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Introduction: continuous media

*Randomly perturbed gradient system:
dr = —VU(2)dt + \/28dW,, x € R"

*Time evolution of the probability density function, the
Fokker-Planck equation:

pr(x,t) =V - (VU(x)p(2,1)) + BAp(2, 1)

*|nvariant distribution at steady state -- Gibbs distribution:

* - 1 —V(x)/p _ —U(z)/B
P (51:)—?6 K= e dx
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Introduction: free energy view

*Freeenergy  F(p) = U(p) — BS(p)

*Potential U(p) = [RN U(z)p(x)dx

*Gibbs-Boltzmann Entropy
5(0) =~ | _p(@)logpla)da

*Fokker-Planck equation is the gradient flow of the free energy
under 2-VVasserstein metric on the manifold of probability space.

*Gibbs distribution is the global attractor of the gradient system.
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Introduction: VVasserstein metric

*Related to mass transport (Monge-Kantorovich):

p(R") = = (R") < oo,

Cost functional: I|s] ::/ c(x,s(x)) du™(z).

n

Optimal transport: s* = arg mig Is]
CIS

¢2-Wasserstein metric: minimal cost to transport p' to p?,

Wa(o',p?)? =  inf / d(z,y)2du(z, y)

HEP(pt,p?)
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Introduction

*Fokker-Planck equations + 2-Wasserstein metric: Otto, Kinderlehrer,
Villani, McCann, Carlen, Lott, Strum, Gangbo,Jordan,Evans, Brenier, Benamou, and
many many more,

*Related weak KAM: Mather, E, Fathi, Evans, ...
*Related to linear programming, manifold learning, image processing,

eComplete picture in continuous media:

_ Contitnons Fokker-Flanck =tochastic
Free Energy AT Equation [EH] A~ Liff. Equation

Gradient Flow of Ité Calculus
2 - Wazzerstem
Diztance
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Motivation

® Our Goal: establish Fokker-Planck equations on graphs with finite
vertices.

|, Laplace operator on graphs,
2,White noise to a Markov process on graphs,

® \Why on graphs: Physical space (number of sites or states) is finite,
not necessary from a spatial discretization such as a lattice.

® Applications: game theory, RNA folding, logistic, chemical reactions,
machine learning, Markov networks, numerical schemes, ...

® Mathematics: Graph theory, Mass transport, Dynamical systems,
Stochastic Processes, PDFE's, ...

® Many Recent Developments: Erbar, Mielke, Mass, Gigli, Ollivier,
Villani, Tetali, Qian,...

Tuesday, October 15, 2013



Motivation: basic setup

Graph with finite vertices:

G=(V,F), V={ay,---,an} E the edges of G

Neighbors of a vertex : N(i) = {a; € V|{a;,3;} € E}

N N

Free energy: Flp) = Wip;+ 85 pilogp;
1=1 T 1=1 T
Potential Entropy

{pi}iey Probability density function defined on the graph G

Gibbs distribution:

N
L ey, _ —¥;/B
pi = =€ wzthK—;e .
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Motivation: A toy example

Intuition: it is seamless from continuous to discrete.

Consider this potential function again:

. | Continluous Poltential Fl,fnction | D | SC ret | 73 t | on

We make a discretization
at five points

{ag =1,a0=2,a3 =
3,34 = 4, dy — 5}

R S
We set the noise strength
Figure: Potential Energy 3=0.8

Potential
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Motivation: A toy example
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Motivation

Challenges:

e Common discretizations of continuous equations often lead to incorrect results,

Theorem: Any given linear discretization of the continuous equation can be

written as p
Pi i i
P S:((S: el Pr) + c5)p;.
j k

Let

A= {2 eRY : S(S el @) + c)e™F =0},

J

Then A is a zero measure set.

