Equivalent boundary conditions for Monge-Ampère solutions of the L2 Optimal Transportation problem

Jean-David Benamou (INRIA) Brittany Froese (UT Austin) Adam Oberman (McGill U.)

http://arxiv.org/pdf/1208.4873.pdf
http://arxiv.org/pdf/1208.4870.pdf

Contents

A - Monge-Ampère solutions of the L2 Optimal Transportation problem

- B State Constraint reformulation
- C The viscosity solutions framework
- **D** Numerical Results

• Source/Target Data : $d\rho_X(x)(=\rho_X(x) dx)$, $d\rho_Y(y)(=\rho_Y(y) dy)$ s.t. $X, Y \subset R^2$, $\rho_{X,Y} > 0$, $\int_X \rho_X(x) dx = \int_Y \rho_Y(y) dy$, X, Y convex.

- Source/Target Data : $d\rho_X(x)(=\rho_X(x) dx)$, $d\rho_Y(y)(=\rho_Y(y) dy)$ s.t. $X, Y \subset R^2$, $\rho_{X,Y} > 0$, $\int_X \rho_X(x) dx = \int_Y \rho_Y(y) dy$, X, Y convex.
- Rearrangement mappings : $\mathcal{M} = \{M : X \to Y, M_{\#}d\rho_X = d\rho_Y\}$

- Source/Target Data : dρ_X(x)(= ρ_X(x) dx), dρ_Y(y)(= ρ_Y(y) dy)
 s.t. X, Y ⊂ R², ρ_{X,Y} > 0, ∫_X ρ_X(x)dx = ∫_Y ρ_Y(y)dy,
 X, Y convex.
- Rearrangement mappings : $\mathcal{M} = \{M : X \to Y, M_{\#}d\rho_X = d\rho_Y\}$ $\forall B, d\rho_Y(B) = d\rho_X(M^{-1}(B))$

- Source/Target Data : $d\rho_X(x)(=\rho_X(x) dx)$, $d\rho_Y(y)(=\rho_Y(y) dy)$ s.t. $X, Y \subset R^2$, $\rho_{X,Y} > 0$, $\int_X \rho_X(x) dx = \int_Y \rho_Y(y) dy$, X, Y convex.
- Rearrangement mappings : $\mathcal{M} = \{M : X \to Y, M_{\#}d\rho_X = d\rho_Y\}$ $\forall B, d\rho_Y(B) = d\rho_X(M^{-1}(B))$

Jacobian equation : $det(DM(x))\rho_Y(M(x)) = \rho_X(x)$

- Source/Target Data : $d\rho_X(x)(=\rho_X(x) dx)$, $d\rho_Y(y)(=\rho_Y(y) dy)$ s.t. $X, Y \subset R^2$, $\rho_{X,Y} > 0$, $\int_X \rho_X(x) dx = \int_Y \rho_Y(y) dy$, X, Y convex.
- Rearrangement mappings : $\mathcal{M} = \{M : X \to Y, M_{\#}d\rho_X = d\rho_Y\}$ $\forall B, d\rho_Y(B) = d\rho_X(M^{-1}(B))$ Jacobian equation : $det(DM(x))\rho_Y(M(x)) = \rho_X(x)$
- Cost Function : $\mathcal{I}(M) = \int_X ||x M(x)||^2 \rho_X(x) dx$,

- Source/Target Data : $d\rho_X(x)(=\rho_X(x) dx)$, $d\rho_Y(y)(=\rho_Y(y) dy)$ s.t. $X, Y \subset R^2$, $\rho_{X,Y} > 0$, $\int_X \rho_X(x) dx = \int_Y \rho_Y(y) dy$, X, Y convex.
- Rearrangement mappings : $\mathcal{M} = \{M : X \to Y, M_{\#}d\rho_X = d\rho_Y\}$ $\forall B, d\rho_Y(B) = d\rho_X(M^{-1}(B))$ Jacobian equation : $det(DM(x))\rho_Y(M(x)) = \rho_X(x)$
- Cost Function : $\mathcal{I}(M) = \int_X ||x M(x)||^2 \rho_X(x) dx$,
- Optimal Transportation : $\mathcal{I}(M^*) = \inf_{M \in \mathcal{M}} \mathcal{I}(M)$.

