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Introduction: continuous media

•Randomly perturbed gradient system:

•Time evolution of the probability density function, the 
Fokker-Planck equation:

•Invariant distribution at steady state -- Gibbs distribution:  

dx = −∇Ψ(x)dt +
√

2βdWt, x ∈ RN

ρt(x, t) = ∇ · (∇Ψ(x)ρ(x, t)) + β∆ρ(x, t)

ρ∗(x) =
1

K
e−Ψ(x)/β K =

∫

RN

e−Ψ(x)/β dx
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Introduction: free energy view

•Free energy

•Potential

•Gibbs-Boltzmann Entropy

•Fokker-Planck equation is the gradient flow of the free energy 
under 2-Wasserstein metric on the manifold of probability space. 

•Gibbs distribution is the global attractor of the gradient system. 

F (ρ) = U(ρ)− βS(ρ)

U(ρ) =

∫

RN

Ψ(x)ρ(x)dx

S(ρ) = −
∫

RN

ρ(x) log ρ(x)dx
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Introduction:  Wasserstein metric
•Related to mass transport (Monge-Kantorovich):

•2-Wasserstein metric:  

so that c(x, y) records the work required to move a unit mass from the position x ∈ Rn to
a new position y ∈ Rn. (In Monge’s original problem c(x, y) = |x − y|; that is, the work is
simply proportional to the distance moved.)

s

X=spt(µ+)  
Y=spt(µ-)  

The total work corresponding to a mass rearrangement plan s ∈ A is thus

I[s] :=

∫

Rn

c(x, s(x)) dµ+(x). (1.4)

Our problem is therefore to find and characterize an optimal mass transfer s∗ ∈ A which
minimizes the work:

I[s∗] = min
s∈A

I[s]. (1.5)

In other words, we wish to construct a one-to-one mapping s∗ : Rn → Rn which pushes the
measure µ+ onto µ− and, among all such mappings, minimizes I[·]. We will later see that a
really remarkable array of interesting mathematical and physical interpretations follow.

This is even now, over two hundred years later, a difficult mathematical problem, owing
mostly to the highly nonlinear structure of the constraint. For instance, if µ± have smooth
densities f±, that is, if

dµ+ = f+dx, dµ− = f−dy, (1.6)

then (1.2) reads

f+(x) = f−(s(x))det(Ds(x)) (x ∈ X), (1.7)

where we write s = (s1, . . . , sn) and

Ds =







s1
x1

. . . s1
xn

. . .
sn

x1
. . . sn

xn







n×n

= Jacobian matrix of the mapping s.
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1 Introduction

These notes are a survey documenting an interesting recent trend within the calculus of
variations, the rise of differential equations techniques for Monge–Kantorovich type optimal
mass transfer problems. I will discuss in some detail a number of recent papers on various
aspects of this general subject, describing newly found applications in the calculus of vari-
ations itself and in physics. An important theme will be the rather different analytic and
geometric tools for, and physical interpretations of, Monge–Kantorovich problems with a
uniformly convex cost density (here exemplified by c(x, y) = 1

2 |x − y|2) versus those prob-
lems with a nonuniformly convex cost (exemplified by c(x, y) = |x − y|). We will as well
study as applications several physical processes evolving in time, for which we can identify
optimal Monge–Kantorovich mass transferences on “fast” time scales.

The current text corrects some minor errors in earlier versions, improves the exposition
a bit, and adds a few more references. The interested reader may wish to consult as well the
lecture notes of Urbas [U1] and of Ambrosio [Am] for more.

