Lagrangian Solutions for Semigeostrophic System with Singular Initial Data

Mikhail Feldman, University of Wisconsin-Madison

Joint works with Adrian Tudorascu, West Virginia University

October 14, 2013

Derivation of Semigeostrophic Model

Boussinesq system with Coriolis force in 3D:

$$\begin{split} &\frac{D}{Dt}(u_1, u_2) + (\frac{\partial p}{\partial x_1}, \frac{\partial p}{\partial x_2}) = (u_2, -u_1), \\ &\frac{D}{Dt}\rho = 0, \\ &\text{div}u = 0, \\ &\frac{\partial p}{\partial x_3} + \rho = 0, \end{split}$$

where

$$\begin{split} & \frac{D}{Dt} = \frac{\partial}{\partial t} + u \cdot \nabla, \\ & u = (u_1, u_2, u_3), \quad \nabla = (\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3}) \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Derivation of Semigeostrophic Model

Strong Coriolis forcing:

$$\begin{split} \varepsilon \frac{D}{Dt}(u_1, u_2) + (\frac{\partial p}{\partial x_1}, \frac{\partial p}{\partial x_2}) &= (u_2, -u_1), \\ \frac{D}{Dt}\rho &= 0, \\ \operatorname{div} u &= 0, \\ \frac{\partial p}{\partial x_3} + \rho &= 0, \end{split}$$

where

$$\begin{split} &\frac{D}{Dt} = \frac{\partial}{\partial t} + u \cdot \nabla, \\ &u = (u_1, u_2, u_3), \quad \nabla = (\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3}) \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Derivation of Semigeostrophic Model

Rotation dominated motion: set $\varepsilon = 0$, thus drop inertial term $\frac{D}{Dt}(u_1, u_2)$ to obtain Geostrophic Balance. This defines Geostrophic Velocities (horizontal)

$$(v_1^g, v_2^g) = (\frac{\partial p}{\partial x_2}, -\frac{\partial p}{\partial x_1}),$$

Substitute geostrophic velocities into inertial term $\frac{D}{Dt}(v_1^g, v_2^g)$ (where still $\frac{D}{Dt} = \frac{\partial}{\partial t} + u \cdot \nabla$), get Semigeostrophic System

Semigeostrophic System in 3D

Model with rigid boundaries i.e. in domain $\Omega \subset \mathbb{R}^3$.

$$\begin{split} &\frac{D}{Dt}(v_1^g, v_2^g) + (\frac{\partial p}{\partial x_1}, \frac{\partial p}{\partial x_2}) = (u_2, -u_1), \\ &\frac{D}{Dt}\rho = 0, \\ &\text{div}u = 0, \\ &\frac{\partial p}{\partial x_3} + \rho = 0, \\ &\frac{D}{Dt} = \frac{\partial}{\partial t} + u \cdot \nabla, \quad (v_1^g, v_2^g) = (\frac{\partial p}{\partial x_2}, -\frac{\partial p}{\partial x_1}), \end{split}$$

in $(0,T) \times \Omega$, with initial and boundary conditions:

$$u \cdot \nu = 0$$
 on $(0, T) \times \partial \Omega$,
 $p(0, x) = p_0(x)$ in $\{t = 0\} \times \Omega$.

Semigeostrophic System in 3D

Model was introduced by Eliassen(1948), Hoskins(1975). Rewrite system:

Use
$$(u_1, u_2, u_3) = \frac{D}{Dt}(x_1, x_2, x_3)$$
.
Introduce

$$P(t,x) := p(t,x) + \frac{1}{2}(x_1^2 + x_2^2),$$

$$P_0(x) = p_0(x) + \frac{1}{2}(x_1^2 + x_2^2),$$

and $\frac{\pi}{2}$ -rotation in horizontal plane matrix:

$$J = \left(\begin{array}{rrr} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Semigeostrophic System in 3D

SG system takes form:

$$\begin{aligned} \frac{DX}{Dt} &= J(X - x) \\ \operatorname{div} u &= 0, \\ X &= \nabla P, \qquad \frac{D}{Dt} = \frac{\partial}{\partial t} + u \cdot \nabla, \end{aligned}$$

in $(0,T) \times \Omega$, with initial and boundary conditions:

$$\begin{split} & u \cdot \nu = 0 \quad \text{on} \quad (0,T) \times \partial \Omega, \\ & P(0,x) = P_0(x) \quad \text{in} \quad \{t=0\} \times \Omega. \end{split}$$

Cullen-Purser stability condition: $P(t, \cdot)$ is convex

Dual Space

Dual space: change of variables:

 $(t, x) \rightarrow (t, X),$ where $X = \nabla P_t(x),$

where we use notation $P_t(\cdot) = P(t, \cdot)$.