- Source/Target Data : $d\rho_X(x)(=\rho_X(x) dx)$, $d\rho_Y(y)(=\rho_Y(y) dy)$ s.t. $X, Y \subset R^2$, $\rho_{X,Y} > 0$, $\int_X \rho_X(x) dx = \int_Y \rho_Y(y) dy$, X, Y convex.
- Rearrangement mappings : $\mathcal{M} = \{M : X \to Y, M_{\#}d\rho_X = d\rho_Y\}$ $\forall B, d\rho_Y(B) = d\rho_X(M^{-1}(B))$ Jacobian equation : $det(DM(x))\rho_Y(M(x)) = \rho_X(x)$
- Cost Function : $\mathcal{I}(M) = \int_X ||x M(x)||^2 \rho_X(x) dx$,
- Optimal Transportation : $\mathcal{I}(M^*) = \inf_{M \in \mathcal{M}} \mathcal{I}(M)$.

• (Brenier, Knott-Smith, McCaan, Gangbo, ...) There is a unique convex potential ψ such that $M^* = \nabla \psi$

- (Brenier, Knott-Smith, McCaan, Gangbo, ...) There is a unique convex potential ψ such that $M^* = \nabla \psi$
- Remember the Jacobian equation : $det(DM(x))\rho_Y(M(x)) = \rho_X(x).$

- (Brenier, Knott-Smith, McCaan, Gangbo, ...) There is a unique convex potential ψ such that $M^* = \nabla \psi$
- Remember the Jacobian equation : $det(DM(x))\rho_Y(M(x)) = \rho_X(x).$
- $\Rightarrow \psi$ is a weak ("Brenier") solution of the Elliptic Monge-Ampère equation

$$det(D^2\psi(x))
ho_Y(\nabla\psi(x))=
ho_X(x),\ x\in X$$

- (Brenier, Knott-Smith, McCaan, Gangbo, ...) There is a unique convex potential ψ such that $M^* = \nabla \psi$
- Remember the Jacobian equation : $det(DM(x))\rho_Y(M(x)) = \rho_X(x).$
- $\Rightarrow \psi$ is a weak ("Brenier") solution of the Elliptic Monge-Ampère equation

$$det(D^2\psi(x))\rho_Y(\nabla\psi(x)) = \rho_X(x). \ x \in X$$

Aleksandrov solution if Y convex (Caffarelli).

- (Brenier, Knott-Smith, McCaan, Gangbo, ...) There is a unique convex potential ψ such that $M^* = \nabla \psi$
- Remember the Jacobian equation : $det(DM(x))\rho_Y(M(x)) = \rho_X(x).$
- $\Rightarrow \psi$ is a weak ("Brenier") solution of the Elliptic Monge-Ampère equation

$$det(D^2\psi(x))
ho_Y(\nabla\psi(x))=
ho_X(x),\ x\in X$$

Aleksandrov solution if Y convex (Caffarelli).

• Boundary conditions are replaced by state constraints :

$$\nabla \psi(\overline{X}) \subset \overline{Y}.$$

This is called the "Second Boundary Value problem" (Classical solution studied in Delanoë, Urbas ..) .

OUR GOAL : Solve with a PDE discretization method

$(MA) \qquad < u > + \det(D^2u(x))\rho_Y(\nabla u(x)) = \rho_X(x), \text{ on } X$ (BV2) $\nabla u(\overline{X}) \subset \overline{Y}$

u convex

OUR GOAL : Solve with a PDE discretization method

$$(MA) \qquad < u > + \det(D^2u(x))\rho_Y(\nabla u(x)) = \rho_X(x), \text{ on } X$$

(BV2)
$$\nabla u(\overline{X}) \subset \overline{Y}$$

u convex

WHAT DO WE NEED TO PURSUE THIS IDEA :

• (BV2) is non standard/non local \rightarrow We introduce a much simpler reformulation (HJ) in section B.