1.1 Optimal mass transfer

The original transport problem, proposed by Monge in the 1780’s, asks how best to move a
pile of soil or rubble (“déblais”) to an excavation or fill (“remblais”), with the least amount
of work. In modern parlance, we are given two nonnegative Radon measures µ± on Rn,
satisfying the overall mass balance condition

µ+(Rn) = µ−(Rn) < ∞, (1.1)

and we consider the class of measurable, one-to-one mappings s : Rn → Rn which rearrange
µ+ into µ−:

s#(µ+) = µ−. (1.2)

In other words, we require
∫

X

h(s(x)) dµ+(x) =

∫

Y

h(y) dµ−(y) (1.3)

for all continuous functions h, where X = spt(µ+), Y = spt(µ−). We denote by A the
admissible class of mappings s as above, satisfying (1.2), (1.3)

Given also is the work or cost density function

c : R
n × R

n → [0,∞);

3
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s1
x1

. . . s1
xn

. . .
sn

x1
. . . sn

xn







n×n

= Jacobian matrix of the mapping s.
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Cost functional:

Optimal transport:

W2(ρ
1, ρ2)2 = inf

µ∈P(ρ1,ρ2)

∫
d(x, y)2dµ(x, y)

minimal cost to transport ρ1 to ρ2,

s∗ = arg min
s∈A

I[s]
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Introduction
•Fokker-Planck equations + 2-Wasserstein metric: Otto, Kinderlehrer, 
Villani, McCann, Carlen, Lott, Strum, Gangbo,Jordan,Evans, Brenier, Benamou, and 
many many more, 

•Related weak KAM: Mather, E, Fathi, Evans, ... 

•Related to linear programming, manifold learning, image processing,

•Complete picture in continuous media: 

. . . . . .

Introduction
Main Results

Proof of the Theorems
Examples

Wasserstein Metric (RN)

.

.

X = RN , and µ1, µ2 are Borel probability measures, the 2-Wasserstein distance
is

d2(µ1, µ2) = inf
p∈P(µ1,µ2)

Z

RN×RN
|x − y |2p(dxdy)

where P(µ1, µ2) is the collection of Borel probability measures on Rn × Rn with

marginals µ1 and µ2.

Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou Fokker-Planck Equation on Graph with Finite Vertices
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Motivation

• Our Goal: establish Fokker-Planck equations on graphs with finite 
vertices.

• Why on graphs: Physical space (number of sites or states) is finite, 
not necessary from a spatial discretization such as a lattice.

• Applications: game theory, RNA folding, logistic, chemical reactions, 
machine learning, Markov networks,  numerical schemes, ...

• Mathematics: Graph theory, Mass transport, Dynamical systems, 
Stochastic Processes, PDE’s, ... 

• Many Recent Developments:  Erbar,  Mielke, Mass, Gigli, Ollivier,  
Villani, Tetali, Qian,...

1, Laplace operator on graphs,
2, White noise to a Markov process on graphs,
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Motivation: basic setup

Graph with finite vertices:

Free energy:

Potential Entropy

Probability density function defined on the graph 

. . . . . .
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Our Motivation

Consider a graph G = (V , E ), V = {a1, · · · , aN} = X , E is the
edges; N(i) = {aj ∈ V |{ai , aj} ∈ E} is the neighborhood of ai .

M =

{
{ρi}N

i=1 ∈ RN |
N∑

i=1

ρi = 1; ρi > 0

}

Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou Fokker-Planck Equation on Graph with Finite Vertices
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E the edges of GG = (V,E), V = {a1, · · · , aN}
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We have obtained the Riemannian manifold (M, g). Now we fix β ≥ 0, then we will get the free
energy F on space M as follow:

(2.5) F (ρ) =
N∑

i=1

Ψiρi + β
N∑

i=1

ρi log ρi for ρ ∈ M.

Thus, we have the gradient flow of F on (M, g)

(2.6)
dρ

dt
= −gradF (ρ)

where gradF (ρ) is on the tangent space TρM. Then we consider (2.6) as the discrete Fokker-Planck
equation on M. If the differential of F is denoted by diffF , then (2.6) could be expressed as

(2.7) gρ(
dρ

dt
, σ) = −diffF (ρ).σ ∀σ ∈ TρM.

Finally, by (2.7) and the identification (2.1) we will obtain the explicit expression of discrete
Fokker-Planck equation on M. Now we are ready to show our main results.

