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Medical Applications: IGT and IGS

« Biomedical engineering/applied mathematical principles to
develop general-purpose algorithms and software that can be
Integrated into complete therapy/surgical delivery systems.

* Four main components of image-guided therapy (IGT):
localization, targeting, monitoring and control.

* Develop robust algorithms for:

— Segmentation - automated methods that create patient-specific models of
relevant anatomy from multi-modal data.

— Registration — automated methods that align multiple data sets with each other
and with the patient.



Advanced Multimodality Image-Guided
Operating (AMIGQO) Suite

The AMIGO Suite is the nation’s first integrated operating suite to offer immediate intra-procedural access
to an extensive range of advanced imaging modalities. AMIGO's 5,700 square-foot space is divided into
three interconnected procedure rooms housing real-time anatomic, functional, and molecular imaging,
including 3T MRI, PET/CT, fluoroscopy, and ultrasound.



* Image Processing, Dynamics, and Control
* Evolving Shapes Statically and Dynamically
e Statistics, Shape, and Estimation

e Interactive Methods



Shapes

Closed curve Closed surface



Classical Image Processing
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Measurement

Measurement:

Post-processing | imagin9_+ pOSt-

e.¢., segmentation processing, camera,
fMRI, MR, ...

Imaging
Device

What happens if measurements change over time?
How to influence the system by measured output?



“How to combine image processing, control,
and machine learning for medical image
computation?”



Examples of Shape Variation

Multiple patients Temporal
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[Dataset from C. Tempany MD, A. Szot MD, J. Zhang MD, S. Haker Ph.D.]



Surface Deformations and Flattening

Conformal and Area-Preserving Maps
— Optical Flow

Gives Parametrization of Surface
— Registration

Shows Details Hidden in Surface Folds

Path Planning
— Fly-Throughs

Medical Research
— Brain, Colon, Bronchial Pathologies
— Functional MR and Neural Activity

Computer Graphics and Visualization
— Texture Mapping



Mathematical Theory of Surface Mapping

« Conformal Mapping:

— One-one
— Angle Preserving

— Fundamental Form (E,F.G)— p(E,F,G)

« Examples of Conformal Mappings:

— One-one Holomorphic Functions
— Spherical Projection

 Uniformization Theorem:

— Existence of Conformal Mappings
— Uniqueness of Mapping



Deriving the Mapping Equation
Let P be a point on the surfaceX . Let
7% —> §%
be a conformal equivalence sendingp to the North Pole.

Introduce Conformal Coordinates(u’v) nean0 ,
with U=V =0 4p

In these coordinates, d52 = ﬂv(U,V)Z (du2 + dvzj

We can ensure that /1( p) - 1.

In these coordinates, the Laplace Beltrami operator takes the form
1 [ 0% 82
2| 27" 2
A(u,v)“\ous  ov

A =



Deriving the Equation-Continued

Set w=u+iv. The mapping z = z(w) has a simple pole at
w=0, l.e.atp .

Near p, we have a Laurent series z(w)= A+ B+C+DwW?+...

W

Apply A to get Az = AA(Vlvj .

Taking A=—,




The Mapping Equation

Simply a second order linear PDE. Solvable by standard methods.



Cortical Surface Flattening-Normal Brain




White Matter Segmentation and Flattening




Conformal Mapping of Neonate Cortex

Figure 8.4.5-12
Conformal mapping of the neonate cortical surface to the sphere. The shading scheme represents mean curvature.



Flattening a Tube

(1) Solve

AU =0 on Z\kdouo-l)

u=0 on e 50

u—=—1 on o-l

(2) Make a cut from 9 to O1 .

Make sure U is increasing along the cut.



Flattening a Tube-Continued

(3) Calculate V' on the boundary loop
o’ —>CUt—>o0, >WUl>0

by integration
oV ou
v(&)=]° —ds=[*—ds
(5) oS on

(4) Solve Dirichlet problem using boundary values of V .

0

v=g(u) +h

v =9(u)

If you want, scale so h= 272', take eu +Iv to get an
annulus.



Flattening Without Distortion-|

In practice, once the tubular surface has been flattened into a
rectangular shape, it will need to be visually inspected for
pathologies. We present a simple technique by which the entire
colon surface can be presented to the viewer as a sequence of
images or cine. In addition, this method allows the viewer to
examine each surface point without distortion at some time in the
cine. Here, we will say a mapping is without distortion at a point
If it preserves the intrinsic distance there.

