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Outline

Prediction is very difficult, especially about
the future.
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Flow in porous media
Flow in porous media is used for

I Enhanced Oil Recovery
I CO2 sequestration monitoring
I Salt water intrusion monitoring



Enhanced Oil Recovery
Inject CO2 to push oil out
Goal: image and control the flow



CO2 Sequestration monitoring

Is the CO2 staying in the ground?
Where does it flow to?



Salt water intrusion monitoring
Is salt water polluting fresh water aquifer?



Flow in porous media

Governing equations (IMPES formulation)

∇ · ~u = q IMP

~u = λs(s)κ∇p
st +∇ · (~uλ(s)) = 0 ES

I Given s0 and parameters possible to solve for p
and s(t)

I In realistic situations κ, λ and s0 are known to
very low accuracy (or not at all)

I Difficult to predict the flow



Flow in porous media

Prediction is very difficult
Long term prediction impossible

Improving prediction

I Drill

I History match well data

.

I Use imaging to ”see” the fluids
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Imaging flow

In general, consider the dynamical system

ṡ = f(s, u) s(0) = s0

I Dynamical system with uncertain inputs

I Let the dynamics run for a short time and use
data to update parameters

I Improve flow model

I Data assimilation



Imaging flow
I Use time laps imaging for fluid flow
I Fluids change the physical properties

Goal: Combine imaging and dynamics to better
predict the flow



Imaging fluids and flow
Electromagnetic methods

∇× µ−1∇× ~e + iωσ(s)~e = iω~q

d = Q~e = QF(σ)

~e - electric field σ - conductivity

Seismic methods

∆u+ ω2γ(s)u = q

d = Qu = QF(γ)

u - pressure field γ - seismic velocity

In general: F(m) + ε = d



Model Flow Problem - Tracer flow

Flow equations

∇ · ~u = q

~u = κ(x)∇p
st +∇ · (~u s) = 0

s - saturation
p - pressure
κ - hydraulic conductivity tensor



Model Imaging - Borehole tomography

Place sources and receivers in boreholes/surface and
measure seismic/electric fields



Assumptions

I Flow
st +∇ · (~u(κ, p)s) = 0 s(0, x) = s0

I The imaging problem is linear w.r.t s
Tomography
d(t) = As(t) + ε



Goals

Prediction and control

st +∇ · (~u(κ, p)s) = 0 s(0, x) = s0

As(t) + ε = d

I No need for the pressure!

I Recover the velocity ~u and the saturation s



Similarity to super resolution
Super Resolution - Use a number of low-res
images to obtain a single high-res image

4 Numerical examples

In this section we demonstrate that the coupled algorithms can be superior to
uncoupled approaches for the super-resolution problem. For the numerical
tests reported in this section, we use a magnetic resonance (MR) image,
which is available in Matlab. The original high resolution image with 1282

pixels, together with three low resolution images of 322 pixels, is shown in
Figure 2.

(a) (b)

(c) (d)

Figure 2: The high resolution image is shown in (a), and three selected low
resolution images are shown in (b-d).

We assume that we have 32 low resolution images which are generated
by a sequence of rotations and translations of the original image. For the
reconstruction we choose quadratic regularization with L a discretization of
the gradient operator. Since the regularization is quadratic we have used
only the partially coupled approach and the decoupled approach described
in Section 3. For each algorithm we compare the reconstructed image with

13

AI(u)s+ ε = d



Similarity to super resolution

Super Resolution - Use a number of low-res
images to obtain a single high-res image

I Solve for s ans ~u

I Similar to the problem of super resolution [Elad

& Furer, 90, Chung, H & Nagy 06, Borzi & Kunisch 07]

I Main differences - More complex dynamics and
observation operators

I Similar mathematical structure



Solution through optimization

min
s,~u

J (s0, ~u)

s.t. st +∇ · (~us) = 0 s(0, x) = s0

I Similar to the optimal control approach to
OMT of Benamou & Brenier

I But there are major differences



Solution through optimization

min
s,~u

J (s0, ~u) =
∑

j

‖As(tj)− dj‖2 + αsRs(s) + αuRu(~u)

s.t. st +∇ · (~us) = 0 s(0, x) = s0

I Optimal∗ mass transport - optimality criteria
based on data

I OMT does not have a unique solution and
require regularization

I Choice of regularization- motivated by the
physics of the problem
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Solution through optimization

Continuous problem minJ (u)

Discretize then optimize Optimize then discretize

Discretize u and J Compute g(u) = ~∇uJ (u) = 0

compute g(u) = ~∇uJ(u) Discretize gh(u) = 0
Solve the discrete problem Solve the discrete PDE

I In general gh(u) 6= g(u)

I gh(u) is not a gradient of any discrete function

I No guaranteed descent

I Convergence only when h is “small enough”
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Solution through optimization

Our framework: Discretize and optimize

, Gradient of the discrete function can be
calculated exactly (linear algebra vs calculus)

, Best optimization algorithms can be used
I Gradient flow = steepest decent

(ssssslllllooooowwww)
I Variations of Newton’s method
I Multilevel Newton methods

/ How to discretize the hyperbolic PDE?