If $P_t(\cdot)$ is strictly convex, then inverse transform is given by

 $x = \nabla P_t^*(X),$

where $P_t^*(\cdot)$ is the convex dual (Legendre transform) of $P_t(\cdot)$:

$$P_t^*(X) = \sup_{x \in \Omega} [x \cdot X - P(x, t)].$$

Let x(t) be a particle path in physical space: $\dot{x}(t) = u(t, x(t))$. Then $X(t) = \nabla P_t(x(t))$ is a particle path in physical space. Then velocity in dual space is (using SG system):

$$U(t, X(t)) = \dot{X}(t) = \frac{d}{dt} (\nabla P_t(x(t)))$$

= $\frac{\partial}{\partial t} \nabla P_t(x) + (\dot{x}(t) \cdot \nabla) \nabla P_t(x)$
= $\frac{\partial}{\partial t} X + (u \cdot \nabla) X = J(X - x) = J(X - \nabla P_t^*(X)).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Density in Dual Space

Recall: if μ , ν are measures on metric spaces X, Y, and $r: X \to Y$ is Borel, then r pushes forward μ to ν , denoted $r_{\#}\mu = \nu$ if

 $\mu(r^{-1}(A)) = \nu(A) \quad \text{for each Borel} \ A \subset Y.$

For $t \ge 0$, denote $\alpha_t = \nabla P_{t\#}\chi_{\Omega}$. Then α_t is density in dual space.

Equation for $\alpha(t, X) = \alpha_t(X)$ (heuristic argument): Equation div u = 0 in Ω together with condition $u \cdot \nu = 0$ on $\partial \Omega$ imply

$$\partial_t \chi_\Omega + \operatorname{div}(u\chi_\Omega) = 0$$
 in \mathbb{R}^3 .

Then changing variables $X = \nabla P_t(x)$, and using that velocity in dual space is $U(t, X) = J(X - x) = J(X - \nabla P_t^*(X))$, yields

 $\partial_t \alpha + \operatorname{div}(U\alpha) = 0 \quad \text{in} \quad (0, \infty) \times \mathbb{R}^3.$

Semigeostrophic system in Dual Space

$$\begin{aligned} \partial_t \alpha + \operatorname{div}(U\alpha) &= 0 \quad \text{in} \quad (0,\infty) \times \mathbb{R}^3, \\ U(t,X) &= J(X - \nabla P_t^*(X)), \\ \nabla P_{t\#} \chi_\Omega &= \alpha_t, \\ \alpha_{|t=0} &= \alpha_0. \end{aligned}$$

Existence in dual space:

Benamou, Brenier (1998) for 3D rigid boundaries model, case $\alpha_0 \in L^q$, $q \ge 3$.

Cullen, Gangbo (2001) for 2D shallow water SG model, case $\alpha_0 \in L^q$, $q \ge 1$.

Lopes-Filho, Nussenzveig-Lopes (2002) extended to q = 1. Loeper (2006) case α_0 a measure. Then ∇P^* is replaced by barycentric projection

Ambrosio, Gangbo (2008) case α_0 a measure: SG in dual space is a Hamiltonian ODE in the Wasserstein spaces.

Sac

Relation to Monge-Kantorovich mass transport

Semigeostrophic system in Dual Space

$$\begin{split} \partial_t \alpha + \operatorname{div}(U\alpha) &= 0 \quad \text{in} \quad (0,\infty) \times \mathbb{R}^3, \\ U(t,X) &= J(X - \nabla P_t^*(X)), \\ \nabla P_{t\#} \chi_\Omega &= \alpha_t, \\ \alpha_{|t=0} &= \alpha_0. \end{split}$$

Recall: $P_t(\cdot)$ is convex. Thus $\nabla P_t(\cdot)$ is the optimal map for Monge's problem between measures χ_{Ω} and α_t with cost = distance²:

$$I[\nabla P_t] = \min_{s \neq \chi_\Omega = \alpha_t} I[s], \quad I[s] = \int_\Omega |s(x) - x|^2 dx.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Solving Semigeostrophic system in Dual Space

$$\begin{aligned} \partial_t \alpha + \operatorname{div}(U\alpha) &= 0 \quad \text{in} \quad (0,\infty) \times \mathbb{R}^3, \\ U(t,X) &= J(X - \nabla P_t^*(X)), \\ \nabla P_{t\#} \chi_\Omega &= \alpha_t, \\ \alpha_{|t=0} &= \alpha_0. \end{aligned}$$

Existence in dual space: time stepping (Benamou-Brenier, Cullen-Gangbo): let $\Delta t = h$.

