I1 − I2.



Renormalized Relaxed Lagrangian solutions

I1 =

∫ T

0

∫

Ω
ϕ(t)∇ξ(∇Pt(y)) · J∇Pt(y)dy dt

=

∫ T

0

∫

R3

ϕ(t)∇ξ(X) · JXdαt(X) dt

Denote γt = (Id×∇Pt)#χΩ:

I2 = −

∫ T

0

∫

Ω
ϕ(t)∇ξ(∇Pt(y)) · Jy dy dt

= −

∫ T

0

∫

Ω×R3

ϕ(t)∇ξ(X) · Jy dγt(y,X) dt

= −

∫ T

0

∫

R3

ϕ(t)∇ξ(X) · Jγ̄t(X) dαt(X) dt

Get:

∫ T

0

∫

R3

[∂tζ +∇ζ · U ]dαt(X)dt = 0, for

U(t,X) = J(X − γ̄t(X)), ζ(t, x) = ϕ(t)ξ(X).



Renormalized Relaxed Lagrangian solutions
Continuity in time. Let (P, σ) be a RRL solution with
∇P0 ∈ L2(Ω). Then, on [0, T ]:

Equation in dual space ⇒
t→ αt continuous in Wasserstein W2 metric;

t→ ∇Pt is continuous in L
2(Ω) with (∇Pt)|t=0 = ∇P0;

Define Gt : Ω×Ω → R
3 ×R

3 by Gt(x, y) = (x,∇Pt(y)), then
t→ Gt#σt is continuous with respect to narrow convergence
on Ω× R

3: From equation, for any ψ, ξ ∈ C1
c (R

3)

t→

∫

Ω×Ω
ψ(x) ξ(∇Pt(x)) dσt(x, y) =

∫

Ω×R3

ψ(x) ξ(Y ) d(Gt#σt)(x, y)

is continuous.
Also, for any s ∈ [0, T ]: t→ Gs#σt is continuous at t = s

with respect to narrow convergence on Ω× R
3.

Initial condition hold: G0#σ0 = G0#δ{x=y}, where
δ{x=y} := (Id× Id)#χΩ.



Open problems

I Uniqueness of weak (renormalized) solutions. Possibly
weak-strong uniqueness.

I Existence of solutions for the case of variable Coriolis
parameter: dual space is not defined.


