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A - Monge-Ampère solutions of the L2 Optimal Transportation problem

L2 Optimal Transportation

• Source/Target Data : dρX (x)(= ρX (x)dx), dρY (y)(= ρY (y)dy)

s.t. X ,Y ⊂ R2, ρX ,Y > 0,
∫

X ρX (x)dx =
∫

Y ρY (y)dy ,
X ,Y convex.

• Rearrangement mappings : M = {M : X → Y , M#dρX = dρY}
∀B, dρY (B) = dρX (M−1(B))

Jacobian equation : det(DM(x))ρY (M(x)) = ρX (x)

• Cost Function : I(M) =
∫

X ‖x −M(x)‖2 ρX (x)dx ,

• Optimal Transportation : I(M∗) = infM∈M I(M).
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A - Monge-Ampère solutions of the L2 Optimal Transportation problem

• (Brenier, Knott-Smith, McCaan, Gangbo, ... ) There is a unique
convex potential ψ such that M∗ = ∇ψ

• Remember the Jacobian equation :
det(DM(x))ρY (M(x)) = ρX (x).

• ⇒ ψ is a weak (”Brenier”) solution of the Elliptic Monge-Ampère
equation

det(D2ψ(x))ρY (∇ψ(x)) = ρX (x). x ∈ X

Aleksandrov solution if Y convex (Caffarelli).
• Boundary conditions are replaced by state constraints :

∇ψ(X ) ⊂ Y .

This is called the ”Second Boundary Value problem” (Classical
solution studied in Delanoë, Urbas ..) .
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A - Monge-Ampère solutions of the L2 Optimal Transportation problem

OUR GOAL :
Solve with a PDE discretization method

(MA) < u >+ det(D2u(x))ρY (∇u(x)) = ρX (x), on X

(BV2) ∇u(X ) ⊂ Y

u convex

WHAT DO WE NEED TO PURSUE THIS IDEA :

• (BV2) is non standard/non local→We introduce a much
simpler reformulation (HJ) in section B.

• Brenier/Aleksandrov solutions are too weak. Give a meaning to
solutions of (MA-HJ) for which discretizations with ”good”
(convergence, fast solver) properties are available→ Viscosity
solutions setting in section C.
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B - State Constraint reformulation

(BV2) numerical state of the art : specific geometries

• The periodic setting : use the ”displacement” change of
variable u → v = u − x2

2 .

• Assuming densities with compact support, no easy BCs at
infinity (will discuss it again later ...) .

• ”Face to Face” Neuman type BCs : ex. square to square :
ux1(±1, .) = ±1, ux2(.,±1) = ±1.

This is generalized in Chacon, Delzanno, Finn ...

• BUT it assumes a priori knowledge on the boundary to
boundary map : illustration on a square to rhombus map.
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B - State Constraint reformulation
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B - State Constraint reformulation

Equivalent Hamilton-Jacobi equation on the boundary

• Use the (”Y defining function” ... Delanoë, Urbas : Let H(y)
convex such that : 

H(y) < 0, y ∈ Y

H(y) = 0, y ∈ ∂Y

H(y) > 0, y ∈ Y c

• Then (use convexity) (BV2)⇔ (HJ) : H(∇u(x)) = 0, x ∈ ∂X .
• We use the signed Euclidean distance to ∂Y :

H(y) =

{
+dist(y , ∂Y ), y ∈ Y ,
−dist(y , ∂Y ), y ∈ Y c .
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convex such that : 

H(y) < 0, y ∈ Y

H(y) = 0, y ∈ ∂Y

H(y) > 0, y ∈ Y c

• Then (use convexity) (BV2)⇔ (HJ) : H(∇u(x)) = 0, x ∈ ∂X .

• We use the signed Euclidean distance to ∂Y :

H(y) =

{
+dist(y , ∂Y ), y ∈ Y ,
−dist(y , ∂Y ), y ∈ Y c .