Theorem 2.3. Given the graph G = (V, E), potentials Ψi on V and β ≥ 0. For a vertex ai in G,
we define the set of predecessors of ai as

P(i) = {j ∈ {1, 2, · · · , N}|{ai, aj} ∈ E, Ψi < Ψj},
the set of successors of ai as

S(i) = {j ∈ {1, 2, · · · , N}|{ai, aj} ∈ E, Ψi > Ψj}
and the equipotential set of ai as

E(i) = {j ∈ {1, 2, · · · , N}|{ai, aj} ∈ E, Ψi = Ψj}.
Then

(1) The Fokker-Planck equation on M (that is, the gradient flow (2.6) of free energy under
Riemannian metric g) is

dρi

dt
=

∑

j∈P(i)

((Ψj − Ψi)ρj + β(log ρj − log ρi)ρj)(2.8)

+
∑

j∈S(i)

((Ψj − Ψi)ρi + β(log ρj − log ρi)ρi)

+
∑

j∈E(i)

β(ρj − ρi)

for i = 1, 2, · · · , N .
(2) The Gibbs distribution

(2.9) ρ∗i =
1
K

e−Ψi/β with K =
N∑

i=1

e−Ψi/β .

is the unique stationary distribution of equation (2.8) in M, and the free energy F attains
minimum at the Gibbs distribution.

(3) Given ρ0 ∈ M. Then there exists a unique solution ρ(t) : [0,∞) → M to equation (2.8)
with initial value ρ0, and ρ(t) satisfies
(a) The free energy F (ρ(t)) decreases when time t increases.
(b) ρ(t) → ρ∗ under the Euclid metric of RN when t → +∞, where ρ∗ = (ρ∗i )N

i=1.

Remark 2.4. 1. Given ρ0 ∈ M. A continuous function ρ(t) : [0, c) → M for some c > 0 or
c = +∞ is called a solution of equation (2.8) with initial value ρ0, if ρ(0) = ρ0 and ρ(t) ∈ M
satisfying equation (2.8) for t ∈ (0, c). We believe that for any ρ0 ∈ M, there exists a unique

Gibbs distribution:

F (ρ) =
N∑

i=1

Ψiρi + β
N∑

i=1

ρi log ρi

Neighbors of a vertex

. . . . . .
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Motivation: A toy example

. . . . . .

Introduction
Main Results

Proof of the Theorems
Examples

Main Results

A toy example

Consider this potential function again:

Figure: Potential Energy

.
Discretization
..

.

We make a discretization
at five points
{a1 = 1, a2 = 2, a3 =
3, a4 = 4, a5 = 5}.

.
Noise
..

.

We set the noise strength
β = 0.8

Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou Fokker-Planck Equation on Graph with Finite Vertices

Intuition: it is seamless from continuous to discrete.
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Motivation: A toy example
Continuous  

Discrete (central- difference scheme):  

. . . . . .
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Main Results
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Main Results

compare - stationary distribution

Central difference scheme

Figure: Central Difference

Fokker-Planck equations.

Figure: Fokker-Planck Equations

Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou Fokker-Planck Equation on Graph with Finite Vertices

Wrong answer
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Motivation

Challenges:

• Common discretizations of continuous equations often lead to incorrect results,

• Graphs are not length spaces and many of the essential techniques cannot be used 
anymore,

• The notion of random perturbation (white noise) of a Markov process on discrete 
spaces is not clear.

Theorem: Any given linear discretization of the continuous equation can be
written as

dρi

dt
=

∑

j

((
∑

k

ei
jkΦk) + ci

j)ρj .

Let
A = {Φ ∈ RN :

∑

j

((
∑

k

ei
jkΦk) + ci

j)e
−Φj

β = 0}.

Then A is a zero measure set.

Tuesday, October 15, 2013



Our Strategies

New ideas:

•White Noise for Markov processes on Graphs,  
•Upwind scheme, 
•ODEs for Fokker-Planck equations, 
•Gradient flows on Riemannian Manifolds.                            

