Free Energy, Fokker-Planck Equations, and Random walks on a Graph with Finite Vertices

> *Haomin Zhou* Georgia Institute of Technology

Jointly with *S.-N. Chow* (Georgia Tech) *Wen Huang* (USTC) *Yao Li* (NYU)

Research Supported Partially by NSF/DTRA, ONR

Outline

- **Introduction and Motivation**
- Main results
- Idea of proof
- Examples

Introduction: continuous media

•Randomly perturbed gradient system:

$$
dx = -\nabla\Psi(x)dt + \sqrt{2\beta}dW_t, \quad x \in R^N
$$

•Time evolution of the probability density function, the Fokker-Planck equation:

$$
\rho_t(x,t) = \nabla \cdot (\nabla \Psi(x)\rho(x,t)) + \beta \Delta \rho(x,t)
$$

•Invariant distribution at steady state -- Gibbs distribution:

$$
\rho^*(x) = \frac{1}{K} e^{-\Psi(x)/\beta} \qquad K = \int_{\mathbb{R}^N} e^{-\Psi(x)/\beta} dx
$$

Introduction: free energy view

•Free energy $F(\rho) = U(\rho) - \beta S(\rho)$

•**Potential**
$$
U(\rho) = \int_{\mathbb{R}^N} \Psi(x) \rho(x) dx
$$

•**Gibbs-Boltzmann Entropy**

$$
S(\rho) = -\int_{\mathbb{R}^N} \rho(x) \log \rho(x) dx
$$

•Fokker-Planck equation is the gradient flow of the free energy under 2-Wasserstein metric on the manifold of probability space.

•Gibbs distribution is the global attractor of the gradient system.

Introduction: Wasserstein metric T original transport problem, problem, problem, problem, problem, as as α introduction: vvasserstein metric of work. In modern parlance, we are given two nonnegative Radon measures µ[±] on Rⁿ

•Related to mass transport (Monge-Kantorovich): so that cords that cords the work required to move a unit mass from the position α except a unit mass from the position α • Related to mass transport (Monge-Kantorovich): simply proportional to the distance moved.)

Our problem is therefore to find and characterize an optimal mass transfer s[∗] ∈ A which

measure µ⁺ onto µ[−] and, among all such mappings, minimizes I[·]. We will later see that a

This is even now, over two hundred years later, a difficult mathematical problem, owing

really remarkable array of interesting mathematical and physical interpretations follow.

The total work corresponding to a mass rearrangement plan s ∈ A is thus the total work corresponding to a is t
A is thus thus the total work corresponding to a is thus the total work corresponding to a isolate to a isolat

$$
\mu(\mathbb{R}) - \mu(\mathbb{R}) < \infty,
$$
\n
$$
\sum_{\mathbf{x} = \mathbf{spt}(\mathbb{R}^+)} \mathsf{Cost functional: } I[\mathbf{s}] := \int_{\mathbb{R}^n} c(x, \mathbf{s}(x)) d\mu^+(x).
$$
\n
$$
\sum_{\mathbf{x} = \mathbf{spt}(\mathbb{R}^+)} \mathsf{Optimal transport: } s^* = \arg \min_{s \in A} I[s]
$$

X=spt(µ**+) Y=spt(**µ**-)**

In other words, we wish to construct a one-to-one mapping ^s[∗] : ^Rⁿ [→] ^Rⁿ which pushes the

h(y) dµ−(y) (1.3)

 $\mathcal{L}=\mathcal{$

I[s]. (1.5)

 $\mu + (\mathbb{D}^n) = \mu - (\mathbb{D}^n) < \infty$

^c : ^Rⁿ [×] ^Rⁿ [→] [0, [∞]);

•2-Wasserstein metric: Rn n metric: minimal cost to tran $\mathcal{L} = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{1}{j} \sum$ $\sqrt{2}$ = $\sqrt{2}$ minimal cost to transport ρ^1 to ρ^2 ,

$$
W_2(\rho^1, \rho^2)^2 = \inf_{\mu \in \mathcal{P}(\rho^1, \rho^2)} \int d(x, y)^2 d\mu(x, y)
$$

minimizes the work:

Introduction

•Fokker-Planck equations + 2-Wasserstein metric: Otto, Kinderlehrer, Villani, McCann, Carlen, Lott, Strum, Gangbo,Jordan,Evans, Brenier, Benamou, and many many more,

- •Related weak KAM: Mather, E, Fathi, Evans, ... \mathbf{F} of the Theorems \mathbf{F} of the Theorems \mathbf{F}
- •Related to linear programming, manifold learning, image processing, **Exercice Commeation Construction**
	- •Complete picture in continuous media:

