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Medical Applications: IGT and IGS

• Biomedical engineering/applied mathematical principles to 

develop general-purpose algorithms and software that can be 

integrated into complete therapy/surgical  delivery systems.

• Four main components of image-guided therapy (IGT): 

localization, targeting, monitoring and control.

• Develop robust algorithms for:
– Segmentation - automated methods that create patient-specific models of 

relevant anatomy from multi-modal data.

– Registration – automated methods that align multiple data sets with each other 

and with the patient.



Advanced Multimodality Image-Guided 

Operating (AMIGO) Suite
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• Image Processing, Dynamics, and Control

• Evolving Shapes Statically and Dynamically

• Statistics, Shape, and Estimation

• Interactive Methods



6

Shapes

Closed curve Closed surface
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Classical Image Processing

System:

plane, brain,  

heart, ...

Measurement:

imaging + post-

processing, camera, 

fMRI, MRI, ...

What happens if measurements change over time?

How to influence the system by measured output?
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“How to combine image processing, control, 

and machine learning for medical image 

computation?” 



Examples of Shape Variation
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[Dataset from C. Tempany MD, A. Szot MD, J. Zhang MD, S. Haker Ph.D.]

Multiple patients Temporal



Surface Deformations and Flattening

• Conformal and Area-Preserving Maps
– Optical Flow

• Gives Parametrization of Surface
– Registration

• Shows Details Hidden in Surface Folds

• Path Planning
– Fly-Throughs

• Medical Research
– Brain, Colon, Bronchial Pathologies

– Functional MR and Neural Activity

• Computer Graphics and Visualization
– Texture Mapping



Mathematical Theory of Surface Mapping

• Conformal Mapping:
– One-one

– Angle Preserving

– Fundamental Form 

• Examples of Conformal Mappings:
– One-one Holomorphic Functions

– Spherical Projection

• Uniformization Theorem:
– Existence of Conformal Mappings

– Uniqueness of Mapping
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Deriving the Mapping Equation

Let p  be a point on the surface   . Let 

 

be a conformal equivalence sending  p   to the North Pole. 

 

Introduce Conformal Coordinates  vu,   near  p ,  

with 
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 at 
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. 
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Deriving the Equation-Continued

Set ivuw  . The mapping  wzz   has a simple pole at 

0w , i.e. at p . 
 

Near p , we have a Laurent series    2DwCB
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The Mapping Equation
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Simply a second order linear PDE. Solvable by standard methods. 



Cortical Surface Flattening-Normal Brain



White Matter Segmentation and Flattening



Conformal Mapping of Neonate Cortex



Flattening a Tube
(1) Solve 
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     (2) Make a cut from  0
   to  1  . 

     Make sure u  is increasing along the cut. 
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Flattening a Tube-Continued

 (3) Calculate  v    on  the boundary loop  

                    00 1   cutcut
 

      by integration  
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 (4)  Solve Dirichlet problem using boundary values  of   v  . 

 

 
 

If you want, scale so   2h ,  take  
ivue 

 to get an 

annulus. 

v = g(u) + h

u = 1u = 0

v = g(u)



Flattening Without Distortion-I

In practice, once the tubular surface has been flattened into a 

rectangular shape, it will need to be visually inspected for 

pathologies.  We present a simple technique by which the entire 

colon surface can be presented to the viewer as a sequence of 

images or cine.  In addition, this method allows the viewer to 

examine each surface point without distortion at some time in the 

cine.  Here, we will say a mapping is without distortion at a point 

if it preserves the intrinsic distance there. 

 

It is well known that a surface cannot in general be flattened onto 

the plane without some distortion somewhere.  However, it may be 

possible to achieve a surface flattening which is free of distortion 

along some curve. A simple example of this is the familiar 

Mercator projection of the earth, in which the equator appears 

without distortion.  In our case, the distortion free curve will be a 

level set of the harmonic function (essentially a loop around the 

tubular colon surface), and will correspond to the vertical line 

through the center of a frame in the cine.  This line is orthogonal 

to the “path of flight” so that every point of the colon surface is 

exhibited at some time without distortion. 



Flattening Without Distortion-II

 

Suppose we have conformally flattened the colon surface onto a rectangle  

 
    ,,0 max  uR .  