Derive Fokker-Planck equations on graphs in two different 
ways

. . . . . .
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Examples

Our Motivation

Consider a graph G = (V , E ), V = {a1, · · · , aN} = X , E is the
edges; N(i) = {aj ∈ V |{ai , aj} ∈ E} is the neighborhood of ai .

M =

{
{ρi}N

i=1 ∈ RN |
N∑

i=1

ρi = 1; ρi > 0

}
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gradient flow transition probability
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Our Strategies

Remarkable result of Jordan, Kinderlehrer, Otto (1998)

Heath, Kinderlehrer, Kowalczyk (2002) ;  discrete and continuous ratchets

Parrondo paradox (1996); review article by Harmer, Abbott (2002)

Carlen, Gangbo (2003); nonlinear Fokker Planck, constrained gradient flow

•Inspired by: 

•Motivated by:

•Infuenced by:

upwind scheme for numerical solutions of hyperbolic conservation laws

another interpretation of white noise on graphs
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Our Strategies

Approach the problem from two different ways

. . . . . .
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Main Results

Remark 1

Both equations (2) and (3) are spatial discretizations of
Fokker-Planck equation (RN) based on upwind scheme

Both equations are gradient flows of free energy, but on
different spaces

Gibbs density is a stable stationary solution of both equations

Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou Fokker-Planck Equation on Graph with Finite Vertices

•Define Riemannian Manifold

•Add “white” noise to Markov processes on the graph. 

. . . . . .
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Our Motivation

Consider a graph G = (V , E ), V = {a1, · · · , aN} = X , E is the
edges; N(i) = {aj ∈ V |{ai , aj} ∈ E} is the neighborhood of ai .

M =

{
{ρi}N

i=1 ∈ RN |
N∑

i=1

ρi = 1; ρi > 0

}

Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou Fokker-Planck Equation on Graph with Finite VerticesFokker-Planck equation is the gradient flow of the free energy on the manifold.

 Fokker-Planck equation describes the dynamics of the transition probability 
density function. 

(M, d)
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Main Results

Theorem 1

. . . . . .
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Main Results

Theorem 1

Given free energy F (ρ) =
∑N

i=1 Ψiρi + βρi log ρi on a graph
G = (V , E ).

we have a Fokker-Planck equation

dρi

dt
=

∑

j∈N(i);Ψj>Ψi

((Ψj + β log ρj) − (Ψi + β log ρi ))ρj (2)

+
∑

j∈N(i);Ψi>Ψj

((Ψj + β log ρj) − (Ψi + β log ρi ))ρi

+
∑

j∈N(i);Ψi=Ψj

β(ρj − ρi )

equation (2) is the gradient flow of free energy on a
Riemannian manifold (M, g) with distance dΨ

Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou Fokker-Planck Equation on Graph with Finite Vertices
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Main Results

Theorem II

. . . . . .

Introduction
Main Results

Proof of the Theorems
Examples

Main Results

Theorem 2

Given a graph G = (V , E ), a “gradient Markov process” on graph
G generated by potential {Ψi}N

i=1, suppose the process is
subjected to “white noise” with strength β > 0

we have a Fokker-Planck equation (different from the
equation in Theorem 1)

dρi

dt
=

∑

j∈N(i);Ψ̄j>Ψ̄i

((Ψj + β log ρj) − (Ψi + β log ρi ))ρj

+
∑

j∈N(i);Ψ̄j>Ψ̄i

((Ψj + β log ρj) − (Ψi + β log ρi ))ρi (3)

where Ψ̄i = Ψi + β log ρi

Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou Fokker-Planck Equation on Graph with Finite Vertices
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The transition probability density function of the perturbed Markov 
process satisfies the following “Fokker-Planck” equation 

Equation in Theorem II is different from the equation in Theorem I
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Properties of the Equations

The equations in both Theorem I and Theorem II have the 
following common properties

. . . . . .
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Theorem 1

Gibbs density ρ∗ is a stable stationary solution of equation (2)
and is the global minimum of free energy

Given any initial data ρ0 ∈ M, we have a unique solution
ρ(t) : [0,∞) → M with initial value ρ0, and
limt→∞ ρ(t) = ρ∗

The boundary of M is a repeller of equation (2)

Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou Fokker-Planck Equation on Graph with Finite Vertices
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We have obtained the Riemannian manifold (M, g). Now we fix β ≥ 0, then we will get the free
energy F on space M as follow:

(2.5) F (ρ) =
N∑

i=1

Ψiρi + β
N∑

i=1

ρi log ρi for ρ ∈ M.