* Graphs are not length spaces and many of the essential techniques cannot be used
anymore,

* The notion of random perturbation (white noise) of a Markov process on discrete
spaces is not clear.
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Our Strategies

Derive Fokker-Planck equations on graphs in two different

ways
Digcrete Free Fokker—Planck Stochastic
gradient flow transition probability
New ideas:

*White Noise for Markov processes on Graphs,
*Upwind scheme,

*ODEs for Fokker-Planck equations,

*Gradient flows on Riemannian Manifolds.
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Our Strategies

*Inspired by:

upwind scheme for numerical solutions of hyperbolic conservation laws

*Motivated by:

another interpretation of white noise on graphs

*Infuenced by:

Remarkable result of Jordan, Kinderlehrer, Otto (1998)
Heath, Kinderlehrer, Kowalczyk (2002) ; discrete and continuous ratchets
Parrondo paradox (1996); review article by Harmer, Abbott (2002)

Carlen, Gangbo (2003); nonlinear Fokker Planck, constrained gradient flow
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Our Strategies

Approach the problem from two different ways
eDefine Riemannian Manifold (M, d)

N
M = {{pf},’-"l eRY|> pi=1ip > 0}

=1

Fokker-Planck equation is the gradient flow of the free energy on the manifold.

*Add “white” noise to Markov processes on the graph.

Fokker-Planck equation describes the dynamics of the transition probability
density function.

Fokker-Planck
Equation

Theorem 1

Theoremn 2

Markov
Process
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Main Results

N

Given free energy F(p) = > .2, W;p; + Bp;log p; on a graph

G = (V,E).

Theorem |

we have a Fokker-Planck equation

dpi
d’; - Z ((Vj + Blog pj) — (Vi + Blog pi))p;
JEN(I);V; >V,
n Z ((\IJJ- + Blog pj) — (V; + Blogpj))pi
JEN(I);V;>V;
+ Y Blpi—pi)

jEN(i);\U,':\Uj
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Main Results

Given a graph G = (V, E), a “gradient Markov process” on graph
G generated by potential {W;}V ., suppose the process is
subjected to “white noise” with strength G > 0

Theorem Il

The transition probability density function of the perturbed Markov
process satisfies the following “Fokker-Planck™ equation

dp;
. = Z ((V; + Blogpj) — (Vi + Blog pi))p;
jEN(i);\TJJ’>\TJ;
n > (Y + Blog ) — (Wi + Blog pi))pi
JEN(I);V; >V,

where \Tf,' = V; + Blog p;

Equation in Theorem Il is different from the equation in Theorem |
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Properties of the Equations

The equations in both Theorem | and Theorem Il have the
following common properties

Gibbs density p* is a stable stationary solution
% . .
and is the global minimum of free energy

N
* 1 —; /B _ —; /B
pi = 7€ 'wzthK—;e .

Given any initial data pg € M, we have a unique solution

¢ p(t) : [0,00) — M with initial value pg, and

lim p(t) = p”
t— 00
¢ The boundary of M is a repeller
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Remarks

* Both equations are consistent, but non-standard,
discretization of the continuous Fokker-Planck equation by
upwind schemes.

* Both equations are gradient flows of the free energy w.r.t.
different metrics.

* Those metrics, depending on the potential function, on the
Riemannian manifolds are bounded by two metrics that are
independent of the potential.

* Near Gibbs distribution (steady state), two equations are
almost the same. The difference is small.
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Proof

ldea of Proof for Theorem |

e Construct the Riemannian manifold (M, d).

N
M = {{ﬂi}fv1 cRYN|Y pi=1;p; > 0}

1=1

difficulties: how to define d?

* Compute the gradient flow of the free energy on the
Riemannian manifold,

N N
F = Z\Pmi —I-ﬁzpz' log p;
i—1 i=1

dp
a — —gradF‘p
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Proof for Theorem Il

|deas of proof

Continuous case Discrete case
)
dx @ “gradient flow" on the graph
— = —VV
- (x)
)
dx @ ‘“gradient flow" subject to
- = —VV(x) + /26dW; “white noise” perturbation
)
@ — V. (VV)) + BAp @ Fokker-Planck equation in

ot Theorem 2
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Proof for Theorem Il