It is well known that a surface cannot in general be flattened onto
the plane without some distortion somewhere. However, it may be
possible to achieve a surface flattening which is free of distortion
along some curve. A simple example of this is the familiar
Mercator projection of the earth, in which the equator appears
without distortion. In our case, the distortion free curve will be a
level set of the harmonic function (essentially a loop around the
tubular colon surface), and will correspond to the vertical line
through the center of a frame in the cine. This line is orthogonal
to the “path of flight” so that every point of the colon surface is
exhibited at some time without distortion.



Flattening Without Distortion-I|

Suppose we have conformally flattened the colon surface onto a rectangle

R = :O’umax]x[_ﬂ-’ﬂ-].

Let P be the inverse of this mapping, and let 4°=4°(U.Y) pe the amount by

Which ™ chaIes a small area near (u,v), i.e. let ¢>0be the “conformal
factor” for

w>0 U, e[

Fix ~and for.each ° U define a subset
Ry = ([Uuy = w,u, +w]x T 7,7])AR

which will correspond to the contents of a
cine frame. We define a mapping

090 ot b |



Flattening Without Distortion-Ill

We have

06 (0,.0)= (005 1)

0 1

This implies that composition of the flattening

map with G sends level set Ioop{FUo} on the surface to
the vertical line =0} in thed—¥ plane without distortion. In

addition, it follows from the formula fordG that lengths

measured in theU direction accurately reflect the lengths
of corresponding curves on the surface.



Problems of CT Colonography

* Proper preparation of bowel
 How to ensure complete inspection
- Nondistorting colon flattening program



Nondistorting colon flattening

« Simulating pathologist’ approach
* No Navigation is needed
« Entire surface Is visualized




Nondistorting Colon Flattening

Using CT colonography data

Standard protocol for CT colonography
Sixty-three patients (38 m, 25 f)

Mean age 70.2 years (from 50 to 82)



Flattened Colon
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Polyps Rendering




Finding Polyps on Original Images

Slice 79 of 131 Slice 45 of 1351
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Colon Fly-Through




Area-Preserving Flows-I

Let M be a closed, connected n-dimensional manifold. VVolume form:

r = g(x)dx,dx =dx, A .. A dX
g(x) >0

n,

Theorem (Moser):

M, N compact manifolds with volume forms = and o . Assume that M and
N are diffeomorphic. If
Juz = Jwe

then there exists a diffeomorphism of M into N taking 7 into o.



Area-Preserving Flows-I|

* The basic idea of the proof of the theorem is the
contruction of an orientation-preserving
automorphism homotopic to the identity.

« As a corollary, we get that given M and N any two
diffeomorphic surfaces with the same total area,

there exists are area-preserving diffeomorphism.
— This can be constructed explicitly via a PDE.



Area-Preserving Flows of Minimal Distortion

Let M and N be two compact surfaces with Riemannian metrics
h and g respectively, and let ¢ be an area preserving map. This

means if Q, and Q, are the area forms then

¢ (Qg) = Qh'
Many other area preserving maps from M ——N
(Just compose ¢ with any other area preserving map). Which one

has the smallest distortion?

Minimize the Dirichlet integral with respect to area-preserving
maps:

J(¢) =1/2 fM‘DﬁbP ),

This leads to explicit gradient descent equations. Method will be
discussed when we describe Monge-Kantorovich algorithms.



Registration and Mass Transport

Image registration is the process of establishing a common geomeftric frame of
reference flrom two or more data sets from the same or different imaging
modalities taken at different times.

Multimodal registration proceeds in several steps. First, each image or data set to
be matched should be individually calibrated, corrected from imaging distortions.
cleaned from noise and imaging artifacts. Next, a measure of dissimilarity between
the data sets must be established, so we can quantify how close an image is from
another after transformations are applied to them. Similarity measures

include the proximity of redefined landmarks, the distance between contours, the
difference between pixel intensity values. One can extract individual features

that to be matched in each data set. Once features have been extracted from each
image, they must be paired to each other. Then, a the similarity measure between
the paired features is formulated can be formulated as an optimization problem.

We can use Monge-Kantorovich for the similarity measure in this procedure.