8 of 20



B - State Constraint reformulation

Equivalent Hamilton-Jacobi equation on the boundary

• Use the (”Y defining function” ... Delanoë, Urbas : Let H(y)
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B - State Constraint reformulation

H properties and usage

• Obliqueness : Let y = ∇u(x), x , y ∈ ∂X , ∂Y and nx ,ny then
exterior normals at x , y . Using H(∇u) = 0 on ∂X (by definition)
and ny = ∇H(y) (by construction) we get

(OBL) nx · ny ≥ 0

• Dual formulation of H : using the supporting hyperplane
theorem H(y) = sup‖n‖=1{n · y − H∗(n))}

H∗(n) = supy0∈∂Y{n · y0}

9 of 20
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B - State Constraint reformulation

• On the boundary the sup is attained for ny the exterior normal
to Y at y = ∇u(x)
( Not known a priori ) :

H(∇u(x)) = sup‖n‖=1{n · ∇u(x)− H∗(n))}
= ny · ∇u(x)− H∗(ny )

• So (OBL)⇒
(nx is the exterior normal to X au point x)

H(∇u(x)) = sup{‖n‖=1, n·nx>0}{∇u(x) · n − H∗(n)}
guarantees monotone upwind discretization works !

≈ sup{‖n‖=1, n·nx>0}{
u(x)− u(x − n h)

h
− H∗(n)}.
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C - The viscosity solutions framework

Using the discontinuous viscosity solution framework

(Lions, Perthame, Barles, Souganidis ...)

Theorem : Assuming X ,Y convex, ρX ,Y > 0 and ρY Lipschitz then
(MA− HJ) has a unique convex viscosity solution (using results of
Barles, Perthame, Souganidis ...).

REMARKS :
• The theorem holds for ρX ≥ 0 ((MA) is degenerate elliptic). The

solution is the convex envelope extension of the optimal
transportation solution which is well defined only on
supp(ρX ) > 0.

• (OBL) is an important ingredient to get uniqueness (Non-Linear
Neuman BCs, Barles, 1993).
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C - The viscosity solutions framework

Discretization and Solver

MA(u) =

det(D2u)− ρX

ρY (∇u)
−< u >, sur X

sup{‖n‖=1, n·nx>0}{∇u · n − H∗(n)}, sur ∂X

Wide-Stencil discretization of Monge-Ampère operator
(Froese-Oberman) is monotone and consistent. Again viscosity
framework (Barles Souganidis ...) guarantees convergence of the
approximation.
• : −) Can use Newton (convergent, fast) on the non-linear

system : uk+1 = uk − α(∇MA[uk ])−1MA[uk ], (∇MA[uk ]) > 0).
• : −( Accuracy is limited by the stencil width which cannot be

arbitrarily increased in practice. (Hybrid FD/Wide Stencil
discretization partly fix this problem).
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D - Numerical Results

Reconstruction of geodesics x 7→ (1− t
T
)x +

t
T
∇u(x), t ∈]0,T [
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D - Numerical Results

Ellipse to Ellipse, constant density densité

Max. error Iterations Time (s)
NX NY

32 64 128 256 512
32 0.0691 0.0667 0.0662 0.0660 0.0660 4 0.2
64 0.0306 0.0284 0.0279 0.0277 0.0277 4 0.5
128 0.0203 0.0176 0.0169 0.0167 0.0167 4 1.7
256 0.0127 0.0096 0.0088 0.0086 0.0088 5 10.1
512 0.0086 0.0056 0.0047 0.0045 0.0047 5 52.2

Table: Exact gradient error # Newton itération de Newton, timing for
Ny = 512. Wide-Stencil : 9pts
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D - Numerical Results

Illustration 2D (x 7→ (1− t
T
)x +

t
T
∇φ∗(x), t ∈]0,T [)
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D - Numerical Results

Discussion on Caffarelli counter example :

Constant density - one non convex domain

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

← : Brenier (not Aleksandrov) Solution.

→ : Viscosity solution (non strictly convex) de viscosité. We can
do it :-)
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D - Numerical Results

Inverse Caffarelli example

Max. Error Iterations Time (s)
NX NY

32 64 128 256 512
32 0.0280 0.0284 0.0286 0.0286 0.0286 3 0.2
64 0.0158 0.0164 0.0165 0.0165 0.0165 3 0.4
128 0.0092 0.0093 0.0092 0.0092 0.0092 3 1.3
256 0.0047 0.0036 0.0036 0.0036 0.0036 4 8.3
512 0.0049 0.0040 0.0034 0.0033 0.0033 5 51.7

Table: Exact gradient error # Newton itération de Newton, timing for
Ny = 512. Wide-Stencil : 9pts
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D - Numerical Results

Non convex ρX > 0 support
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D - Numerical Results

Non convex ρX > 0 support
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D - Numerical Results

Toy S.-G. case
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D - Numerical Results

THANK YOU for your attention.
https://team.inria.fr/mokaplan/
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