Level-set volume-preserving diffusions

Yann Brenier CNRS, Centre de mathématiques Laurent Schwartz Ecole Polytechnique, FR 91128 Palaiseau

Fluid Mechanics, Hamiltonian Dynamics, and Numerical Aspects of Optimal Transportation, MSRI, October 14-18, 2013

Yann Brenier (CNRS) Level-set volume-preserving diffusions Cotober 2013 1/18

 Ω

イロト イ押 トイラト イラト

EQUIVALENCE OF TWO DIFFERENT FUNCTIONS WITH LEVEL SETS OF EQUAL VOLUME

Yann Brenier (CNRS) Level-set volume-preserving diffusions Cotober 2013 2/18

 Ω

 (0.12333338)

MOTIVATION: MINIMIZATION PROBLEMS WITH VOLUME CONSTRAINTS ON LEVEL SETS

This goes back to Kelvin. See Th. B. Benjamin, G. Burton etc....

Yann Brenier (CNRS) Level-set volume-preserving diffusions Cotober 2013 3/18

 Ω

イロト イ押ト イヨト イヨ

Here $\mathbf{D}=\mathbb{T}^\mathbf{d}=(\mathbb{R}/\mathbb{Z})^\mathbf{d}$ is the flat torus and $\varphi_\mathbf{0}$ is a given function **on D. We want to minimize the Dirichlet integral among all** $\varphi \sim \varphi_0$ **.**

 Ω

イロト イ押 トイラト イラト

Here $\mathbf{D}=\mathbb{T}^\mathbf{d}=(\mathbb{R}/\mathbb{Z})^\mathbf{d}$ is the flat torus and $\varphi_\mathbf{0}$ is a given function **on D. We want to minimize the Dirichlet integral among all** $\varphi \sim \varphi_0$ **. This can be rephrased as**

$$
\inf_{\varphi: \textbf{D} \to \mathbb{R}} ~~ \sup_{\textbf{F}: \mathbb{R} \to \mathbb{R}} ~~ \frac{1}{2} \int_{\textbf{D}} |\nabla \varphi(\textbf{x})|^2 d\textbf{x} + \int_{\textbf{D}} [\textbf{F}(\varphi(\textbf{x})) - \textbf{F}(\varphi_0(\textbf{x}))] d\textbf{x}
$$

Yann Brenier (CNRS) Level-set volume-preserving diffusions Cotober 2013 4/18

Here $\mathbf{D}=\mathbb{T}^\mathbf{d}=(\mathbb{R}/\mathbb{Z})^\mathbf{d}$ is the flat torus and $\varphi_\mathbf{0}$ is a given function **on D. We want to minimize the Dirichlet integral among all** $\varphi \sim \varphi_0$ **. This can be rephrased as**

$$
\inf_{\varphi: D \to \mathbb{R}} \ \ \sup_{\textbf{F}: \mathbb{R} \to \mathbb{R}} \quad \frac{1}{2} \int_{D} |\nabla \varphi(\textbf{x})|^2 d\textbf{x} + \int_{D} [\textbf{F}(\varphi(\textbf{x})) - \textbf{F}(\varphi_{\textbf{0}}(\textbf{x}))] d\textbf{x}
$$

Optimal solutions are formally solutions to

$$
-\bigtriangleup\varphi+\mathsf{F}'(\varphi)=\mathsf{0}
$$

for some function F : R → R

Yann Brenier (CNRS) Level-set volume-preserving diffusions Corober 2013 4/18

Here $\mathbf{D}=\mathbb{T}^\mathbf{d}=(\mathbb{R}/\mathbb{Z})^\mathbf{d}$ is the flat torus and $\varphi_\mathbf{0}$ is a given function **on D.** We want to minimize the Dirichlet integral among all $\varphi \sim \varphi_0$. **This can be rephrased as**

$$
\inf_{\varphi: D \to \mathbb{R}} \ \ \sup_{\textbf{F}: \mathbb{R} \to \mathbb{R}} \quad \frac{1}{2} \int_{D} |\nabla \varphi(\textbf{x})|^2 d\textbf{x} + \int_{D} [\textbf{F}(\varphi(\textbf{x})) - \textbf{F}(\varphi_{\textbf{0}}(\textbf{x}))] d\textbf{x}
$$