33



Mass Transportation Problems

dOriginal transport problem was proposed by
Gaspar Monge in 1781, and asks to move a pile
of soil or rubble to an excavation with the
least amount of work.

dModern measure-theoretic formulation given by
Kantorovich in 1942. Problem is therefore
known as Monge-Kantorovich Problem (MKP).

dMany problems in various fields can be
formulated in term of MKP: statistical physics,
functional analysis, astrophysics, reliability
theory, quality control, meteorology,
fransportation, economefrics, expert systems,
queuin? theory, hybrid systems, and nonlinear
control.

34



Monge -Kantorovich Mass Transfer Problem

Consider two density functions pqg. ¢t on R9, such that

/ﬁfﬂ:/ 1.
Qg 0y

We consider mappings @ : R* — R such that for each bounded set A C R,

/p.l(:.rr)d:r:/ Lo d.
A ii(x)eA

For @ a diffeomorphism we have (Jacobian equation)
po(x) = det(Val(x) )y o ul(x).

This the mass preservation property, and write © € M P. Call such a map mass pre-
serving (MP).

Jacobian equation has many solutions, and we want to pick out an optimal one in some
sense. We define the LP-Kantoroviech—Wasserstein metric as follows:

dpl o, p11)? 1= _ mfIP/” — x)||Ppo(z) dx.

Optimal MP map, when it exists chooses a map with a preferred geometry (like the Riemann
mapping theorem) in the plane.



Algorithm for Optimal Transport-1I

Subdomains with smooth boundaries and positive densities:

2.2, C R¢

f{‘}n o — fﬂ] K1

We consider diffeomorphisms which map one density to the
other:

1o = det(Du )y o u

We call this the mass preservation (MP) property. We let u be a
mitial MP mapping.

36



Algorithm for Optimal Transport-II

We consider a one-parameter family of MP maps derived as follows:

U:=uost s=s5(.t), po=det(Ds)ugo s

Notice that from the MP property of the mapping s, and definition of the family,
iy = ——Dit - ¢, ¢ = pg5:0 5
o '

div ¢ =0

37



Algorithm for Optimal Transport-III

We consider a functional of the following form which we infimize with respect to
the maps U :

M) = Iﬂﬂ@(ﬂ.(m, t) —x)(x) dx

= | Dufy) —s(y,t)o(y) dy, x=s(y.t). s (olx)dr)=po(y)dy

Taking the first variation:

M (t) = — f (u — s) . 5¢) pody
= — [(®'(u(x,t) —x), posiost) dz
— QD<(I) (a(l’f) o 'T) <> dr

38



Algorithm for Optimal Transport-IV
First Choice:
(=®(—z)4+ Vp
div ( =0
Clan, tangential to 9Ny

This leads to following system of equations:
Ap +div (&' (7 —x)) =0, on Q

ap — ]~ ;
2L -d(g — ) = (
=+ -4 (& —x) =0, on 9

39



Algorithm for Optimal Transport-V

This equation can be written mn the non-local form:

du 1 - A — .
o= = - — Du- (I-VAT'V - )d/ (i — x)

At optimality. it is known that
o~
¢'(u —z) = Va

where ¢ 1s a function. Notice therefore for an optimal
solution, we have that the non-local equation becomes

du
Z—0

40



Solution of L2 M-K and Polar Factorization

For the L2 Monge-Kantorovich problem. we take
D [I) — |§_L
This leads to the following “non-local” gradient descent equation:
Uy = —1/poVa(a — VAT div())
Notice some of the motivation for this approach. We take:
U =uost=Vwi+ry, div(y) =0 Helmholtz decomp.

The 1dea 1s to push the fixed initial u around (considered as a vector
field) using the 1-parameter family of MP maps s(x.t). in such a manner
as to remove the divergence free part. Thus we get that at optumality

u = Vwos Polar factorization

41



GPGPU OMT Solver Implementation
Legend

, C ) Cg Rendering Pass
Warp Evolution
— Data Path

Interpolation Map Update X {_ h\'

F j -F-Ci:nergv Computation = Restriction
Map Update ¥
II\"- Relaxation — E-P (Sum)

Multigrid Laplacian Inversion Time Step Adjustment

30 Curl

LDivergence {l_D

Map Update £

Fig. 1. Outline of processing for the OMT solver conducted on the GPU. Processing occurs in two major phases: evolution of the map from source to target volumes and time
step adjustment. Each gray reclangle represents one Cg kernel executed on the GRUL Arrows indicate the fow of data volumes through the Cg kernels. The entive process in
the figure, above 15 repeated left to right until convergence.