Suppose, at time at $t_k = kh$, the $P_k(x)$ convex, and measure $\alpha_k(x)$ are given. Determine velocity

$$U_k(X) = J(X - \nabla P_k^*(X))$$

(plus some regularization...). Solve transport equation

$$\partial_t \alpha + \operatorname{div}(U_k \alpha) = 0$$
 in $(kh, (k+1)h) \times \mathbb{R}^3$,
 $\alpha_{|t=kh} = \alpha_k$.

Solving Semigeostrophic system in Dual Space

Then define $\alpha_{k+1} = \alpha((k+1)h)$.

From div $U_k = 0$ get $\int \alpha_k dx = \int \alpha_{k+1} dx$.

Determine P_{k+1} by solving Monge-Kantorovich problem: P_{k+1} is convex and ∇P_{k+1} is the optimal map between χ_{Ω} and α_{k+1} .

Then send h to 0+. Using convexity, can pass to the limit in equations.

Semigeostrophic system in Physical Space

Let (P, α) be a solution in dual space. Obtain solution (P, u) in physical space, i.e. define physical velocity u. Formally, use relation $x(t) = \nabla P_t(X(t))$ for particle paths. Differentiate:

$$\begin{split} u(t,x) =& \partial_t \nabla P_t^*(X) + U \cdot \nabla (\nabla P_t^*(X)) \\ =& \partial_t \nabla P^*(t, \nabla P_t(x)) + D^2 P_t^*(\nabla P_t(x)) [J(\nabla P(t,x) - x)], \end{split}$$

Here P_t , P_t^* are convex, i.e $D^2 P_t^*$ is a measure, and $\nabla P_t \in L^{\infty}$. Their product is not well-defined.

Semigeostrophic system in Physical Space: Eulerian solutions

r

Also, (P, u) is a weak (Eulerian) solution of SG if divu = 0 and

$$\int_{(0,T)\times\Omega} \{\nabla P(t,x) \cdot [\partial_t \phi(t,x) + (u(t,x) \cdot \nabla)\phi(t,x)] + J[\nabla P(t,x) - x] \cdot \phi(t,x)\} dt dx + \int_{\Omega} \nabla P_0(x) \cdot \phi(0,x) dx = 0.$$

for any $\phi \in C_c^1([0,T) \times \Omega; \mathbb{R}^3)$. Since $\nabla P_t \in L^{\infty}$, need $u \in L_{loc}^1$. Existence of $u \in L_{loc}^1$ is not known. Apriori estimates of u as a measure: Loeper (2005).

Semigeostrophic system in Physical Space: Eulerian solutions

Recent works: De Philippis, Figalli (2011) regularity for Monge-Ampere: if $\Lambda \ge f(x) \ge \lambda > 0$ in Ω and

$$\det D^2 u = f \text{ in } \Omega,$$

then $u \in W^{2,1}(\Omega)$ (and slightly better). Boundary regularity if $\partial \Omega$ is convex and smooth.

Ambrosio, Colombo, De Philippis, Figalli (2011, 2012): existence of Eulerian solutions of SG in 2D-periodic and 3D cases if the density in dual space α_0 is strictly positive +... In the case when the boundary of the support of α_0 is nonempty, say when supp (α_0) is compact, existence of Eulerian solutions is not known, not clear whether can be expected. The case when the support of α_0 is compact is physically interesting: related to modeling of front formation in atmospheric flows. Weak Lagrangian Solutions in Physical Space Cullen-F. 2006.

If (P, u) is smooth, then define flow map of u: $F: [0, T] \times \Omega \rightarrow \Omega$ satisfying

$$\partial_t F(t, x) = u(t, F(t, x))$$

 $F_{|t=0} = Id.$

Since $u \cdot \nu = 0$ on $\partial \Omega$, it follows for each $t \ge 0$ that $F_t : \Omega \to \Omega$ is diffeomorphism. Then F determines u.