Key observations
Free Energy

F = Z W, pi + 0 Z pilog p; = Z(‘I’z + Blog p;) ps
Continuous Fokker-Planck equation
pe = V- (VUp)+ BAp=V-(VVUp+ GVp)
= V- (V¥ +8Vp/p)p] =V - [V(¥ + Blogp)p]
New potential ¥ = (¥ + Slog p)

Kolmgorov forward equation with the new potential
leads to Fokker-Planck equation in Theorem |
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Markov Process on Graphs

“Gradient Flow” on Graphs

We call the following Markov process X(t) a gradient Markov
process generated by potential {W;}V .:

For {aj,a;} € E, if ¥; > V;, the transition rate g;; from i to j is
v, -V,
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White Noise Perturbations

Markov process X (¢) on the graph with transition rate g;;

P(X(t+h) = a;j|X(t) = a;) = qijh + o(h)

Kolmgorov forward equation for probability density function

dp;
T > (W =T+ Y (Y= Wy)p;
JEN(2),¥; >V FJEN(3),W,; >,

White noise to the Markov process can be viewed as
a perturbation to its potential (transition rate)

U, — (¥; + Blog p;)
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Laplace Operator on a Graph

Laplace operator for a positive function p defined on G can be given by

Api= Y (logp;—logpi)p;+ Y (logp; —logpi)p;

JEN (2),p5>pi JEN(1),p; <p;

On an 1-D lattice with p; 1 < p; < p;+1, it becomes

Ap; = (log pi+1 — log p;)pi+1 + (log p;—1 — log p;) p
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Example : Discrete Flashing Ratchet

* Main idea: Two energy dissipative processes may lead to free
energy increasing if used alternatively or randomly,

* Related to Parrondo’s Paradox: two losing game strategies
may lead to a winning strategy if used alternatively or randomly,

e Used to explain working mechanism of molecular motors,

* There exists an extensive literature: Parrondo, Harmer,
Abbott, Heath, Kinderlehrer, Kowalczyk, Ait-Haddou,Herzog, ...
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Flashing Ratchet

Two energy decreasing processes  Discrete Potential

(wa]

A:randomly perturbed gradient flow
of the potential function, governed by
Fokker-Planck equation in Theorem |,

dp;
d_/; - > (¥ + Blog p;) — (Wi + Blog pi))p;

+ > (W5 +Blogp;) — (Ui + Blogp)pi+ Y. Bl — pi)

JEN(i);¥;>¥; JEN(i);¥; =V,

B: randomly diffusion on the graph,
governed by the Fokker-Planck
equation in Theorem | with constant 12345678 91011121314151617181920212223
potential,

o — M (oL + o & =l
T T

dp;
d_/:f: Z B(pj — pi)

JEN(4)

In both cases, the probability density function moves
to the right (lower energy states).
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Flashing Racket

Motion from lower potential to higher potential
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Flashing Ratchet

Use A, B alternatively as: ABABAB ...

Increasing Free Energy

2.4
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free energy
— —
> oo M
| T |

—
=
T

—
2
T

—

1 50 100 150 200 250 300 350 400
times T

Tuesday, October 15, 2013



Flashing Ratchet

Free energy plot of the first 10 steps
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Influence Predictions in Networks

Given some cascades (observations of information
propagating in a network, for which the structure
may not be even known) up to a certain time.

Goal: predict the influence region at a later time.

1000——————— === = 2000

______

----- Refekence --‘--Refe}ence
|— Predicted — Predicted
800 1500
R 600 N
% % 1000
400
200! 200
0 ‘ ‘ ‘ 0 ‘ ‘ |
0 0.2 0.4 0.6 0.8 0 0.1 0.2 0.3 0.4

Tuesday, October 15, 2013



Example : Parrondo’s Paradox

Quote NYT, Jan 2000

The paradox may shed light on social
interactions and voting behaviors, Dr. Abbott
said. For example, President Clinton, who at
first denied having a sexual affair with Monica
S. Lewinsky (game A) saw his popularity rise
when he admitted that he had lied (game B.)
The added scandal created more good for Mr.
Clinton.
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The End

Thank You'!