OUR GOAL : Solve with a PDE discretization method

$$(MA) \qquad < u > + \det(D^2u(x))\rho_Y(\nabla u(x)) = \rho_X(x), \text{ on } X$$

(BV2)
$$\nabla u(\overline{X}) \subset \overline{Y}$$

u convex

WHAT DO WE NEED TO PURSUE THIS IDEA :

- (BV2) is non standard/non local \rightarrow We introduce a much simpler reformulation (HJ) in section B.
- Brenier/Aleksandrov solutions are too weak. Give a meaning to solutions of (MA-HJ) for which discretizations with "good" (convergence, fast solver) properties are available → Viscosity solutions setting in section C.

• The periodic setting : use the "displacement" change of variable $u \rightarrow v = u - \frac{x^2}{2}$.

- The periodic setting : use the "displacement" change of variable $u \rightarrow v = u \frac{x^2}{2}$.
- Assuming densities with compact support, no easy BCs at infinity (will discuss it again later ...) .
- "Face to Face" Neuman type BCs : ex. square to square : $u_{x_1}(\pm 1,.) = \pm 1$, $u_{x_2}(.,\pm 1) = \pm 1$.

- The periodic setting : use the "displacement" change of variable $u \rightarrow v = u \frac{x^2}{2}$.
- Assuming densities with compact support, no easy BCs at infinity (will discuss it again later ...) .
- "Face to Face" Neuman type BCs : ex. square to square : $u_{x_1}(\pm 1,.) = \pm 1, \quad u_{x_2}(.,\pm 1) = \pm 1.$

This is generalized in Chacon, Delzanno, Finn ...

- The periodic setting : use the "displacement" change of variable $u \rightarrow v = u \frac{x^2}{2}$.
- Assuming densities with compact support, no easy BCs at infinity (will discuss it again later ...) .
- "Face to Face" Neuman type BCs : ex. square to square : $u_{x_1}(\pm 1,.) = \pm 1$, $u_{x_2}(.,\pm 1) = \pm 1$.

This is generalized in Chacon, Delzanno, Finn ...

• BUT it assumes a priori knowledge on the boundary to boundary map : illustration on a square to rhombus map.

Equivalent Hamilton-Jacobi equation on the boundary

• Use the ("*Y* defining function" ... Delanoë, Urbas : Let *H*(*y*) convex such that :

$$\left\{egin{aligned} H(y) < 0, & y \in Y \ H(y) = 0, & y \in \partial Y \ H(y) > 0, & y \in Y^c \end{aligned}
ight.$$

Equivalent Hamilton-Jacobi equation on the boundary

• Use the ("*Y* defining function" ... Delanoë, Urbas : Let *H*(*y*) convex such that :

$$\left\{ egin{array}{ll} H(y) < 0, & y \in Y \ H(y) = 0, & y \in \partial Y \ H(y) > 0, & y \in Y^c \end{array}
ight.$$

• Then (use convexity) $(BV2) \Leftrightarrow (HJ) : H(\nabla u(x)) = 0, x \in \partial X.$

Equivalent Hamilton-Jacobi equation on the boundary

• Use the ("*Y* defining function" ... Delanoë, Urbas : Let *H*(*y*) convex such that :

$$\left\{egin{array}{ll} H(y) < 0, & y \in Y \ H(y) = 0, & y \in \partial Y \ H(y) > 0, & y \in Y^c \end{array}
ight.$$

- Then (use convexity) $(BV2) \Leftrightarrow (HJ) : H(\nabla u(x)) = 0, x \in \partial X.$
- We use the signed Euclidean distance to ∂Y :

$$H(y) = egin{cases} +\operatorname{dist}(y,\partial Y), & y\in \overline{Y}, \ -\operatorname{dist}(y,\partial Y), & y\in Y^c. \end{cases}$$

H properties and usage

Obliqueness : Let y = ∇u(x), x, y ∈ ∂X, ∂Y and n_x, n_y then exterior normals at x, y. Using H(∇u) = 0 on ∂X (by definition) and n_y = ∇H(y) (by construction) we get

$$(OBL) n_x \cdot n_y \ge 0$$

H properties and usage

Obliqueness : Let y = ∇u(x), x, y ∈ ∂X, ∂Y and n_x, n_y then exterior normals at x, y. Using H(∇u) = 0 on ∂X (by definition) and n_y = ∇H(y) (by construction) we get