Thus, we have the gradient flow of F on (M, g)

(2.6)
dρ

dt
= −gradF (ρ)

where gradF (ρ) is on the tangent space TρM. Then we consider (2.6) as the discrete Fokker-Planck
equation on M. If the differential of F is denoted by diffF , then (2.6) could be expressed as

(2.7) gρ(
dρ

dt
, σ) = −diffF (ρ).σ ∀σ ∈ TρM.

Finally, by (2.7) and the identification (2.1) we will obtain the explicit expression of discrete
Fokker-Planck equation on M. Now we are ready to show our main results.

Theorem 2.3. Given the graph G = (V, E), potentials Ψi on V and β ≥ 0. For a vertex ai in G,
we define the set of predecessors of ai as

P(i) = {j ∈ {1, 2, · · · , N}|{ai, aj} ∈ E, Ψi < Ψj},
the set of successors of ai as

S(i) = {j ∈ {1, 2, · · · , N}|{ai, aj} ∈ E, Ψi > Ψj}
and the equipotential set of ai as

E(i) = {j ∈ {1, 2, · · · , N}|{ai, aj} ∈ E, Ψi = Ψj}.
Then

(1) The Fokker-Planck equation on M (that is, the gradient flow (2.6) of free energy under
Riemannian metric g) is

dρi

dt
=

∑

j∈P(i)

((Ψj − Ψi)ρj + β(log ρj − log ρi)ρj)(2.8)

+
∑

j∈S(i)

((Ψj − Ψi)ρi + β(log ρj − log ρi)ρi)

+
∑

j∈E(i)

β(ρj − ρi)

for i = 1, 2, · · · , N .
(2) The Gibbs distribution

(2.9) ρ∗i =
1
K

e−Ψi/β with K =
N∑

i=1

e−Ψi/β .

is the unique stationary distribution of equation (2.8) in M, and the free energy F attains
minimum at the Gibbs distribution.

(3) Given ρ0 ∈ M. Then there exists a unique solution ρ(t) : [0,∞) → M to equation (2.8)
with initial value ρ0, and ρ(t) satisfies
(a) The free energy F (ρ(t)) decreases when time t increases.
(b) ρ(t) → ρ∗ under the Euclid metric of RN when t → +∞, where ρ∗ = (ρ∗i )N

i=1.

Remark 2.4. 1. Given ρ0 ∈ M. A continuous function ρ(t) : [0, c) → M for some c > 0 or
c = +∞ is called a solution of equation (2.8) with initial value ρ0, if ρ(0) = ρ0 and ρ(t) ∈ M
satisfying equation (2.8) for t ∈ (0, c). We believe that for any ρ0 ∈ M, there exists a unique
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Remarks

• Both equations are consistent, but non-standard,  
discretization of the continuous Fokker-Planck equation by 
upwind schemes.

• Both equations are gradient flows of the free energy w.r.t. 
different metrics.

• Those metrics, depending on the potential function, on the 
Riemannian manifolds are bounded by two metrics that are 
independent of the potential. 

• Near Gibbs distribution (steady state), two equations are 
almost the same. The difference is small. 
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Proof

• Construct the Riemannian manifold

 

• Compute the gradient flow of the free energy on the 
Riemannian manifold,

Idea of Proof for Theorem I

M =

{
{ρi}N

i=1 ∈ RN |
N∑

i=1

ρi = 1; ρi > 0

}

F =
N∑

i=1

Ψiρi + β
N∑

i=1

ρi log ρi

dρ

dt
= −gradF |ρ

(M, d).

difficulties: how to define d?
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Proof for Theorem II

Ideas of proof

. . . . . .