Motivation

- Our Goal: establish Fokker-Planck equations on graphs with finite vertices.
	- 1, Laplace operator on graphs,
	- 2, White noise to a Markov process on graphs,
- Why on graphs: Physical space (number of sites or states) is finite, not necessary from a spatial discretization such as a lattice.
- Applications: game theory, RNA folding, logistic, chemical reactions, machine learning, Markov networks, numerical schemes, ...
- Mathematics: Graph theory, Mass transport, Dynamical systems, Stochastic Processes, PDE's, ...
- Many Recent Developments: Erbar, Mielke, Mass, Gigli, Ollivier, Villani, Tetali, Qian,...

Motivation: basic setup and the equipotential set of ai as a set of ai as
In the extent of ai as a set of ai

Graph with finite vertices: $\mathcal{C}^{\text{max}}_{\text{max}}$ and $\mathcal{C}^{\text{max}}_{\text{max}}$ and $\mathcal{C}^{\text{max}}_{\text{max}}$ and $\mathcal{C}^{\text{max}}_{\text{max}}$

we define the set of predecessors of σ and σ are defined by a set of ai as σ

the set of successors of aⁱ as

$$
G = (V, E), \quad V = \{a_1, \cdots, a_N\} \qquad E \text{ the edges of } G
$$

Riemannian metric g) is $\overline{}$ Neighbors of a vertex C^{∞} and C^{∞} are \mathcal{A}^{∞} and \mathcal{A}^{∞} and \mathcal{A}^{∞} is the X , \mathcal{A}^{∞} $\textsf{lex} \; : N(i) = \{a_j \in V | \{a_i, a_j\} \in E\}$

Free energy: Potential Entropy \overline{P} \blacksquare $(i=1)$ $(i=1)$ $F(\rho) = \sum$ *N i*=1 $\Psi_i \rho_i + \beta$ \sum *N i*=1 $\rho_i \log \rho_i$

 $\left\{ \rho_{i}\right\} _{i=1}^{N}$ Probability density function defined on the graph G **density funct** j ects $\frac{1}{2}$ \overline{a} defined on the graph \overline{a}

 \blacksquare Shuite Chow, Wen Huang, Yao Li, Hanno Chow, Yao Li, Hanno Chow, Yao Li, Hanno On Graph with Finite Vertices Vertices \blacksquare \overline{C} : \overline{C} \over Gibbs distribution:

$$
\rho_i^* = \frac{1}{K} e^{-\Psi_i/\beta} \text{ with } K = \sum_{i=1}^N e^{-\Psi_i/\beta}.
$$

is the unique stationary distribution of equation (2.8) in M, and the free energy F attains

 $e^{i\theta}$ is the neighborhood of air $e^{i\theta}$ is the neighborhood of air $e^{i\theta}$ is the neighborhood of air $e^{i\theta}$

Our Motivation

Then

Motivation: A toy example Varion Propriet of the Theorems of the Theorems of the Theorems of the Theorems of the Theorem **N** LUY

Intuition: it is seamless from continuous to discrete.

Examples

Consider this potential function again:

Figure: Potential Energy

.
Г Discretization

.. $3, a_4 = 4, a_5 = 5$. We make a discretization at five points ${a_1 = 1, a_2 = 2, a_3 =$

. **Noise**

.. $\beta = 0.8$ We set the noise strength

.

Motivation: A toy example

Continuous

Discrete (central- difference scheme):

Figure: Central Difference

 $\mathcal{F}_{\mathcal{F}}$ for $\mathcal{F}_{\mathcal{F}}$ and $\mathcal{F}_{\mathcal{F$

Motivation

Challenges:

• Common discretizations of continuous equations often lead to incorrect results,

Theorem: Any given linear discretization of the continuous equation can be written as

$$
\frac{d\rho_i}{dt} = \sum_j \left(\left(\sum_k e_{jk}^i \Phi_k \right) + c_j^i \right) \rho_j.
$$

Let

$$
A = \{ \Phi \in \mathbb{R}^N : \sum_j ((\sum_k e_{jk}^i \Phi_k) + c_j^i) e^{-\frac{\Phi_j}{\beta}} = 0 \}.
$$

Then A is a zero measure set.

• Graphs are not length spaces and many of the essential techniques cannot be used anymore,

• The notion of random perturbation (white noise) of a Markov process on discrete spaces is not clear.