$$(OBL)$$
 $n_x \cdot n_y \ge 0$

• Dual formulation of *H* : using the supporting hyperplane theorem

$$\begin{cases} H(y) = \sup_{\|n\|=1} \{n \cdot y - H^*(n))\}\\ H^*(n) = \sup_{y_0 \in \partial Y} \{n \cdot y_0\} \end{cases}$$

$$H(\nabla u(x)) = \sup_{\|n\|=1} \{n \cdot \nabla u(x) - H^*(n)\}$$
$$= n_y \cdot \nabla u(x) - H^*(n_y)$$

$$H(\nabla u(x)) = \sup_{\|n\|=1} \{n \cdot \nabla u(x) - H^*(n)\}$$

= $n_y \cdot \nabla u(x) - H^*(n_y)$

• So
$$(OBL) \Rightarrow$$

 $(n_x \text{ is the exterior normal to } X \text{ au point } x)$

$$H(\nabla u(x)) = \sup_{\{\|n\|=1, n \cdot n_x > 0\}} \{\nabla u(x) \cdot n - H^*(n)\}$$

$$H(\nabla u(x)) = \sup_{\|n\|=1} \{n \cdot \nabla u(x) - H^*(n)\}$$

= $n_y \cdot \nabla u(x) - H^*(n_y)$

So (OBL) ⇒
 (n_x is the exterior normal to X au point x)

$$\begin{aligned} H(\nabla u(x)) &= \sup_{\{\|n\|=1, n \cdot n_x > 0\}} \{\nabla u(x) \cdot n - H^*(n)\} \\ & \text{guarantees monotone upwind discretization works } ! \end{aligned}$$

$$H(\nabla u(x)) = \sup_{\|n\|=1} \{n \cdot \nabla u(x) - H^*(n)\}$$

= $n_y \cdot \nabla u(x) - H^*(n_y)$

So (OBL) ⇒
 (n_x is the exterior normal to X au point x)

$$\begin{split} H(\nabla u(x)) &= \sup_{\{\|n\|=1, n \cdot n_x > 0\}} \{\nabla u(x) \cdot n - H^*(n)\} \\ &\text{guarantees monotone upwind discretization works } \\ &\approx \sup_{\{\|n\|=1, n \cdot n_x > 0\}} \{\frac{u(x) - u(x - nh)}{h} - H^*(n)\}. \end{split}$$

Using the discontinuous viscosity solution framework

(Lions, Perthame, Barles, Souganidis ...)

Theorem : Assuming *X*, *Y* convex, $\rho_{X,Y} > 0$ and ρ_Y Lipschitz then (MA - HJ) has a unique convex viscosity solution (using results of Barles, Perthame, Souganidis ...).

Using the discontinuous viscosity solution framework

(Lions, Perthame, Barles, Souganidis ...)

Theorem : Assuming *X*, *Y* convex, $\rho_{X,Y} > 0$ and ρ_Y Lipschitz then (MA - HJ) has a unique convex viscosity solution (using results of Barles, Perthame, Souganidis ...).

REMARKS :

The theorem holds for ρ_X ≥ 0 ((*MA*) is degenerate elliptic). The solution is the convex envelope extension of the optimal transportation solution which is well defined only on supp(ρ_X) > 0.

Using the discontinuous viscosity solution framework

(Lions, Perthame, Barles, Souganidis ...)

Theorem : Assuming *X*, *Y* convex, $\rho_{X,Y} > 0$ and ρ_Y Lipschitz then (MA - HJ) has a unique convex viscosity solution (using results of Barles, Perthame, Souganidis ...).

REMARKS :

- The theorem holds for ρ_X ≥ 0 ((*MA*) is degenerate elliptic). The solution is the convex envelope extension of the optimal transportation solution which is well defined only on supp(ρ_X) > 0.
- (*OBL*) is an important ingredient to get uniqueness (Non-Linear Neuman BCs, Barles, 1993).

$$MA(u) = \begin{cases} \det(D^2 u) - \frac{\rho_X}{\rho_Y(\nabla u)} - \langle u \rangle, & \text{sur } X\\ \sup_{\{\|n\|=1, n \cdot n_X > 0\}} \{\nabla u \cdot n - H^*(n)\}, & \text{sur } \partial X \end{cases}$$

$$MA(u) = \begin{cases} det(D^2u) - \frac{\rho_X}{\rho_Y(\nabla u)} - \langle u \rangle, & \text{sur } X \\ \sup_{\{\|n\|=1, n \cdot n_x > 0\}} \{\nabla u \cdot n - H^*(n)\}, & \text{sur } \partial X \end{cases}$$