CPU Eumputatiun GPU E-::umputati-::m
Operation 3
f/l!— § Operation ?1  i— §
Oparation 1 i"/r!- ! ! ! ! ! Operation | 1{'.!- ! ! ! ! !
' TN ] N
Ol = | H— jlfﬁ\ | H—
Oparation 2 ™ o 1 Vi oy NN
- N NI
| s
pn :_—7 \ / :_-7
I'C]_ -7 \\m._'_ra-ﬂ"f .7
, Epl:ral'.i-}n n | |
3n Operations Total 1 Operations Total

Fig. 2. CPU versus GPU solution af PDEs: While the CPU computes updates on data geids one element at a time, the GPU is capable of updating entive grids in one pass due 1o
their massively parallel architecture.
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Times Speedup: GPU vs CPU

80
70 e

//
20 ""/
/

103

Times Speedup
&

¥ T
327 647 128%
Grid SiFe

Fig. 3. The GPU realizes an inoreasing advantage in solving the OMT problem over
the CPU as grid size increases up to 1287 sized grids.,
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Brain Sag




Beating Heart




Flame Motion




Surface Warping-|

M-K allows one to find area-correcting
flattening. After conformally flattening
surface, define density mu_0 to be determinant of
Jacobian of inverse of flattening map, and mu_1 to be
constant. MK optimal map is then area-correcting.




Surface Warping-ll




Example of OMT Mapping on Spherical Shape




Hexahedral Meshes-I

Hexahedral vs. tetrahedral meshes

Construct a volume preserving mapping onto a solid cube
and generate canonical hexahedral (as opposed to
tetrahedral)

Idea: first register to a cube, generate mesh,
then deform to preserve volume



Hexahedral Meshes-I|

Volumetric results for a database of 3-D prostates
extracted from MRI imaging

Top row: prostates
Bottom row: volumetric map shown via mesh slicing
(shell color --- layer of cube)



OMT for Cardiac Dynamics
Afib Is joint work with Rob Macleod (Utah)



Atrial Fibrillation Video




What We Know About AF

Dedlfferentlatlon

L eft.Atrium

Connexins
AF

Pulmonary
\Veins s

Substrate Triggers



The Million $ Mechanistic Question

Afib begets Afib

1l

Aflb Is a
tissue
disease

1l



Longitudinal Interpolation
of Image and Shape

Two images scanned att = Tpand t = 11(> 1)
Generate image samples at times ¢ < [T[;.. 'Tl]
via OMT-transport-interpolation between samples

Starting at:
)= 1(x. To)/||1(To)]|2 and py == (@ T3) /[ 1(T7)|]2

optlmal transport mapping w computed
by minimizing the Kantorovich-Wasserstein functional equation



Specifics

Setv = (ﬂ(i) — ;I?)f(Tl — T{])
define w : RY x [T, T}] — R? as

w(x, t) =x+ (t —Thv (1)
define the image sequence:
I(w.t) = det (J(w(z.1))) po(w(a. 1)) (2)
Note that
[(x. f',)|r=T.;] = 1ip(x) and I{‘ar.f.)h:ﬂ = 11(x) (3)

This is a geodesic pathin the space of densities with respect
to the Wasserstein 2-metric. The Wasserstein metric imparts
a natural Riemannian structure to the space of densities.



Image flow-extrapolation

Geodesics can be extrapolated (slightly) into the future

— let t go beyond 77 and obtain an estimated density at time beyond 7}
— since w is diffeomorphism, so is w for all ¢ € [T[;.. Tl]
—for t > T3, w exists and is diffeomorphic for t € [T, 17 + €.



Interpolation of images/statistics

The image [ (a) above can also be a binary volume representation
of an anatomical shape. Statistical shape analysis can then be
“interpolated” to any time point between 7 and 7.