Introduction
Main Results

Proof of the Theorems
Examples

Theorem 1
Theorem 2

Idea of Proof

dx

dt
= −∇Ψ(x)

dx

dt
= −∇Ψ(x) +

√
2βdWt

∂ρ

∂t
= ∇ · (∇Ψρ) + β∆ρ

“gradient flow” on the graph

“gradient flow” subject to
“white noise” perturbation

Fokker-Planck equation in
Theorem 2

Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou Fokker-Planck Equation on Graph with Finite Vertices

Continuous case Discrete case
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Proof for Theorem II

Key observations

F =
∑

Ψiρi + β
∑

ρi log ρi =
∑

(Ψi + β log ρi)ρi

Free Energy

Continuous Fokker-Planck equation

New potential Ψ̄ = (Ψ + β log ρ)

Kolmgorov forward equation with the new potential 
leads to Fokker-Planck equation in Theorem II

ρt = ∇ · (∇Ψρ) + β∆ρ = ∇ · (∇Ψρ + β∇ρ)
= ∇ · [(∇Ψ + β∇ρ/ρ)ρ] = ∇ · [∇(Ψ + β log ρ)ρ]
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Markov Process on Graphs

“Gradient Flow” on Graphs

. . . . . .

Introduction
Main Results

Proof of the Theorems
Examples

Theorem 1
Theorem 2

Gradient Flow on the Graph

We call the following Markov process X (t) a gradient Markov
process generated by potential {Ψi}N

i=1:
For {ai , aj} ∈ E , if Ψi > Ψj , the transition rate qij from i to j is
Ψi − Ψj .

Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou Fokker-Planck Equation on Graph with Finite Vertices
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White Noise Perturbations

Markov process X(t) on the graph with transition rate qij

Kolmgorov forward equation for probability density function
dρi

dt
=

∑

j∈N(i),Ψi>Ψj

(Ψj −Ψi)ρi +
∑

j∈N(i),Ψj>Ψi

(Ψj −Ψi)ρj

P (X(t + h) = aj |X(t) = ai) = qijh + o(h)

White noise to the Markov process can be viewed as
a perturbation to its potential (transition rate)

Ψi → (Ψi + β log ρi)
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Laplace Operator on a Graph

Laplace operator for a positive function ρ defined on G can be given by

∆ρi =
∑

j∈N(i),ρj>ρi

(log ρj − log ρi)ρj +
∑

j∈N(i),ρj<ρi

(log ρj − log ρi)ρi

On an 1-D lattice with ρi−1 < ρi < ρi+1, it becomes

∆ρi = (log ρi+1 − log ρi)ρi+1 + (log ρi−1 − log ρi)ρi
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Example : Discrete Flashing Ratchet

• Main idea: Two energy dissipative processes may lead to free 
energy increasing if used alternatively or randomly,

• Related to Parrondo’s Paradox: two losing game strategies 
may lead to a winning strategy if used alternatively or randomly, 

• Used to explain working mechanism of molecular motors,

• There exists an extensive literature: Parrondo, Harmer, 
Abbott, Heath, Kinderlehrer, Kowalczyk, Ait-Haddou,Herzog, ...
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Flashing Ratchet

Discrete Potential

. . . . . .

Introduction
Main Results

Proof of the Theorems
Examples

Discrete Flashing Ratchet

Ratchet like Potential

For example, let’s consider a discrete potential function on 1-D
path

Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou Fokker-Planck Equation on Graph with Finite Vertices

Two energy decreasing processes
A: randomly perturbed gradient  flow 
of the potential function, governed by 
Fokker-Planck equation in Theorem I,  

B: randomly diffusion on the graph, 
governed by the Fokker-Planck 
equation in Theorem I with constant 
potential, 

In both cases, the probability density function moves 
to the right (lower energy states).

dρi

dt
=

∑

j∈N(i);Ψj>Ψi

((Ψj + β log ρj)− (Ψi + β log ρi))ρj

+
∑

j∈N(i);Ψi>Ψj

((Ψj + β log ρj)− (Ψi + β log ρi))ρi +
∑

j∈N(i);Ψi=Ψj

β(ρj − ρi)

dρi

dt
=

∑

j∈N(i)