Wide-Stencil discretization of Monge-Ampère operator
(Froese-Oberman) is monotone and consistent. Again viscosity
framework (Barles Souganidis ...) guarantees convergence of the
approximation.

$$MA(u) = \begin{cases} det(D^2u) - \frac{\rho_X}{\rho_Y(\nabla u)} - \langle u \rangle, & \text{sur } X \\ \sup_{\{\|n\|=1, n \cdot n_x > 0\}} \{\nabla u \cdot n - H^*(n)\}, & \text{sur } \partial X \end{cases}$$

Wide-Stencil discretization of Monge-Ampère operator
(Froese-Oberman) is monotone and consistent. Again viscosity
framework (Barles Souganidis ...) guarantees convergence of the
approximation.

• :-) Can use Newton (convergent, fast) on the non-linear system : $u^{k+1} = u^k - \alpha (\nabla MA[u^k])^{-1}MA[u^k], (\nabla MA[u^k]) > 0).$

$$MA(u) = \begin{cases} det(D^2u) - \frac{\rho_X}{\rho_Y(\nabla u)} - \langle u \rangle, & \text{sur } X \\ \sup_{\{\|n\|=1, n \cdot n_x > 0\}} \{\nabla u \cdot n - H^*(n)\}, & \text{sur } \partial X \end{cases}$$

Wide-Stencil discretization of Monge-Ampère operator
(Froese-Oberman) is monotone and consistent. Again viscosity
framework (Barles Souganidis ...) guarantees convergence of the
approximation.

- :-) Can use Newton (convergent, fast) on the non-linear system : $u^{k+1} = u^k \alpha (\nabla MA[u^k])^{-1}MA[u^k], (\nabla MA[u^k]) > 0).$
- : -(Accuracy is limited by the stencil width which cannot be arbitrarily increased in practice. (Hybrid FD/Wide Stencil discretization partly fix this problem).

Reconstruction of geodesics $x \mapsto (1 - \frac{t}{T})x + \frac{t}{T}\nabla u(x), t \in]0, T[$

Ellipse to Ellipse, constant density densité

		ļ	Iterations	Time (s)			
N_X			N_Y				
	32	64	128	256	512		
32	0.0691	0.0667	0.0662	0.0660	0.0660	4	0.2
64	0.0306	0.0284	0.0279	0.0277	0.0277	4	0.5
128	0.0203	0.0176	0.0169	0.0167	0.0167	4	1.7
256	0.0127	0.0096	0.0088	0.0086	0.0088	5	10.1
512	0.0086	0.0056	0.0047	0.0045	0.0047	5	52.2

Table: Exact gradient error # Newton itération de Newton, timing for $N_y = 512$. Wide-Stencil : 9pts

Illustration 2D
$$(x \mapsto (1 - \frac{t}{T})x + \frac{t}{T}\nabla\phi^*(x), t \in]0, T[)$$

Discussion on Caffarelli counter example :

Constant density - one non convex domain

← : Brenier (not Aleksandrov) Solution.

 \rightarrow : Viscosity solution (non strictly convex) de viscosité. We can do it :-)

Inverse Caffarelli example

		I	Iterations	Time (s)			
N_X			N_Y				
	32	64	128	256	512		
32	0.0280	0.0284	0.0286	0.0286	0.0286	3	0.2
64	0.0158	0.0164	0.0165	0.0165	0.0165	3	0.4
128	0.0092	0.0093	0.0092	0.0092	0.0092	3	1.3
256	0.0047	0.0036	0.0036	0.0036	0.0036	4	8.3
512	0.0049	0.0040	0.0034	0.0033	0.0033	5	51.7

Table: Exact gradient error # Newton itération de Newton, timing for $N_y = 512$. Wide-Stencil : 9pts

Non convex $\rho_X > 0$ support

Non convex $\rho_X > 0$ support

Markers displacements

Toy S.-G. case

THANK YOU for your attention.

https://team.inria.fr/mokaplan/