 

 Let F  be the inverse of this mapping, and let  vu,22     be the amount by  

Which 
F

 scales a small area near  vu, ,  i.e. let 0   be the “conformal 
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F
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Flattening Without Distortion-III

We have  
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This implies that composition of the flattening  

map  with G   sends level set loop  0uu  on the surface to 

the vertical line  0ˆ u  in the vu ˆˆ  plane without distortion. In 

addition, it follows from the formula for dG  that lengths 

measured in the û  direction accurately reflect the lengths 

of corresponding curves on the surface. 



Problems of CT Colonography

• Proper preparation of bowel

• How to ensure complete inspection

 Nondistorting colon flattening program



Nondistorting colon flattening

• Simulating pathologist’ approach

• No Navigation is needed

• Entire surface is visualized



Nondistorting Colon Flattening

• Using CT colonography data

• Standard protocol for CT colonography

• Sixty-three patients (38 m, 25 f)

• Mean age 70.2 years (from 50 to 82)



Flattened Colon



Polyps Rendering



Finding Polyps on Original Images



Colon Fly-Through



Area-Preserving Flows-I

Let M be a closed, connected n-dimensional manifold. Volume form: 
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Theorem (Moser):  

 

M, N compact manifolds with volume forms      and     .    Assume that  M and 

N are diffeomorphic. If 

 

                                                  NM , 

then there exists a diffeomorphism of M into N taking   into  . 



Area-Preserving Flows-II

• The basic idea of the proof of the theorem is the 

contruction of an orientation-preserving 

automorphism homotopic to the identity.

• As a corollary, we get that given M and N any two 

diffeomorphic surfaces with the same total area, 

there exists are area-preserving diffeomorphism.
– This can be constructed explicitly via a PDE.



Area-Preserving Flows of Minimal Distortion
 

 

 

  

Let M  and N   be two compact surfaces with Riemannian metrics 

h  and g  respectively, and let    be an area preserving map. This 

means if g  and h  are the area forms then  

             .)(*
hg   

Many other area preserving maps from NM   

(just compose   with any other area preserving map). Which one 

has the smallest distortion? 

 

Minimize the Dirichlet integral with respect to area-preserving 

maps: 

 

                    
J(þ) = 1=2

R

M
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This leads to explicit gradient descent equations. Method will be 

discussed when we describe Monge-Kantorovich algorithms. 
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Brain Sag



Beating Heart



Flame Motion



Surface Warping-I

M-K allows one to find area-correcting

flattening. After conformally flattening

surface, define density mu_0 to be determinant of

Jacobian of inverse of flattening map, and mu_1 to be 

constant.  MK optimal map is then area-correcting.



Surface Warping-II



Example of OMT Mapping on Spherical Shape



Hexahedral Meshes-I

Construct a volume preserving mapping onto a solid cube
and generate canonical hexahedral (as opposed  to 
tetrahedral)

Idea: first register to a cube, generate mesh,
then deform to preserve volume

Hexahedral vs. tetrahedral meshes



Hexahedral Meshes-II

Volumetric results for a database of 3-D prostates
extracted from MRI imaging

Top row: prostates
Bottom row: volumetric map shown via mesh slicing

(shell color --- layer of cube)



OMT for Cardiac Dynamics
Afib is joint work with Rob Macleod (Utah)



Atrial Fibrillation Video



What We Know About AF

Substrate Triggers 

*

Pulmonary

Veins

Left Atrium

*
*

*



The Million $ Mechanistic Question

Afib begets Afib

Afib is a 

tissue 

disease











Registration



Mean Shape



Hypothesis Testing



Longitudinal shape analysis
• Two groups of LA shapes

• AFib cured/recurred after ablation

• Each subject has two time points

• Shape differences along time?

• Shape interpolation using optimal mass transport

• Shape analysis at continuous time points

• Statistical differences in the distribution of the 

contrast agent (related with fibrosis) between 

cured/recurred groups?



Traumatic Brain Injury



Species Classification

Embedding of the distance graph of eight teeth models using multi-dimensional

scaling. Different colors represent different lemur species. The graph suggests that the

geometry of the teeth might be used to classify species. Taken from

CONFORMAL WASSERSTEIN DISTANCES: COMPARING SURFACES IN

POLYNOMIAL TIME by Lipman and Daubechies.













Concluding Remarks

• Segmentation
– Dynamic Active Contours

– Finsler Geometry

– Bayesian Statistics (Particle Filtering)

– Interactive Control Methods

• Registration
– Optimal Mass Transport

– Texture Mappings

– Meshes
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