Optimal solutions are formally solutions to

$$
-\bigtriangleup\varphi+\textbf{F}'(\varphi)=\textbf{0}
$$

for some function F : R → R **, and, in 2d, are just stationary solutions to the Euler equations of incompressible fluids.**

Yann Brenier (CNRS) Level-set volume-preserving diffusions Corober 2013 4/18

 Ω

イロト イ押 トイラト イラト

Discrete version: a NP problem in combinatorics

After discretizing the Dirichlet integral on a lattice with N grid points Aⁱ , we have to find a permutation σ **that achieves**

$$
\inf_{\sigma} \sum_{i,j=1}^N c_{\sigma_i \sigma_j} \lambda_{ij}
$$

where λ **is a matrix that depends on the lattice and**

$$
c_{ij}=|\varphi_0(A_i)-\varphi_0(A_j)|^2
$$

Yann Brenier (CNRS) Level-set volume-preserving diffusions Corober 2013 5/18

Discrete version: a NP problem in combinatorics

After discretizing the Dirichlet integral on a lattice with N grid points Aⁱ , we have to find a permutation σ **that achieves**

$$
\inf_{\sigma} \sum_{i,j=1}^N c_{\sigma_i \sigma_j} \lambda_{ij}
$$

where λ **is a matrix that depends on the lattice and**

$$
c_{ij}=|\varphi_0(A_i)-\varphi_0(A_j)|^2
$$

This is a so-called "quadratic assignment problem", a well known NP problem of combinatorial optimization (also related to the works of F. Memoli and K.T. Sturm, recently presented at MSRI).

THIS SUGGESTS THE CONSTRUCTION OF "GRADIENT FLOWS" OF THE DIRICHLET INTEGRAL (i.e. DIFFUSION EQUATIONS) THAT ARE "LSVP": THEY PRESERVE THE VOLUME OF ALL LEVEL SETS

A canonical way to preserve the volume of each level set of a time-dependent scalar function $(t, x) \rightarrow \varphi(t, x) \in \mathbb{R}$ is the transport by a time-dependent divergence-free velocity field $\mathbf{v}(\mathsf{t},\mathsf{x})\in \mathbb{R}^\mathsf{d}$:

$$
\partial_t \varphi + \nabla \cdot (\textbf{v} \varphi) = \textbf{0}, \quad \nabla \cdot \textbf{v} = \textbf{0}
$$

Yann Brenier (CNRS) Level-set volume-preserving diffusions Cotober 2013 7/18

A canonical way to preserve the volume of each level set of a time-dependent scalar function $(t, x) \rightarrow \varphi(t, x) \in \mathbb{R}$ is the transport by a time-dependent divergence-free velocity field $\mathbf{v}(\mathsf{t},\mathsf{x})\in \mathbb{R}^\mathsf{d}$:

$$
\partial_t \varphi + \nabla \cdot (\textbf{v} \varphi) = \textbf{0}, \quad \nabla \cdot \textbf{v} = \textbf{0}
$$

If v is smooth enough, this just means ϕ

$$
\varphi(\mathbf{t},\xi(\mathbf{t},\mathbf{x}))=\varphi_{\mathbf{0}}(\mathbf{x})
$$

 Ω

Yann Brenier (CNRS) Level-set volume-preserving diffusions Corober 2013 7/18

A canonical way to preserve the volume of each level set of a time-dependent scalar function $(t, x) \rightarrow \varphi(t, x) \in \mathbb{R}$ is the transport by a time-dependent divergence-free velocity field $\mathbf{v}(\mathsf{t},\mathsf{x})\in \mathbb{R}^\mathsf{d}$:

$$
\partial_t \varphi + \nabla \cdot (\bm{v} \varphi) = \bm{0}, \quad \nabla \cdot \bm{v} = \bm{0}
$$

