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EQUIVALENCE OF TWO DIFFERENT FUNCTIONS
WITH LEVEL SETS OF EQUAL VOLUME

ϕ ∼ ϕ0
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volume and topology preservation
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MOTIVATION: MINIMIZATION PROBLEMS WITH VOLUME
CONSTRAINTS ON LEVEL SETS
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volume and topology preservation

This goes back to Kelvin. See Th. B. Benjamin, G. Burton etc....
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An example in fluid mechanics

Here D = Td = (R/Z)d is the flat torus and ϕ0 is a given function
on D. We want to minimize the Dirichlet integral among all ϕ ∼ ϕ0.

This can be rephrased as

inf
ϕ:D→R

sup
F:R→R

1
2

∫
D
|∇ϕ(x)|2dx +

∫
D
[F(ϕ(x))− F(ϕ0(x))]dx

Optimal solutions are formally solutions to

−4ϕ+ F′(ϕ) = 0

for some function F : R→ R , and, in 2d, are just stationary
solutions to the Euler equations of incompressible fluids.
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Discrete version: a NP problem in combinatorics

After discretizing the Dirichlet integral on a lattice with N grid
points Ai, we have to find a permutation σ that achieves

inf
σ

N∑
i,j=1

cσiσjλij

where λ is a matrix that depends on the lattice and

cij = |ϕ0(Ai)− ϕ0(Aj)|2

This is a so-called "quadratic assignment problem", a well known
NP problem of combinatorial optimization (also related to the
works of F. Memoli and K.T. Sturm, recently presented at MSRI).
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THIS SUGGESTS THE CONSTRUCTION OF
"GRADIENT FLOWS" OF THE DIRICHLET
INTEGRAL (i.e. DIFFUSION EQUATIONS) THAT
ARE "LSVP": THEY PRESERVE THE VOLUME OF
ALL LEVEL SETS
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Transport of functions by divergence-free vector fields

A canonical way to preserve the volume of each level set of a
time-dependent scalar function (t,x)→ ϕ(t,x) ∈ R is the transport
by a time-dependent divergence-free velocity field v(t,x) ∈ Rd:

∂tϕ+∇ · (vϕ) = 0, ∇ · v = 0

If v is smooth enough, this just means ϕ(t, ξ(t,x)) = ϕ0(x)
where ξ is the time-dependent family of volume and
orientation-preserving diffeomorphisms defined by

∂tξ(t,x) = v(t, ξ(t,x)), ξ(0,x) = x

By Ambrosio-DiPerna-Lions (resp. Cauchy-Lipschitz) theory on
ODEs, bounded variation (resp. Lipschitz) regularity of v in x is
enough to preserve the volume (resp. the topology) of level sets.
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The usual diffusion equation does not preserve the
volume of level sets

The usual linear diffusion equation ∂tϕ = 4ϕ cannot be
written in form

∂tϕ+∇ · (vϕ) = 0, ∇ · v = 0

and, therefore, cannot preserve the volume of the level sets of ϕ.
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A concept of "admissible" solutions

DEFINITION We say that a pair (ϕ,v) on [0,T ]× Td is admissible
if ϕ is transported by v

∂tϕ+∇ · (vϕ) = 0

and v is a divergence-free vector-field (with zero mean in x).
When v has Sobolev regularity Ws,2 in x , s ≥ 1 is enough to
enforce the volume preservation of all level sets (DiPerna-Lions’
theory), but not their topology unless s > d/2 + 1.
In the case s = 0, we will focus on for notational simplicity, we will
speak only of "formal preservation".
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Balance of energy for smooth admissible solutions

LEMMA 1 For any SMOOTH admissible pair (ϕ,v), we have

d
dt
||∇ϕ||2 = −2((v,Pg)) = ||v− Pg||2 − ||v||2 − ||Pg||2

g = −∇ · (∇ϕ⊗∇ϕ)

Here || · || and ((·, ·)) respectively denote the L2 norm and inner
product in space, while P denotes the L2 Helmholtz projection
onto divergence-free vector fields.