β(ρj − ρi)
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Flashing Racket

Motion from lower potential to higher potential

. . . . . .
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Proof of the Theorems
Examples

Discrete Flashing Ratchet

Directed Motion

And directed motion could be observed:

Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou Fokker-Planck Equation on Graph with Finite Vertices
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Examples

Discrete Flashing Ratchet

Directed Motion

And directed motion could be observed:

Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou Fokker-Planck Equation on Graph with Finite Vertices

Initial distribution Final distribution
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Flashing Ratchet

Use A, B alternatively as:   ABABAB ...

. . . . . .

Introduction
Main Results

Proof of the Theorems
Examples

Discrete Flashing Ratchet

Increasing Energy

However, take two process alternatively like “ABAB......”, the free
energy increases.

Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou Fokker-Planck Equation on Graph with Finite Vertices
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Flashing Ratchet

Free energy plot of the first 10 steps

. . . . . .

Introduction
Main Results

Proof of the Theorems
Examples

Discrete Flashing Ratchet

Evergy vs. Time

This is the free energy in first 10 A processes and B processes

Figure: energy vs time

Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou Fokker-Planck Equation on Graph with Finite VerticesTuesday, October 15, 2013



Influence Predictions in Networks

Given some cascades (observations of information 
propagating in a network, for which the structure 
may not be even known) up to a certain time.

Goal: predict the influence region at a later time. 
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Influence Prediction for Continuous-Time Diffusion Networks
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Figure 5. From left to right columns: influence prediction results of networks ID=1,2,3,4 respectively. Top row: reference (blue dashed)
and predicted (green solid) σ(t) versus time t. Middle row: relative error of predicted σ(t) versus time t. Red diamond marks the end of
observation at t = T0, and begin of prediction. Bottom row: reference(dashed) vs. estimated (solid) Fn(t) using Algorithm 1 for some
selected n.
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Figure 6. Prediction time horizon T1 versus observation time horizon T0 for networks ID=1,2,3,4 (left to right columns). The values
of T1 (green circles) shows when the predicted σ(t) has larger than 5% relative error to the reference influence when cascades were
observed up to T0. For example, in the first plot, the circle near point (0.04, 0.07) implies that the predicted influence σ(t) is within 5%
relative error from true σ(t) until T1 = 0.07 based only on observations up to T0 = 0.04.

the predictions are quite accurate for an additional T0 as
T1 = 2T0 in our tests: the relative errors of σ(t) to the
reference σ̃(t) (reference is obtained by simulated sample
cascades on entire [0, T1]), |σ(t) − σ̃(t)|/σ̃(t), remains in
5% for t ∈ (T0, T1] as shown in the second row of Figure
5. The above results suggest that the cumulative density
functions Fn(t) of infection number I(t) are robust quan-
tity for influence prediction. Moreover, Algorithm 1 has
explicit forms with extremely low computational cost, and
it is robust, stable, and independent of the actual infection
model in diffusion networks.

To demonstrate the prediction power of Algorithm 1, we

test on different observation time horizon T0 and see how
far the predicted σ(t) is within 5% relative error to the
ground truth σ̃(t). The time that σ(t) goes beyond the 5%
interval is marked as T1. The results are shown in Figure 6
for the four test networks. As can be seen, the power of pre-
diction improves extremely fast as more data are observed.
This also suggests an online-updating strategy of influence
prediction using the proposed Algorithm.
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Example : Parrondo’s Paradox

Quote NYT, Jan 2000

The paradox may shed light on social 

interactions and voting behaviors, Dr. Abbott 

said. For example, President Clinton, who at 

first denied having a sexual affair with Monica 

S. Lewinsky (game A) saw his popularity rise 

when he admitted that he had lied (game B.) 

The added scandal created more good for Mr. 

Clinton.!
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The End
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Discrete Flashing Ratchet

The End
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