SG system in terms of (P, F):

$$\begin{split} F_{t\#}\chi_{\Omega} &= \chi_{\Omega} \ \ \text{for all} \ \ t > 0, \\ F_0 &= Id, \end{split}$$

and $Z(t,x) = \nabla P(t,F_t(x))$ is a solution of the ODE

$$\begin{split} \partial_t Z(t,x) &= J[Z(t,x) - F(t,x)] \qquad \text{ in } [0,T) \times \Omega, \\ Z(0,x) &= \nabla P_0(x). \end{split}$$

Weak Lagrangian Solutions in Physical Space Let $\Omega \subset \mathbb{R}^3$ be an open bounded set, and T > 0. Let $P_0(x) \in W^{1,\infty}(\Omega)$ be convex. Let $r \in [1,\infty)$. Let

$$\begin{split} P &\in L^{\infty}([0,T); W^{1,\infty}(\Omega)) \cap C([0,T); W^{1,r}(\Omega)), \\ P_t(\cdot) \quad \text{is convex in } \Omega \text{ for each } t \in [0,T). \end{split}$$

Let $F : [0,T) \times \Omega \to \Omega$ satisfy $F \in C([0,T); L^r(\Omega; \mathbb{R}^3))$. (P, F) is a weak Lagrangian solution of SG system if

$$F_{t\#}\chi_{\Omega} = \chi_{\Omega}$$
 for all $t > 0$,
 $F_0 = Id$,

and $Z(t, x) = \nabla P(t, F_t(x))$ is a weak solution of the ODE

 $\partial_t Z(t,x) = J[Z(t,x) - F(t,x)] \quad \text{in } [0,T) \times \Omega,$ $Z(0,x) = \nabla P_0(x).$

Existence of Weak Lagrangian Solutions in Physical Space

Cullen, Feldman (2006): if $\alpha_0 := \nabla P_0 \# \chi_\Omega \in L^q$, q > 1, for 3D rigid boundaries and 2D shallow water SG models. Outline of proof: Combining Cullen-Gangbo time-stepping procedure, and Ambrosio theory of Hamilton-Jacobi equations and ODE with BV vector fields, obtain Lagrangian flow $\Phi(t, X)$ in dual space, and

 $\alpha_t = \Phi_{t\#} \alpha_0.$

Here we use that $U(t, X) = J(X - \nabla P_t^*(X))$ is BV (as a gradient of convex function) and divergence-free (by $J\nabla$ -structure). Then the flow in physical space is

 $F_t = \nabla P_t^* \circ \Phi_t \circ \nabla P_0.$

Faria, Lopes-Filho, Nussenzveig-Lopes (2009): q = 1 case.

Remark on condition $\alpha_0 := \nabla P_0 \# \chi_\Omega \in L^q$

This condition is a form of strict convexity of P_0 . For example, if P_0 is uniformly strictly convex, i.e. $P_0(x) - \varepsilon x^2$ is convex, then $\alpha_0 \in L^{\infty}$. If P_0 is affine on a set of positive measure, then α_0 has a delta-function (i.e. a point of nonzero measure).

Case of $\alpha_0 := \nabla P_0 \# \chi_\Omega$ is a measure

This case is physically relevant.

Solutions in dual space Loeper (2006), Ambrosio, Gangbo (2008): P_t is convex and α_t is a measure, and satisfy:

$$\begin{split} \partial_t \alpha + \operatorname{div}(U\alpha) &= 0 \quad \text{in} \quad (0,\infty) \times \mathbb{R}^3, \\ U(t,X) &= J(X - \bar{\gamma}_t(X)), \\ \nabla P_{t\#} \chi_\Omega &= \alpha_t, \\ \alpha_{|t=0} &= \alpha_0, \end{split}$$

where $\bar{\gamma}_t(X)$ is the barycentric projection of the optimal Kantorovich plan $\gamma_t := (\nabla P_t \times \mathrm{Id})_{\#} \chi$ having α_t and χ as first and second marginals, respectively. It is defined by

$$\int_{\mathbb{R}^3} \xi(X) \cdot \bar{\gamma}_t(X) d\alpha_t(X) = \iint_{\mathbb{R}^3 \times \Omega} \xi(X) \cdot y d\gamma_t(X, y)$$

for all continuous $\xi : \mathbb{R}^3 \to \mathbb{R}^3$ of at most quadratic growth.