Discretization of the PDE

st +∇ · (~u s) = 0 s(0, x) = s0

Some things to consider

I ~u unknown - CFL condition unknown

I Unconditionally stable methods

I Upwinding - non-differentiable!

I Most high resolution methods (ENO, WENO, )
are highly nonlinear and non-differentiable

I Keeping discontinuities not relevant(?)



Discretization of the PDE

Explicit methods

I Careful control over time stepping

I Differentiability - no flux limiters

Implicit methods

I No stability issues

I Invert linear systems

Semi-Lagrangian methods

I No stability issues

I Can be designed to be differentiable



Example for difficulty - Explicit Methods
Test Equation: st − usx = 0

I Upwind

sk+1 = sk+
∆t

∆x

 non differentiable︷ ︸︸ ︷
max(u, 0)D+ + min(u, 0)D−

 sk

I Lax - Friedrichs

sk+1 = Avsk +
∆t

2∆x
diag(u)Dcsk



Discretization - Particle in Cell



PIC Discretization

Can be written as

sk+1 − I(u)sk = 0 s(0, x) = s0

I Exact conservation

I Unconditionally stable

I Can be made differentiable [H. Modersitzki, 06]

I Low accuracy

I Low diffusion



The discrete optimization problem

min
s,~u

1

2

∑
j

‖As(tj)− d(tj)‖2 + αsRs(s0) + αuRu(u)

s.t. sk+1 − I(u)sk = 0 s(0, x) = s0

To complete need to choose regularization scheme



Choosing regularization for s0

I Problem highly ill-posed, L1 & TV not
appropriate choice [Schwarzbach & H 12, Ascher,

van Den Doel & H. 12]

Choice of regularization for s0
I Smoothness

Rs(s0) =
1

2

∫
Ω
‖~∇s0‖2dV

I Weighted smoothness

Rs(s0) =
1

2

∫
Ω
w(x)‖~∇s0‖2dV

w - weighted support



Choosing regularization for ~u
~u - vector quantity
Recall that

I ∇ · ~u = 0 AE

I ~u can have discontinuous tangential
components

|∇ × ~u| jumpy

Set

R(~u) =

∫
Ω

α1

2
‖∇ · ~u‖2 + α2|∇ × ~u|1 dV



The discrete optimization problem

min
s,u

1

2

∑
j

‖As(tj)− d(tj)‖2 + αsRs(s0) + αuRu(u)

s.t. sk+1 − I(u)sk = 0 s(0, x) = s0

The problem is linear in s nonlinear in u
Use Variable Projection (VarPro) [Golub Pereyra

(73,02)]



Solution through Variable Projection

Eliminate Constraint s = F (u)−1I0s0 where

F (u) =


I

−I(u) I
. . . . . .
−I(u) I

 I0 =


−I(u)

0
0
0


Unconstrained problem

min
s0,u

1

2
‖AF (u)−1I0s0 − d‖2 + αsRs(s0) + αuRu(u)



Solution through Variable Projection
Two step iteration [Chung, Nagy & H (06), Chung Thesis

(08)]

I Minimize wrt s0

ŝ
(k)
0 =

(
I>0 F

−>A>AF−1I0 + αs∇2Rs

)−1
F−>A>d

I Fix s0 = ŝ
(k)
0 and minimize over u

min
u

1

2
‖AF (u)−1I0ŝ

(k)
0 − d‖2 + αuRu(u)

Advantages
I Decoupling the inverse problems
I Easy to choose regularization parameters



Solution through Variable Projection

I No need to form matrices

I Use GCV for regularization parameter for s0

I Lagged diffusivity for the |∇ × u|1
regularization [Vogel (96)]

I Solution of the problem for u need not be exact



Example - Imaging CO2 Flow

Experimental Setting: Borehole Experiment



Example - Imaging CO2 Flow
I Assume 625 rays (data points)
I 20 times observed
I Prediction after
I Velocity field obtained by solving the pressure

equation with highly discontinuous coefficients



Example - Imaging CO2 Flow

Flow simulation



Example - Imaging CO2 Flow

Observed Data



Recovered and predicted flow

Flow simulation



Comments

Reconstruction

I Excellent reconstruction of initial saturation

I Reasonable recovery of flow field

Prediction

I Short term predictions - excellent

I Long term prediction - fail

I No information on the velocity in regions where
there is no flow



Summary and prediction
Summary

I Combine flow in porous media and imaging

I Basic framework - super resolution

I Requires special regularization

I VarPro for the solution

Prediction

I Algorithm speedup

I Use joint inversion criteria for unknown
petrology

I Experimental design