Our Strategies Proof of the Theorems

Derive Fokker-Planck equations on graphs in two different ways edges; Neighborhood of the new setting in the new setting of the new setting in the new setting of an interval of \sim

New ideas:

Our Motivation

- •White Noise for Markov processes on Graphs, .
... ie for Markov
Ieme \mathbf{L} pi occases \overline{a}
- •Upwind scheme, -1
- •ODEs for Fokker-Planck equations, $r_{\rm i}$
- •Gradient flows on Riemannian Manifolds.

Our Strategies

•Inspired by:

upwind scheme for numerical solutions of hyperbolic conservation laws

•Motivated by:

another interpretation of white noise on graphs

•Infuenced by:

- Remarkable result of Jordan, Kinderlehrer, Otto (1998) \bullet
- Heath, Kinderlehrer, Kowalczyk (2002) ; discrete and continuous ratchets \bullet
- Parrondo paradox (1996); review article by Harmer, Abbott (2002) \bullet
- Carlen, Gangbo (2003); nonlinear Fokker Planck, constrained gradient flow \bullet

Our Strategies

Approach the problem from two different ways

•Define Riemannian Manifold (*M, d*)

$$
\mathcal{M} = \left\{ \{ \rho_i \}_{i=1}^N \in \mathbb{R}^N \mid \sum_{i=1}^N \rho_i = 1; \rho_i > 0 \right\}
$$

 $C_{\rm eff}$ and $C_{\rm eff}$ and $V_{\rm eff}$ and $V_{\rm eff}$ and $V_{\rm eff}$ and $V_{\rm eff}$ is the $X_{\rm eff}$ is the $X_{\rm eff}$

 \cdot n is the \cdot Main Results Fokker-Planck equation is the gradient flow of the free energy on the manifold.

• Add "white" noise to Markov processes on the graph.

Remark 1 Fokker-Planck equation describes the dynamics of the transition probability density function.

Both equations (2) and (3) are spatial discretizations of

Main Results <u>Main Results in the set of the set</u> Proof of the Theorems **Manual**

Give Given free energy ${\mathcal F}(\rho)=\sum_{i=1}^N\Psi_i\rho_i+\beta\rho_i\log\rho_i$ on a graph $G = (V, E).$

Theorem 1 Theorem I G = (V, E).
G = (V, E). we have a Fokker-Planck equation in the form of the state o
Planck equation is a form of the state of the

we have a Fokker-Planck equation i idiich cy $(\bullet + \bullet \bullet \bullet$

$$
\frac{d\rho_i}{dt} = \sum_{j \in N(i); \Psi_j > \Psi_i} ((\Psi_j + \beta \log \rho_j) - (\Psi_i + \beta \log \rho_i)) \rho_j
$$

+
$$
\sum_{j \in N(i); \Psi_i > \Psi_j} ((\Psi_j + \beta \log \rho_j) - (\Psi_i + \beta \log \rho_i)) \rho_i
$$

+
$$
\sum_{j \in N(i); \Psi_i = \Psi_j} \beta(\rho_j - \rho_i)
$$

Main Results IMAIN main Results

Given a graph $G = (V, E)$, a "gradient Markov process" on graph G generated by potential $\{\Psi_i\}_{i=1}^N$, suppose the process is subjected to "white noise" with strength $\beta > 0$ Given a graphy

Introduction

Examples

Theorem II we have a Fokker-Planck equation (different from the fokker-Planck equation (different from the focker-Planck e
The form the form th

nsition probabilit.
seatisfies the folle Sa ((Ψ^j + β log ρj) − (Ψⁱ + β log ρi))ρ^j $\frac{1}{2}$ subjected to "with strength $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$ $\frac{1}{2}$ u ansierum probability density function of the perturbe ess salisties lite followit The transition probability density function of the perturbed Markov process satisfies the following "Fokker-Planck" equation

$$
\frac{d\rho_i}{dt} = \sum_{j \in N(i); \bar{\Psi}_j > \bar{\Psi}_i} ((\Psi_j + \beta \log \rho_j) - (\Psi_i + \beta \log \rho_i))\rho_j
$$

$$
+ \sum_{j \in N(i); \bar{\Psi}_j > \bar{\Psi}_i} ((\Psi_j + \beta \log \rho_j) - (\Psi_i + \beta \log \rho_i))\rho_i
$$

 \mathcal{L} and \mathcal{L} and \mathcal{L} and \mathcal{L} $\$ where $\overline{\Psi}_i = \Psi_i + \beta \log \rho_i$

Equation in Theorem II is different from the equation in Theorem I

Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou Fokker-Planck Equation on Graph with Finite Vertices Tuesday, October 15, 2013

Properties of the Equations Examples Theorem 1 \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare

The equations in both Theorem I and Theorem II have the following common properties Introduction Proposed the Theorems of the Theorems of the Theorem set of the Theorem is the Theorem of the Theorem is the T
The Theorem is the T ang i ne Proof of the Theorems **Porpr** llowing common pr \mathbf{r} J∪LI I Theorem Lond Theorem 1 perties
}

Introduction

j∈P(i)

Gibbs density ρ^* is a stable stationary solution and is the global minimum of free energy Gibbs density a \bigwedge in \bigwedge (2) The Gibbs distribution of the Gibbs distribution of the Gibbs distribution of the Gibbs distribution of th
The Gibbs distribution of the Gibbs distribution of the Gibbs distribution of the Gibbs distribution of the Gi

$$
\rho_i^* = \frac{1}{K} e^{-\Psi_i/\beta} \text{ with } K = \sum_{i=1}^N e^{-\Psi_i/\beta}.
$$

Given any initial data $\rho_0 \in \mathcal{M}$, we have a unique $\rho(t):[0,\infty)\to \mathcal{M}$ with initial value ρ_0 , and Given any initial data $\rho_0 \in \mathcal{M}$, we have a unique solution $\rho(t):[0,\infty)\rightarrow \mathcal{M}$ with initial value ρ_0 , and limt→∞ ρ(t) = ρ[∗] ϵ is the unique stationary distribution of equation (2.8) in M, and the free energy ϵ minimum at the Given any initial da $\rho(t):[0,\infty)\rightarrow \mathcal{M}$ with initial value ρ_0 , and with initial value \mathcal{N} in \mathcal{N} is and \mathcal{N} satisfies and \mathcal{N} satisfies and \mathcal{N}

$$
\lim_{t \to \infty} \rho(t) = \rho^*
$$

 $c = \frac{1}{\sqrt{2}}$ is called a solution of equation of equation (2.8) with initial value p

The boundary of $\mathcal M$ is a repeller **Remarks 2.4. 1. A continuous function provided** provided provided provided provided provided provided provided p
Provided provided provided

Then

Remarks

• Both equations are consistent, but non-standard, discretization of the continuous Fokker-Planck equation by upwind schemes.

• Both equations are gradient flows of the free energy w.r.t. different metrics.

• Those metrics, depending on the potential function, on the Riemannian manifolds are bounded by two metrics that are independent of the potential.

• Near Gibbs distribution (steady state), two equations are almost the same. The difference is small.

Proof

Idea of Proof for Theorem I

• Construct the Riemannian manifold (*M, d*).

$$
\mathcal{M} = \left\{ {\rho_i} \}_{i=1}^N \in \mathbb{R}^N \mid \sum_{i=1}^N \rho_i = 1; \rho_i > 0 \right\}
$$

difficulties: how to define *d*?

• Compute the gradient flow of the free energy on the Riemannian manifold,

$$
F = \sum_{i=1}^{N} \Psi_i \rho_i + \beta \sum_{i=1}^{N} \rho_i \log \rho_i
$$

$$
\frac{d\rho}{dt} = -\text{grad} F|_{\rho}
$$

Proof for Theorem II

 $S_{\rm eff}$, $N_{\rm eff}$ \sim $L_{\rm eff}$ \sim $L_{\rm eff}$ \sim $L_{\rm eff}$ \sim $L_{\rm eff}$ with $T_{\rm eff}$ with $T_{\rm eff}$ with $T_{\rm eff}$ \sim $L_{\rm eff}$ \sim

Theorem 1

Main Results

Ideas of proof Iday of Pro

- "gradient flow" on the graph
- "gradient flow" subject to "white noise" perturbation
- **•** Fokker-Planck equation in Theorem 2

Proof for Theorem II

Key observations

Free Energy

$$
F = \sum \Psi_i \rho_i + \beta \sum \rho_i \log \rho_i = \sum (\Psi_i + \beta \log \rho_i) \rho_i
$$

Continuous Fokker-Planck equation

$$
\rho_t = \nabla \cdot (\nabla \Psi \rho) + \beta \Delta \rho = \nabla \cdot (\nabla \Psi \rho + \beta \nabla \rho)
$$

=
$$
\nabla \cdot [(\nabla \Psi + \beta \nabla \rho/\rho)\rho] = \nabla \cdot [\nabla (\Psi + \beta \log \rho)\rho]
$$

New potential $\overline{\Psi} = (\Psi + \beta \log \rho)$

Kolmgorov forward equation with the new potential leads to Fokker-Planck equation in Theorem II

Markov Process on Graphs Introduction VIIV DO C

"Gradient Flow" on Graphs

We call the following Markov process $X(t)$ a gradient Markov process generated by potential $\{\Psi_i\}_{i=1}^N$: For $\{a_i, a_j\} \in E$, if $\Psi_i > \Psi_j$, the transition rate q_{ij} from *i* to *j* is $\Psi_i - \Psi_i$.