Case $\alpha_0 := \nabla P_0 \# \chi_\Omega$ is a measure: Flow map in physical space

(Tudorascu-F. 2012)

Define Lagrangian solutions in physical space when α_0 is singular: Since $\bar{\gamma}_t$ replaces ∇P_t^* , try

 $F_t = \bar{\gamma}_t \circ \Phi_t \circ \nabla P_0.$

Example: $\Omega = B_1$, $P_0(x) = 0$. Then $P_t(x) = 0$ on B_1 for all t, and $\alpha_t = \delta_0$. Also $P_t^*(X) = X$. Thus $\bar{\gamma}_t(0) = 0$ which defined $\bar{\gamma}_t(X)$ for α_t -a.e. $X \in bR^3$. Can set $\bar{\gamma}_t(X) = \nabla P_t^*$ for $X \neq 0$. Also, $U(t, X) = J(X - \bar{\gamma}_t(X))$, thus $\Phi(t, 0) = 0$ is a solution of ODE $\frac{d}{dt}\Phi(t, 0) = U(t, U(t, \Phi(t, 0))$. In fact, this is a continuous extension to X = 0 of the regular flow $\Phi(t, X)$ for vector field $U(t, X) = J(X - \nabla P_t^*)$.

Case $\alpha_0 := \nabla P_0 \# \chi_\Omega$ is a measure: Flow map in physical space

We get $F_t(x) = \overline{\gamma}_t \circ \Phi_t \circ \nabla P_0(x) = 0$ for any $x \in B_1$, t > 0. In particular, $F_{t\#}\chi_{\Omega} = \delta_0 \neq \chi_{\Omega}$. Also can show: for regularizations $P_0^{\varepsilon} = \varepsilon ||x|^2$ get $F^{\varepsilon} \rightharpoonup F$ weakly-* in $L^{\infty}([0,T] \times B_1)$, but not in $L^p(B_1)$ for each t.

$F_t = \bar{\gamma}_t \circ \Phi_t \circ \nabla P_0$. Issues to address:

(i) If Φ_t is a Lagrangian flow ∇P_t^* (or, equivalently, for $\bar{\gamma}_t$), then it is not clear if $\alpha_t = \Phi_{t\#}\alpha_0$ holds (or even well-defined); (ii) If $\alpha_t = \nabla P_{t\#}\chi_{\Omega}$ is a singular measure, then $(\bar{\gamma}_t \circ \nabla P_t)_{\#}\chi_{\Omega} \neq \chi_{\Omega}$. Thus $F_0 \# \chi_{\Omega} \neq \chi_{\Omega}$. Then probably $F_{t\#}\chi_{\Omega} \neq \chi_{\Omega}$ for t > 0. Instead, define "reduced domain" measures $\mu_t = (\bar{\gamma}_t \circ \nabla P_t)_{\#}\chi_{\Omega}$. Then $F_{t\#}\chi_{\Omega} = \mu_t$, and $F_{t\#}\mu_0 = \mu_t$. Note: if $\alpha_t \in L^1(\mathbb{R}^3)$, then $\mu_t = \chi_{\Omega}$.

Case $\alpha_0 := \nabla P_0 \# \chi_\Omega$ is a measure: Flow map in physical space

(iii) Even if $\alpha_t = \Phi_{t\#}\alpha_0$, the continuity in time $F \in C([0,T); L^r(\Omega; \mathbb{R}^3))$ is unlikely to hold if α_t are singular measures.

We can prove weaker continuity of $t \to F_t(\cdot)$, related to ∇P_t : for any $\phi \in C_c^1(\mathbb{R}^3; \mathbb{R}^3)$

$$\lim_{t \to t_0} \int_{\Omega} \phi(\nabla P_{t_0} \circ F_{t_0}(x)) \cdot F_t(x) dx = \int_{\Omega} \phi(\nabla P_{t_0} \circ F_{t_0}(x)) \cdot F_{t_0}(x) dx,$$

in particular

$$\lim_{t \to 0^+} \int_{\Omega} \phi(\nabla P_0(x)) \cdot F_t(x) dx = \int_{\Omega} \phi(\nabla P_0(x)) \cdot x dx.$$

Call this *P*-continuity.

Case $\alpha_0 := \nabla P_0 \# \chi_\Omega$ is a measure: Lagrangian Solutions in Physical Space Let $P_0(x) \in W^{1,\infty}(\Omega)$ be convex. Let $r \in [1,\infty)$. Let $P \in C([0,T); W^{1,r}(\Omega)),$ $P_t(\cdot)$ is convex in Ω for each $t \in [0,T)$. Let $F : [0, T) \times \Omega \to \Omega$ be *P*-continuous. (P, F) is a weak Lagrangian solution of SG system if $F_{t\#}\chi_{\Omega} = \mu_t$ and $F_{t\#}\mu_0 = \mu_t$ for all $t \ge 0$, where $\mu_t = (\bar{\gamma}_t \circ \nabla P_t)_{\#} \chi_{\Omega}$, and $Z(t, x) = \nabla P(t, F_t(x))$ is a weak solution of the ODE $\partial_t Z(t, x) = J[Z(t, x) - F(t, x)]$ in $[0, T) \times \Omega$,