If v is smooth enough, this just means $\varphi(t,\xi(t,x)) = \varphi_0(x)$ **where** ξ **is the time-dependent family of volume and orientation-preserving diffeomorphisms defined by**

$$
\partial_t \xi(\mathbf{t}, \mathbf{x}) = \mathbf{v}(\mathbf{t}, \xi(\mathbf{t}, \mathbf{x})), \quad \xi(\mathbf{0}, \mathbf{x}) = \mathbf{x}
$$

Yann Brenier (CNRS) Level-set volume-preserving diffusions Corober 2013 7/18

A canonical way to preserve the volume of each level set of a time-dependent scalar function $(t, x) \rightarrow \varphi(t, x) \in \mathbb{R}$ is the transport by a time-dependent divergence-free velocity field $\mathbf{v}(\mathsf{t},\mathsf{x})\in \mathbb{R}^\mathsf{d}$:

$$
\partial_t \varphi + \nabla \cdot (\textbf{v} \varphi) = \textbf{0}, \quad \nabla \cdot \textbf{v} = \textbf{0}
$$

If v is smooth enough, this just means $\varphi(t,\xi(t,x)) = \varphi_0(x)$ **where** ξ **is the time-dependent family of volume and orientation-preserving diffeomorphisms defined by**

$$
\partial_t \xi(t,x) = v(t,\xi(t,x)), \quad \xi(0,x) = x
$$

By Ambrosio-DiPerna-Lions (resp. Cauchy-Lipschitz) theory on ODEs, bounded variation (resp. Lipschitz) regularity of v in x is enough to preserve the volume (resp. the topology) of level sets.

 Ω

The usual diffusion equation does not preserve the volume of level sets

The usual linear diffusion equation $\partial_t \varphi = \Delta \varphi$ cannot be **written in form**

$$
\partial_t \varphi + \nabla \cdot (\textbf{v} \varphi) = \textbf{0}, \quad \nabla \cdot \textbf{v} = \textbf{0}
$$

and, therefore, cannot preserve the volume of the level sets of φ .

Yann Brenier (CNRS) Level-set volume-preserving diffusions Cortober 2013 8/18

 Ω

イロト イ押ト イヨト イヨ

DEFINITION $|$ We say that a pair (φ, \mathbf{v}) on $[0, \mathcal{T}] \times \mathbb{T}^d$ is admissible **if** ϕ **is transported by v**

$$
\partial_{\textbf{t}}\varphi+\nabla\cdot(\textbf{v}\varphi)=\textbf{0}
$$

Yann Brenier (CNRS) Level-set volume-preserving diffusions Cotober 2013 9/18

 Ω

イロト イ押ト イヨト イヨ

DEFINITION $|$ We say that a pair (φ, \mathbf{v}) on $[0, \mathcal{T}] \times \mathbb{T}^d$ is admissible **if** ϕ **is transported by v**

$$
\partial_{\textbf{t}}\varphi+\nabla\cdot(\textbf{v}\varphi)=\textbf{0}
$$

and v is a divergence-free vector-field (with zero mean in x).

Yann Brenier (CNRS) Level-set volume-preserving diffusions Corober 2013 9/18

DEFINITION $|$ We say that a pair (φ, \mathbf{v}) on $[0, \mathcal{T}] \times \mathbb{T}^d$ is admissible **if** ϕ **is transported by v**

$$
\partial_t \varphi + \nabla \cdot (\textbf{v} \varphi) = \textbf{0}
$$

and v is a divergence-free vector-field (with zero mean in x). When v has Sobolev regularity Ws,**² in** *x***, s** ≥ **1 is enough to enforce the volume preservation of all level sets (DiPerna-Lions' theory),**