Examples

White Noise Perturbations

Markov process $X(t)$ on the graph with transition rate q_{ij}

$$
P(X(t + h) = a_j | X(t) = a_i) = q_{ij}h + o(h)
$$

Kolmgorov forward equation for probability density function

$$
\frac{d\rho_i}{dt} = \sum_{j \in N(i), \Psi_i > \Psi_j} (\Psi_j - \Psi_i)\rho_i + \sum_{j \in N(i), \Psi_j > \Psi_i} (\Psi_j - \Psi_i)\rho_j
$$

White noise to the Markov process can be viewed as a perturbation to its potential (transition rate)

$$
\Psi_i \to (\Psi_i + \beta \log \rho_i)
$$

Laplace Operator on a Graph

Laplace operator for a positive function ρ defined on G can be given by

$$
\Delta \rho_i = \sum_{j \in N(i), \rho_j > \rho_i} (\log \rho_j - \log \rho_i) \rho_j + \sum_{j \in N(i), \rho_j < \rho_i} (\log \rho_j - \log \rho_i) \rho_i
$$

On an 1-D lattice with $\rho_{i-1} < \rho_i < \rho_{i+1}$, it becomes

$$
\Delta \rho_i = (\log \rho_{i+1} - \log \rho_i)\rho_{i+1} + (\log \rho_{i-1} - \log \rho_i)\rho_i
$$

Example : Discrete Flashing Ratchet

- Main idea: Two energy dissipative processes may lead to free energy increasing if used alternatively or randomly,
- Related to Parrondo's Paradox: two losing game strategies may lead to a winning strategy if used alternatively or randomly,
- Used to explain working mechanism of molecular motors,
- There exists an extensive literature: Parrondo, Harmer, Abbott, Heath, Kinderlehrer, Kowalczyk, Ait-Haddou,Herzog, ...

Flashing Ratchet

Two energy decreasing processes

A: randomly perturbed gradient flow of the potential function, governed by Fokker-Planck equation in Theorem I,

$$
\frac{d\rho_i}{dt} = \sum_{j \in N(i); \Psi_j > \Psi_i} ((\Psi_j + \beta \log \rho_j) - (\Psi_i + \beta \log \rho_i)) \rho_j
$$

+
$$
\sum ((\Psi_j + \beta \log \rho_j) - (\Psi_i + \beta \log \rho_i)) \rho_i + \sum
$$

j∈*N*(*i*);Ψ*i*=Ψ*^j* $\beta(\rho_j - \rho_i)$

B: randomly diffusion on the graph, governed by the Fokker-Planck equation in Theorem I with constant potential,

Discrete Potential

 $\mathcal{F}_{\mathcal{A}}$ for example, lett \mathcal{A} and discrete potential function on 1

 $S_{\rm eff}$, $N_{\rm eff}$ \sim $N_{\rm eff}$ \sim $N_{\rm eff}$ \sim $N_{\rm eff}$ \sim $N_{\rm eff}$ with \sim $N_{\rm eff}$ \sim $N_{\rm eff}$

.

 $rac{d\rho_i}{dt} = \sum_{i \in \mathcal{N}_i}$ *j*∈*N*(*i*) $\beta(\rho_j - \rho_i)$

j∈*N*(*i*);Ψ*i>*Ψ*^j*

In both cases, the probability density function moves to the right (lower energy states).

Flashing Racket

Discrete Flashing Ratchet

 P is the Theorems of the Th

Motion from lower potential to higher potential And directed motion could be observed: And directed motion could be observed:

Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou Fokker-Planck Equation on Graph with Finite Vertices

.

Directed Motion

Flashing Ratchet Examples

Use A, B alternatively as: ABABAB...

Increase and the control of the control of

Flashing Ratchet Property Examples D otokot

Free energy plot of the first 10 steps Evergy vs. Time T is the free energy in first 10 μ processes and B proce

Influence Predictions in Networks

Given some cascades (observations of information propagating in a network, for which the structure may not be even known) up to a certain time.

Goal: predict the influence region at a later time.

Example : Parrondo's Paradox

Quote NYT, Jan 2000

The paradox may shed light on social interactions and voting behaviors, Dr. Abbott said. For example, President Clinton, who at first denied having a sexual affair with Monica S. Lewinsky (game A) saw his popularity rise when he admitted that he had lied (game B.) The added scandal created more good for Mr. Clinton.

The End

Thank You!