 $Z(0,x) = \nabla P_0(x).$

Case $\alpha_0 := \nabla P_0 \# \chi_\Omega$ is a measure: Existence of Lagrangian Solutions in Physical Space

Proposition Given solution (P_t, α_t) in dual space: If there exists Lagrangian flow in dual space $\Phi(t, X)$ satisfying

$$\begin{split} \partial_t \Phi(t,X) &= J(\Phi(t,X) - \bar{\gamma}_t(\Phi(t,X))), \quad \Phi_{|t=0} = Id, \\ \alpha_t &= \Phi_{t\#} \alpha_0, \end{split}$$

then (P, F) with $F_t = \overline{\gamma}_t \circ \Phi_t \circ \nabla P_0$, is a Lagrangian solution in physical space.

Theorem If $P_0 = \max_{k=1,\dots,n} L_k(X)$, where each L_k is an affine function, then there exists a Lagrangian solution (P, F) in physical space.

Remark In the conditions of theorem, α_0 is a convex combination of delta-functions.

Properties of Weak Lagrangian Solutions in Physical Space

Geostrophic energy:

$$E(t) = \int_{\Omega} |\nabla P_t(x) - x|^2 dx.$$

Formally E(t) = const on solutions of SG system. Theorem, If (P, F) is a weak Lagrangian solution. Then

Let α_t := ∇P_{t#}χ_Ω. Then (P, α) is a solution of SG in dual space:

$$\partial_t \alpha + \operatorname{div}(U\alpha) = 0 \quad \text{in} \quad (0, \infty) \times \mathbb{R}^3,$$
$$U(t, X) = J(X - \bar{\gamma}_t(X)).$$
$$\blacktriangleright \quad E(t) = const.$$

Remarks: (i) $\alpha_t = \nabla P_{t\#}\chi_{\Omega}$ may be a singular measure; (ii) Once we know (P, α) is a solution, then E(t) = const follows from work of Ambrosio-Gangbo.

Relaxed Lagrangian solutions in physical space (Tudorascu-F., 2013)

Existence for arbitrary (possibly non-strictly) convex initial P_0 : replace flow map $F_t : \Omega \to \Omega$ by transport plan σ_t on $\Omega \times \Omega$.

Let $\alpha_0 = \nabla P_{0\#}\chi_\Omega \in L^q$ and (P_t, F_t) is a Lagrangian solution. Define measure $\sigma_t = (Id \times F_t)_{\#}\chi_\Omega$ on $\Omega \times \Omega$. Then: (i) $\sigma_0 = (Id \times Id)_{\#}\chi_\Omega$; (ii) $\pi_{1\#}\sigma_t = \chi_\Omega$, $\pi_{2\#}\sigma_t = \chi_\Omega$, where $\pi_k(\mathbf{x}) = \mathbf{x}_k$ for $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \Omega \times \Omega$, k = 1, 2. (iii) for any $\varphi \in C_c^1([0, T) \times \Omega; \mathbb{R}^3)$

 $\int_0^T \int_{\Omega \times \Omega} \left[\nabla P_t(y) \cdot \partial_t \varphi(t, x) + J(\nabla P_t(y) - y) \cdot \varphi(t, x) \right] d\sigma_t(x, y) dt$ $+ \int_\Omega \nabla P_0(x) \cdot \varphi(0, x) dx = 0.$

To define relaxed solutions, note another property of (P_t, F_t) when $\alpha_t \in L^q$:

Renormalized Lagrangian solutions

If $\alpha_0 = \nabla P_{0\#}\chi_\Omega \in L^q$, q > 1 and $P_0 \in W^{1,\infty}(\Omega)$, then Lagrangian solutions (P, F) satisfy: $Z, \partial_t Z \in L^{\infty}([0, T) \times \Omega)$ and

$$\partial_t Z(t,x) = J[Z(t,x) - F(t,x)]$$
 a.e. in $[0,T) imes \Omega$.