Yann Brenier (CNRS) Level-set volume-preserving diffusions Cotober 2013 9/18

DEFINITION $|$ We say that a pair (φ, \mathbf{v}) on $[0, \mathcal{T}] \times \mathbb{T}^d$ is admissible **if** ϕ **is transported by v**

$$
\partial_t \varphi + \nabla \cdot (\textbf{v} \varphi) = \textbf{0}
$$

and v is a divergence-free vector-field (with zero mean in x). When v has Sobolev regularity Ws,**² in** *x***, s** ≥ **1 is enough to enforce the volume preservation of all level sets (DiPerna-Lions' theory), but not their topology unless** $s > d/2 + 1$ **.**

Yann Brenier (CNRS) Level-set volume-preserving diffusions Cotober 2013 9/18

DEFINITION $|$ We say that a pair (φ, \mathbf{v}) on $[0, \mathcal{T}] \times \mathbb{T}^d$ is admissible **if** ϕ **is transported by v**

$$
\partial_t \varphi + \nabla \cdot (\bm{v} \varphi) = \bm{0}
$$

and v is a divergence-free vector-field (with zero mean in x). When v has Sobolev regularity Ws,**² in** *x***, s** ≥ **1 is enough to enforce the volume preservation of all level sets (DiPerna-Lions' theory), but not their topology unless** $s > d/2 + 1$ **.** In the case $s = 0$, we will focus on for notational simplicity, we will

speak only of "formal preservation".

 Ω

イロト イ押ト イヨト イヨトー

Balance of energy for smooth admissible solutions

LEMMA 1 For any SMOOTH admissible pair (φ, \mathbf{v}) , we have

$$
\frac{d}{dt}||\nabla \varphi||^2 = -2((v, Pg)) = ||v - Pg||^2 - ||v||^2 - ||Pg||^2
$$

$$
\mathbf{g} = -\nabla \cdot (\nabla \varphi \otimes \nabla \varphi) \Big|
$$

Here $|| \cdot ||$ and $((\cdot, \cdot))$ respectively denote the L^2 norm and inner **product in space, while P denotes the L² Helmholtz projection onto divergence-free vector fields.**

Yann Brenier (CNRS) Level-set volume-preserving diffusions October 2013 10 / 18

Balance of energy for smooth admissible solutions

LEMMA 1 For any SMOOTH admissible pair (φ, \mathbf{v}) , we have

$$
\frac{d}{dt}||\nabla \varphi||^2 = -2((v, Pg)) = ||v - Pg||^2 - ||v||^2 - ||Pg||^2
$$

$$
\mathbf{g} = -\nabla \cdot (\nabla \varphi \otimes \nabla \varphi) \Big|
$$

Here $|| \cdot ||$ and $((\cdot, \cdot))$ respectively denote the L^2 norm and inner **product in space, while P denotes the L² Helmholtz projection onto divergence-free vector fields. Observe that**

$$
\frac{d}{dt}||\nabla \varphi||^2 + ||v||^2 + ||Pg||^2 \leq 0 \text{ if and only if } ||v - Pg||^2 = 0
$$

Yann Brenier (CNRS) Level-set volume-preserving diffusions October 2013 10 / 18

Definition of our LSVP diffusion equation

We now introduce the LSVP diffusion equation:

$$
\partial_t \varphi + \nabla \cdot (\varphi \bm{v}) = \bm{0}, \quad \bm{v} = - \bm{P} \nabla \cdot (\nabla \varphi \otimes \nabla \varphi)
$$

Yann Brenier (CNRS) Level-set volume-preserving diffusions October 2013 11 / 18

 Ω

4 (D) 3 (F) 3 (F) 3 (F)

Definition of our LSVP diffusion equation

We now introduce the LSVP diffusion equation:

$$
\partial_t \varphi + \nabla \cdot (\varphi \bm{v}) = \bm{0}, \quad \bm{v} = - \bm{P} \nabla \cdot (\nabla \varphi \otimes \nabla \varphi)
$$

obtained as a "gradient flow" by saturating the inequality in Lemma 1, à la De Giorgi, Ambrosio-Gigli-Savaré.

Yann Brenier (CNRS) Level-set volume-preserving diffusions October 2013 11 / 18

Definition of our LSVP diffusion equation

We now introduce the LSVP diffusion equation:

$$
\partial_t \varphi + \nabla \cdot (\varphi \bm{v}) = \bm{0}, \quad \bm{v} = - \bm{P} \nabla \cdot (\nabla \varphi \otimes \nabla \varphi)
$$

obtained as a "gradient flow" by saturating the inequality in Lemma 1, à la De Giorgi, Ambrosio-Gigli-Savaré.

This evolution equation is very non-linear and the local existence of smooth solutions is not clear. However, Lemma 1 provides a variational characterization which is powerful enough to define a reasonable concept of generalized solutions, as shown later.

Physically speaking, the LSVP equation describes the Darcy flow (for s = **0, or Stokes flow, for s** = **1) of an electrically charged incompressible fluid (v and** φ **being the velocity and the electric potential).**

 Ω

Physically speaking, the LSVP equation describes the Darcy flow (for s = **0, or Stokes flow, for s** = **1) of an electrically charged incompressible fluid (v and** φ **being the velocity and the electric potential).**

An analogous model is Moffat's magnetic relaxation, which can also be seen as Darcy MHD.

 Ω

Physically speaking, the LSVP equation describes the Darcy flow (for s = **0, or Stokes flow, for s** = **1) of an electrically charged incompressible fluid (v and** φ **being the velocity and the electric potential).**

An analogous model is Moffat's magnetic relaxation, which can also be seen as Darcy MHD.

In this model a time-dependent 1-form Ai(**t**, **x**)**dxⁱ (the "magnetic potential") and a divergence-free vector field v**(**t**, **x**) **(the velocity of the fluid) are said admissible if A is transported by v:**

$$
\partial_t \textbf{A}_i + \sum_j \textbf{d} \textbf{A}_{ij} \textbf{v}_j = \textbf{0}, \quad \textbf{d} \textbf{A}_{ij} = \partial_j \textbf{A}_i - \partial_i \textbf{A}_j
$$

Then the Moffat equation can be similarly obtained as the "gradient flow" of the Dirichlet integral R ||**dA**||**2dx.**

 Ω

With a suitable potential added to the Dirichlet integral and set on the unit ball instead of the torus, the LSVP equations have interesting special solutions which are linear in space

 $\nabla \varphi(\mathbf{t}, \mathbf{x}) = \mathbf{M}(\mathbf{t})\mathbf{x}, \quad \mathbf{v}(\mathbf{t}, \mathbf{x}) = \mathbf{B}(\mathbf{t})\mathbf{x}, \quad \mathbf{M} = \mathbf{M}^{\mathsf{T}}, \quad \mathbf{B} = -\mathbf{B}^{\mathsf{T}}$

Yann Brenier (CNRS) Level-set volume-preserving diffusions October 2013 13 / 18

イロト イ押ト イヨト イヨト

With a suitable potential added to the Dirichlet integral and set on the unit ball instead of the torus, the LSVP equations have interesting special solutions which are linear in space

$$
\nabla \varphi(t,x) = M(t)x, \quad v(t,x) = B(t)x, \quad M = M^T, \quad B = -B^T
$$

Then, we recover the Brockett diagonalizing gradient flow for symmetric matrices (recently studied by V. Bach and J.-B. Bru, as told us by M. Salmhofer):

$$
\frac{\text{d}M}{\text{d}t}=[\text{B},\text{M}],\quad \text{B}=[\text{M},\text{Q}]
$$

Yann Brenier (CNRS) Level-set volume-preserving diffusions October 2013 13 / 18

LSVP DIAGONALIZATION OF SYMM. MATRICES

For a given 15x15 symmetric matrix (with random coefficients) evolving according to the LSVP equation (with external force), the number of off-diagonal coefficients below 0.001 tends to 15 after time 60 (calculation performed with 6000 time steps).
ann Brenier (CNRS)
Clevel-set volume-preserving diffusions

Level-set volume-preserving diffusions The Corolland Corolland 2013 14/18

LEMMA 2	For $g = -\nabla \cdot (\nabla \varphi \otimes \nabla \varphi)$
\n $ Pg ^2 = \sup_{r \geq 0} K_r(\varphi) - r \nabla \varphi ^2$ \n	

where K_r(φ **) is convex and defined, for** $r \ge 0$ **, in [0, +** ∞ **] as**

$$
\sup_{\text{Eigen}(\partial_i z_k + \partial_k z_i + r\delta_{ik}) \geq 0, \ \partial_k z_k = 0} \int \partial_i \varphi \partial_k \varphi(\partial_i z_k + \partial_k z_i + r\delta_{ik}) \ dx - ||z||^2.
$$

Yann Brenier (CNRS) Level-set volume-preserving diffusions October 2013 15 / 18

KID KAR KERKER E 1990

LEMMA 2 For $g = -\nabla \cdot (\nabla \varphi \otimes \nabla \varphi)$
\n $ Pg ^2 = \sup_{r \geq 0} K_r(\varphi) - r \nabla \varphi ^2$ \n

where K_r(φ **) is convex and defined, for** $r \ge 0$ **, in [0, +** ∞ **] as**

$$
\sup_{\text{Eigen}(\partial_i z_k + \partial_k z_i + r\delta_{ik}) \geq 0, \ \partial_k z_k = 0} \int \partial_i \varphi \partial_k \varphi(\partial_i z_k + \partial_k z_i + r\delta_{ik}) \ dx - ||z||^2.
$$

Proof:

$$
||Pg||^2 = \sup_{\nabla \cdot z = 0} 2((Pg, z)) - ||z||^2
$$

$$
= \sup_{\nabla \cdot z = 0} \int \partial_i \varphi \partial_k \varphi(\partial_i z_k + \partial_k z_i) dx - ||z||^2
$$

Yann Brenier (CNRS) Level-set volume-preserving diffusions October 2013 15 / 18

KID KAR KERKER E 1990

LEMMA 2 For $g = -\nabla \cdot (\nabla \varphi \otimes \nabla \varphi)$
\n $ Pg ^2 = \sup_{r \geq 0} K_r(\varphi) - r \nabla \varphi ^2$ \n

where K_r(φ **) is convex and defined, for** $r \ge 0$ **, in [0,** $+\infty$ **] as**

$$
\sup_{\text{Eigen}(\partial_i z_k + \partial_k z_i + r\delta_{ik}) \geq 0, \ \partial_k z_k = 0} \int \partial_i \varphi \partial_k \varphi(\partial_i z_k + \partial_k z_i + r\delta_{ik}) \ dx - ||z||^2.
$$

Proof:

$$
||Pg||^2 = \sup_{\nabla \cdot z = 0} 2((Pg, z)) - ||z||^2
$$

=
$$
\sup_{\nabla \cdot z = 0} \int \partial_i \varphi \partial_k \varphi (\partial_i z_k + \partial_k z_i) dx - ||z||^2
$$

 $\int \partial_i \varphi \partial_k \varphi (\partial_i z_k + \partial_k z_i) dx - ||z||^2$ $=$ sup sup *r*≥0 $\text{Eigen}(\partial_i z_k + \partial_k z_i + r\delta_{ik}) \geq 0$, $\partial_k z_k = 0$ QQ

Yann Brenier (CNRS) Level-set volume-preserving diffusions Cotober 2013 15/18

Dissipative solutions

DEFINITION We say that an admissible pair (ϕ, **v**) **is a dissipative solution to the diffusion equation with initial condition** $\varphi(\mathbf{0}) = \varphi_{\text{ini}}$ **if for every nonnegative function** $t \rightarrow r(t) \ge 0$

$$
\text{ }^{''} \ \ (\frac{d}{dt}-r)||\nabla \varphi||^2+||v||^2+K_r(\varphi)\leq 0 \ \text{ }^{''}
$$

holds true in integral form from 0 to t, i.e., for $\mathbf{R(t)} = \int_0^t \mathbf{r}(\tau) \mathsf{d}\tau,$

$$
||\nabla \varphi(t)||^2+\int_0^t e^{R(t)-R(\tau)}[||v(\tau)||^2+K_{r(\tau)}(\varphi(\tau))]d\tau ~\leq ~ ||\nabla \varphi_{\text{ini}}||^2 e^{R(t)}
$$

(which is a convex inequality).

Yann Brenier (CNRS) Level-set volume-preserving diffusions October 2013 16 / 18

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

THEOREM

1) The energy inequality is convex and, therefore, weakly stable.

Yann Brenier (CNRS) Level-set volume-preserving diffusions Cotober 2013 17/18

 Ω

THEOREM

1) The energy inequality is convex and, therefore, weakly stable. 2) The concept of admissible solutions is weakly closed.

 Ω

イロト イ押 トイラト イラト

THEOREM

1) The energy inequality is convex and, therefore, weakly stable. 2) The concept of admissible solutions is weakly closed. 3) For every initial condition $\varphi_\mathsf{ini} \in \mathsf{W}^{1,2},$ there is always at least a **global dissipative solution.**

 Ω

イロト イ押 トイラ トイラトー

THEOREM

1) The energy inequality is convex and, therefore, weakly stable. 2) The concept of admissible solutions is weakly closed.

3) For every initial condition $\varphi_\mathsf{ini} \in \mathsf{W}^{1,2},$ there is always at least a **global dissipative solution.**

4) For every initial condition ϕ**ini** ∈ **W1**,**² the set of dissipative solutions has a unique element, whenever it has a smooth one.**

 Ω

THEOREM

1) The energy inequality is convex and, therefore, weakly stable. 2) The concept of admissible solutions is weakly closed.

3) For every initial condition $\varphi_\mathsf{ini} \in \mathsf{W}^{1,2},$ there is always at least a **global dissipative solution.**

4) For every initial condition ϕ**ini** ∈ **W1**,**² the set of dissipative solutions has a unique element, whenever it has a smooth one. Of course, many problems are pending: smoothness of solutions, actual preservation of the topology (not guaranteed by dissipative solutions), possible disruptions and reconnections of level sets, convergence to stationary solutions of the Euler equations in 2D...**

KET KET KET KET KARA

RELATED WORKS

- ¹ **L. Ambrosio, N. Gigli, G. Savaré's book on gradient flows and recent work on the heat equation on general metric spaces.**
- ² **V.I. Arnold, B. Khesin, Topological methods in hydrodynamics, Springer 1998.**
- ³ **Y. Brenier, Topology-preserving diffusion of divergence-free vector fields and magnetic relaxation, arXiv:1304.4562, to appear in CMP.**
- ⁴ **R. W. Brockett, Linear Algebra and its applications, 146 (1991) 79-91.**
- ⁵ **N. Ghoussoub, Self-dual Partial Differential Systems and Their Variational Principles, Springer 2008.**
- ⁶ **P.-L. Lions' book on fluid mechanics (tome I).**

⁷ **H.K. Moffatt, Relaxation under topological constraints, ITP, Santa-Barbara 1991.**

Yann Brenier (CNRS) Level-set volume-preserving diffusions October 2013 18 / 18

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

RELATED WORKS

- ¹ **L. Ambrosio, N. Gigli, G. Savaré's book on gradient flows and recent work on the heat equation on general metric spaces.**
- ² **V.I. Arnold, B. Khesin, Topological methods in hydrodynamics, Springer 1998.**
- ³ **Y. Brenier, Topology-preserving diffusion of divergence-free vector fields and magnetic relaxation, arXiv:1304.4562, to appear in CMP.**
- ⁴ **R. W. Brockett, Linear Algebra and its applications, 146 (1991) 79-91.**
- ⁵ **N. Ghoussoub, Self-dual Partial Differential Systems and Their Variational Principles, Springer 2008.**
- ⁶ **P.-L. Lions' book on fluid mechanics (tome I).**

⁷ **H.K. Moffatt, Relaxation under topological constraints, ITP, Santa-Barbara 1991.**

Yann Brenier (CNRS) Level-set volume-preserving diffusions October 2013 18 / 18

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$