Observe that

d
dt
||∇ϕ||2 + ||v||2 + ||Pg||2 ≤ 0 if and only if ||v− Pg||2 = 0
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Definition of our LSVP diffusion equation

We now introduce the LSVP diffusion equation:

∂tϕ+∇ · (ϕv) = 0, v = −P∇ · (∇ϕ⊗∇ϕ)

obtained as a "gradient flow" by saturating the inequality in
Lemma 1, à la De Giorgi, Ambrosio-Gigli-Savaré.
This evolution equation is very non-linear and the local existence
of smooth solutions is not clear. However, Lemma 1 provides a
variational characterization which is powerful enough to define a
reasonable concept of generalized solutions, as shown later.
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Relations with Physics and linear algebra
Physically speaking, the LSVP equation describes the Darcy flow
(for s = 0, or Stokes flow, for s = 1) of an electrically charged
incompressible fluid (v and ϕ being the velocity and the electric
potential).

An analogous model is Moffat’s magnetic relaxation, which can
also be seen as Darcy MHD.
In this model a time-dependent 1-form Ai(t,x)dxi (the "magnetic
potential") and a divergence-free vector field v(t,x) (the velocity
of the fluid) are said admissible if A is transported by v:

∂tAi +
∑

j

dAijvj = 0, dAij = ∂jAi − ∂iAj

Then the Moffat equation can be similarly obtained as the
"gradient flow" of the Dirichlet integral

∫
||dA||2dx.
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Relations with Physics and linear algebra

With a suitable potential added to the Dirichlet integral and set on
the unit ball instead of the torus, the LSVP equations have
interesting special solutions which are linear in space

∇ϕ(t,x) = M(t)x, v(t,x) = B(t)x, M = MT, B = −BT

Then, we recover the Brockett diagonalizing gradient flow for
symmetric matrices (recently studied by V. Bach and J.-B. Bru, as
told us by M. Salmhofer):

dM
dt

= [B,M], B = [M,Q]
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LSVP DIAGONALIZATION OF SYMM. MATRICES
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15x15 symmetric matrix in diagonal form"

For a given 15x15 symmetric matrix (with random coefficients)
evolving according to the LSVP equation (with external force), the
number of off-diagonal coefficients below 0.001 tends to 15 after
time 60 (calculation performed with 6000 time steps).
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LEMMA 2 For g = −∇ · (∇ϕ⊗∇ϕ)

||Pg||2 = sup
r≥0

Kr(ϕ)− r||∇ϕ||2

where Kr(ϕ) is convex and defined, for r ≥ 0, in [0,+∞] as

sup
Eigen(∂i zk+∂k zi+rδik )≥0, ∂k zk=0

∫
∂iϕ∂kϕ(∂izk + ∂kzi + rδik ) dx − ||z||2.

Proof:
||Pg||2 = sup

∇·z=0
2((Pg, z))− ||z||2

= sup
∇·z=0

∫
∂iϕ∂kϕ(∂izk + ∂kzi) dx − ||z||2

= sup
r≥0

sup
Eigen(∂i zk+∂k zi+rδik )≥0, ∂k zk=0

∫
∂iϕ∂kϕ(∂izk + ∂kzi) dx − ||z||2
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Dissipative solutions

DEFINITION We say that an admissible pair (ϕ,v) is a dissipative
solution to the diffusion equation with initial condition ϕ(0) = ϕini
if for every nonnegative function t→ r(t) ≥ 0

” (
d
dt
− r)||∇ϕ||2 + ||v||2 + Kr(ϕ) ≤ 0 ”

holds true in integral form from 0 to t, i.e., for R(t) =
∫ t

0 r(τ)dτ ,

||∇ϕ(t)||2 +
∫ t

0
eR(t)−R(τ)[||v(τ)||2 + Kr(τ)(ϕ(τ))]dτ ≤ ||∇ϕini||2eR(t)

(which is a convex inequality).
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SOME RESULTS

THEOREM
1) The energy inequality is convex and, therefore, weakly stable.

2) The concept of admissible solutions is weakly closed.
3) For every initial condition ϕini ∈W1,2, there is always at least a
global dissipative solution.
4) For every initial condition ϕini ∈W1,2 the set of dissipative
solutions has a unique element, whenever it has a smooth one.
Of course, many problems are pending: smoothness of solutions,
actual preservation of the topology (not guaranteed by
dissipative solutions), possible disruptions and reconnections of
level sets, convergence to stationary solutions of the Euler
equations in 2D...
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