Thus if $\xi \in C^1(\mathbb{R}^3)$

$$\begin{split} \partial_t(\xi(Z(t,x)) &= \nabla \xi(Z(t,x)) \cdot J[Z(t,x) - F(t,x)] \\ \text{a.e. in } [0,T) \times \Omega. \end{split}$$

Thus for any $\xi\in C^1_b(\mathbb{R}^3),\,\varphi\in C^1_c([0,T)\times\Omega)$

$$\int_0^T \int_\Omega \Big[\xi(Z(t,x)) \partial_t \varphi(t,x) + \nabla \xi(Z(t,x)) \cdot J \Big(Z(t,x) \\ - F(t,x) \Big) \varphi(t,x) \Big] dx \, dt + \int_\Omega \xi(\nabla P_0(x)\varphi(0,x)) \, dx = 0.$$

Definition. Let P_0 be convex on Ω . Let $P: [0,T) \times \Omega \to \mathbb{R}^1$, and let $\sigma = \int_{0}^{T} \sigma_t dt$ be a Borel measure on $[0, T) \times \Omega \times \Omega$. Then (P, σ) is a renormalized relaxed Lagrangian solution of SG with initial data P_0 if (i) P_t is convex for each $t \in [0, T)$, (ii) $\pi_{1\#}\sigma_t = \chi_{\Omega}$, $\pi_{2\#}\sigma_t = \chi_{\Omega}$, where $\pi_k(\mathbf{x}) = \mathbf{x}_k$ for $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \Omega \times \Omega, \ k = 1, 2.$ (iii) for any $\xi \in C_b^1(\mathbb{R}^3)$, $\varphi \in C_c^1([0,T) \times \Omega)$ T

$$\int_0^1 \int_{\Omega \times \Omega} \left[\xi(\nabla P_t(y)) \partial_t \varphi(t, x) + \nabla \xi(\nabla P_t(y)) \cdot J \Big(\nabla P_t(y) - y \Big) \varphi(t, x) \right] d\sigma_t(x, y) \, dt + \int_\Omega \xi(\nabla P_0(x)) \varphi(0, x) \, dx = 0.$$

Equation (iii) well-defined for $\nabla P \in L^{\infty}([0,T); L^{1}(\Omega))$ by (ii).

These solutions are somewhat underdeterminate: heuristically, $\sigma_t(x, y)$ can be modified on flat parts of P_0 and P_t resp. Example: $\Omega = B_1$, $P_0(x) = 0$. Then $P_t(x) = 0$ for all t. Equation is: for any $\xi \in C_b^1(\mathbb{R}^3)$, $\varphi \in C_c^1([0, T) \times \Omega)$

$$\begin{split} &\int_0^T \int_{\Omega \times \Omega} \Big[\xi(0) \partial_t \varphi(t, x) - \varphi(t, x) \nabla \xi(0) \cdot Jy \Big] d\sigma_t(x, y) \, dt \\ &+ \int_\Omega \xi(0) \varphi(0, x) \, dx = 0, \end{split}$$

and using $\pi_{1\#}\sigma_t = \chi_{\Omega}$,

$$\int_0^T \int_{\Omega \times \Omega} \varphi(t, x) \nabla \xi(0) \cdot Jy \, d\sigma_t(x, y) \, dt = 0.$$

Thus any Borel family $\sigma_t(x, y)$ with marginals χ_{Ω} and *y*-barycenter $\bar{\sigma}_t(x) = 0$ works.

Such underdeterminacy is physically natural/expected.

Existence and stability. Let $P_0 \in W^{1,2}(\Omega)$ be convex. Then there exists a renormalized relaxed Lagrangian solution with initial data P_0 .

Moreover, if $q \in (1, \infty]$, and P_k^0 is convex in Ω and $\alpha_0^k := \nabla P_k^{0\#} \chi_\Omega \in L^q(\Omega)$ for $k = 1, \ldots$, with $\alpha_0^k \rightharpoonup \alpha_0$ weakly in $\mathcal{M}(\Omega)$ as $k \to \infty$, then, denoting (P^k, F^k) Lagrangian solution for initial data P_0^k , and $\sigma_t^k := (Id \times \nabla P_t^k)_{\#} \chi_\Omega$

$$\sigma^k = \int_0^T \sigma_t^k dt$$
, and selecting a subsequence, get

$$\nabla P_t^k \to \nabla P_t \text{ in } L^2(\Omega) \text{ for all } t \in [0,T);$$

$$\alpha_t^k \rightharpoonup \alpha_t \text{ weakly in } \mathcal{M}(\Omega) \text{ for all } t \in [0,T);$$

$$\sigma^k \rightharpoonup \sigma \text{ weakly in } \mathcal{M}([0,T) \times \Omega \times \Omega),$$

and (P, σ) is a renormalized relaxed Lagrangian solution. Also, (P, α) is a distributional solution in dual space.