Denote shapes at times 1 and 7; as: ]
INae, Ty), ..., I{(x. Ty)and I{(x, TY), ..., I{ (2. 7)) : R* — {0.1}

Denote a second group of shapes as:
[P(z.Ty), ..., [¥(x. Ty)and [P (2. TY), ..., [¥(z.T1) : R®* — {0, 1}

Using OMT, a continuous shape trajectory between Iy and 17 can be
computed as [} : R? x [T}, T1] — [0, 1]



Registration

Then, attime 7 & [‘T.;]. Tl], in order to compute the regions where the two
groups are statistically different, we first register the two groups

[Ma.t), ..., I{(x.t)and [P(x, 1), ..., [9(x,t).

-
#

Registration is accomplished by arbitrarily picking one of the shapes, [, and
registering all the others to it by minimizing the energy E (A‘g ) with respect
to each similarity transformation A’ : R® — R”, where

E{\A.{) = / (If(ﬂ‘f ox,t) — f{x;zr;ﬁ])udm. je{A B}, (4
. ic{l.....MorN}. (5

After registration, we denote the registered shapes:
M t), ..., I{y(x. t)and IP(x. 1), ..., I%(x.1).



Mean Shape

— The mean shape M : R® x [Ty, Ty] — [0, 1] is the arithmetic average:
1
M+ N

M(x.t) = (I’i(i t)+ -+ Ijﬁr(;r. t)+ IF(&?. t)+---+ I}?(m. t{))

— The mean shape surface S(t) C R? is the 0.5-isosurface of M (x. 1)
— For each of the registered shapes, If S,
a signed distance function D;? T R? 1o, T1) — Ris:
Di(w.t) = infyes||@ —yll.  if I (x.t) <05
o —intyes ||z — yll2, i I(xz,t) > 0.5

jJe{A B}, 1€{1,.... M or N'}



Hypothesis Testing

All shapes are converted to functions defined on the same domain .5 by
restricting )/’s to S

For each s on .S, two groups of numbers {D:(s)} and {D”(s)} can be
extracted. Under the null hypothesis that the means of the two groups are
the same, we perform the student ¢-test, and the corresponding p-value is
recorded for the point s

The final corrected p-values give a scalar p-value map I” : S — [0, 1]
defined on the mean shape surface at each time



Longitudinal shape analysis

« Two groups of LA shapes
« AFib cured/recurred after ablation
« Each subject has two time points
« Shape differences along time?
« Shape interpolation using optimal mass transport
e Shape analysis at continuous time points

« Statistical differences in the distribution of the
contrast agent (related with fibrosis) between
cured/recurred groups?




Traumatic Brain Injury

4/6 5/6 1 7/6

Healing of TBI. The number below each image indicates “time.” Only times 0 and 1 are
real images, and all the others are computed using the proposed OMT method. The healing
process of the injured region pointed to the arrow is better illustrated by the gradual pro-
oression than simply having the two original images at time 0 and 1. The prediction in the
near future is shown on the bottom-right.



Spemes Classification

Embedding of the distance graph of eight teeth models using multi-dimensional
scaling. Different colors represent different lemur species. The graph suggests that the
geometry of the teeth might be used to classify species. Taken from

CONFORMAL WASSERSTEIN DISTANCES: COMPARING SURFACES IN
POLYNOMIAL TIME by Lipman and Daubechies.



Matrix OMT - motivation

Optimal power transport (OPT)
— antenna arrays
— time-series analysis

— spectrograms
g rf{r‘f ! £
Ll ﬁ
(! ﬂ.ﬁql

o



Matrix OMT formulation
My, M matrix densities on C" Hermitian in [0, 1] x C™*"
Joint density M on C" & C" in [0, 1] x Cr*x®’
traceg(M) = M, trace, (M) = M,

Clx,y) = l|T—y||i +)tl|tﬂ( ) — try( )Hr

transp. cost “rotation” cost

win [ ([l =l + Al (M) — (MO ) x(M)dady
N=Y

M .
r i . _|' .lll




Matrix-
atrix-valued spectrogram A M"MMMIAI[Mﬁfﬁ'ﬁ,:;"h’ﬁ'{'ﬁ?{h‘rﬁi}
AN AR




Geodesic tracking




Geodesic tracking

— eigenvectors at “peak” frequencies ~ directionality of source

Maximum-entropy spectrogram OMT tracking



Concluding Remarks

¢ Segmentation

— Dynamic Active Contours

— Finsler Geometry

— Bayesian Statistics (Particle Filtering)
— Interactive Control Methods

* Registration
— Optimal Mass Transport
— Texture Mappings
— Meshes
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