Return to dual space, conservation of geostrophic energy. Let (P, σ) be a renormalized relaxed Lagrangian solution and $\alpha_t = \nabla P_{t\#} \chi_{\Omega}$. Then (P, α) is a distribution solution in dual space. In particular geostrophic energy is conserved.

Renormalization property is used in this proof: for test function $\varphi(t)\xi(X)$ in dual space, with $\varphi(0) = 0$ for simplicity:

$$\begin{split} &\int_0^T \int_{\mathbb{R}^3} \varphi'(t)\xi(X)d\alpha_t dt = \int_0^T \int_{\Omega} \varphi'(t)\xi(\nabla P_t(y))dydt \\ &= \int_0^T \int_{\Omega \times \Omega} \varphi'(t)\xi(\nabla P_t(y))d\sigma_t(x,y)dt \\ &= -\int_0^T \int_{\Omega \times \Omega} \varphi(t)\nabla\xi(\nabla P_t(y)) \cdot J\Big(\nabla P_t(y) - y\Big)d\sigma_t(x,y)dt \\ &= -\int_0^T \int_{\Omega} \varphi(t)\nabla\xi(\nabla P_t(y)) \cdot J\Big(\nabla P_t(y) - y\Big)dydt = -I_1 - I_2. \end{split}$$

$$I_{1} = \int_{0}^{T} \int_{\Omega} \varphi(t) \nabla \xi(\nabla P_{t}(y)) \cdot J \nabla P_{t}(y) dy dt$$
$$= \int_{0}^{T} \int_{\mathbb{R}^{3}} \varphi(t) \nabla \xi(X) \cdot J X d\alpha_{t}(X) dt$$

Denote $\gamma_t = (Id \times \nabla P_t)_{\#} \chi_{\Omega}$:

$$I_{2} = -\int_{0}^{T} \int_{\Omega} \varphi(t) \nabla \xi(\nabla P_{t}(y)) \cdot Jy \, dy \, dt$$

$$= -\int_{0}^{T} \int_{\Omega \times \mathbb{R}^{3}} \varphi(t) \nabla \xi(X) \cdot Jy \, d\gamma_{t}(y, X) \, dt$$

$$= -\int_{0}^{T} \int_{\mathbb{R}^{3}} \varphi(t) \nabla \xi(X) \cdot J\bar{\gamma}_{t}(X) \, d\alpha_{t}(X) \, dt$$

$$\begin{split} & \operatorname{Get:} \ \int_0^T \!\!\!\int_{\mathbb{R}^3} [\partial_t \zeta + \nabla \zeta \cdot U] d\alpha_t(X) dt = 0, \text{ for} \\ & U(t,X) = J(X - \bar{\gamma}_t(X)), \quad \zeta(t,x) = \varphi(t) \xi(X), \quad \text{for } x \in \mathbb{R} , \quad x \in \mathbb{$$

Continuity in time. Let (P, σ) be a RRL solution with $\nabla P_0 \in L^2(\Omega)$. Then, on [0, T]:

Equation in dual space \Rightarrow

 $t \rightarrow \alpha_t$ continuous in Wasserstein W_2 metric;

 $t \to \nabla P_t$ is continuous in $L^2(\Omega)$ with $(\nabla P_t)_{|t=0} = \nabla P_0$; Define $G_t : \Omega \times \Omega \to \mathbb{R}^3 \times \mathbb{R}^3$ by $G_t(x, y) = (x, \nabla P_t(y))$, then $t \to G_{t\#}\sigma_t$ is continuous with respect to narrow convergence on $\Omega \times \mathbb{R}^3$: From equation, for any $\psi, \xi \in C_c^1(\mathbb{R}^3)$

$$t \to \int_{\Omega \times \Omega} \psi(x) \,\xi(\nabla P_t(x)) \,d\sigma_t(x,y) = \int_{\Omega \times \mathbb{R}^3} \psi(x) \,\xi(Y) \,d(G_{t\#}\sigma_t)(x,y)$$

is continuous.

Also, for any $s \in [0, T]$: $t \to G_{s\#}\sigma_t$ is continuous at t = swith respect to narrow convergence on $\Omega \times \mathbb{R}^3$. Initial condition hold: $G_{0\#}\sigma_0 = G_{0\#}\delta_{\{x=y\}}$, where $\delta_{\{x=y\}} := (Id \times Id)_{\#}\chi_{\Omega}$.

Open problems

- Uniqueness of weak (renormalized) solutions. Possibly weak-strong uniqueness.
- Existence of solutions for the case of variable Coriolis parameter: dual space is not defined.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @