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Quantum mechanics of atoms and molecules — overview

Chemical behaviour of atoms and molecules is described accurately,
at least in principle, by quantum mechanics.

Quantum mechanics for a molecule with N electrons boils down to a
partial differential equation (called electronic Schrodinger equation)
for a function W € L2(R3V C).

2

Born formula: |W(xq, .., xy)|?> = joint prob.density of positions xi, .., xy € R3

To simulate chemical behaviour, approximations are needed. (Full
Schréd.eq.: R — 10 gridpoints means R3V — 103N gridpoints.
E.g., H2O has 10 electrons, so 1039 gridpts! Curse of dimension.)
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— Kohn: existence of 'exact’ (but comp’ly unfeasible) fctnal; reasonable approx.
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Density functional theory (DFT) — overview

DFT is the standard approximation to quantum mechanics in
simulations with more than a dozen or so electrons.

DFT approximates quantum mechanics via a closed eq./var.principle
for the marginal density p(x1) = [ [V (x, .., xn)[2dx2 - - - dx.

All one-point marginals equal, since \W\z is symmetric in the x;. (Pauli principle)

Roughly, DFT models ~ semi-empirical models of the pair density
pa(x1,x2) = [ |W(x1,.., xn)|?dxs..dxy in terms of its marginal p.

— Nobel Prize 1998 for its inventor Walter Kohn
— Routinely used in phys., chem., materials, molecular biology
(predict binding energies/molecular geometries; ex.: Momany, Carbohyd. Res. 2005)

— Kohn: existence of 'exact’ (but comp’ly unfeasible) fctnal; reasonable approx.
— Nowadays many ingenious (semi-empirical) functionals: LDA, B3LYP, PBE, ...
(most cited physicist of all time is a designer of DFT models, J.Perdew)
— Successful in many instances but rare drastic failures too (e.g. Cry doesn’t bind)
— Accuracy not that high; lack of systematic derivability /improvability of functionals
21



Quantum mechanics of atoms and molecules — Details

» Goal: compute lowest eigenvalue ("ground state energy”) Eq of
the following linear operator ("electronic Hamiltonian™)

N

2
He=Y (a0 + Y e o)

) — X,
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(depends on position vector R = (Rl, .., Rm) of atomic nuclei
via potential vg(x)) = — M )
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Quantum mechanics of atoms and molecules — Details

» Goal: compute lowest eigenvalue ("ground state energy”) Eq of
the following linear operator ("electronic Hamiltonian™)

N
h? 1
Hep = Z(_?AX,') + Z m + Z VR(XI)
i=1 1<i<j<N =
(depends on position vector R = (Rl, .., Rm) of atomic nuclei
via potential vg(x;) = — Zg{l = Ra‘)
» H,y acts on Hilbert space Lant,(R3N) of square-integrable,

antisymmetric functions ¥ : (R3)N — C, ¥ = ¥(xq, .., xy)
(" eletronic wavefunctions™)
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Quantum mechanics of atoms and molecules — Details

» Goal: compute lowest eigenvalue ("ground state energy”) Eq of
the following linear operator ("electronic Hamiltonian™)

N

2
Hee = Z(_%Ax;) + Z |)<I_1)(J’ + Z VR(XI)

i=1 1<i<j<N

(depends on position vector R = (Rl, .., Rm) of atomic nuclei
via potential vg(x)) = — M )

a=1 [x;— Ra\

» H,y acts on Hilbert space Lant,(R3N) of square-integrable,
antisymmetric functions ¥ : (R3)N — C, ¥ = ¥(xq, .., xy)
(" eletronic wavefunctions™)

» Rayleigh-Ritz variational principle:

Fo = ||\T|}21<w’ Heg\U>L2
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Connection quantum mechanics <+ DFT
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Connection quantum mechanics <+ DFT

Hohenberg-Kohn-Theorem (1964) There exists a universal (i.e.,
molecule-independent) functional FFK of the single-particle density p such
that for any potential vg, the exact QM ground state en. satisfies

Eq = mpin(FHK[p] + N/3 vr(x)p(x) dx),

R
where the min is over p : R3 - R, p>0, fpzl.
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Connection quantum mechanics <+ DFT

Hohenberg-Kohn-Theorem (1964) There exists a universal (i.e.,
molecule-independent) functional FFK of the single-particle density p such
that for any potential vg, the exact QM ground state en. satisfies

Eq = mpin(FHK[p] + N/ vr(x)p(x) dx),

R3
where the min is over p : R3 - R, p>0, fp =1.

Proof 1. The non-universal part of the energy only depends on py:

(\II,Z v(x)V) = /Z vx) W (x1, . xn)]? = N/]R3 v(x) pw(x) dx.

2. Partition the min over VW into a double min, first over V subject to fixed

p, then over p: letting HY™ := — h A+ ‘X —

iw‘((lll Hepiv >+N/v(r)pw(r) dr)
= inf inf ((W,Hé’é’iv >) —|—N/v(r)p(r) dr.

p V=p

Eo

=:FHKp]



Existence of a universal map p — p»

Corollary of the HK theorem There exists a universal (i.e.,
molecule-independent) map from single-particle densities p(x;) to
pair densities pa(x1, x2) which gives the exact pair density of any
N-electron molecular ground state W(xq, .., xy) in terms of its
single-particle density.
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Corollary of the HK theorem There exists a universal (i.e.,
molecule-independent) map from single-particle densities p(x;) to
pair densities pa(x1, x2) which gives the exact pair density of any
N-electron molecular ground state W(xq, .., xy) in terms of its
single-particle density.

Proof W, := minimizer of (W, HY"VW) subject to marginal
constraint ¥ — p

p2 = pair density of minimizer, i.e.
p2(X1,X2) = 2517.-15N f |\|1*(X1,51, ..,XN,SN)’2dX3..dXN

Analogously, pk(x1, .., xk) = [ [Wa(X1, -y Xiy oy X )| 2 dXkp1. XNy
universal k-point density
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Existence of a universal map p — p»

Corollary of the HK theorem There exists a universal (i.e.,
molecule-independent) map from single-particle densities p(x;) to
pair densities pa(x1, x2) which gives the exact pair density of any
N-electron molecular ground state W(xq, .., xy) in terms of its
single-particle density.

Proof W, := minimizer of (W, HY"VW) subject to marginal
constraint ¥ — p

p2 .= pair density of minimizer, i.e.
p2(X1,X2) = Zsl,.-,slv f |\|1*(X1,51, ..,XN,SN)’2dX3..dXN

Analogously, pk(x1, .., xk) = [ [Wa(X1, -y Xiy oy X )| 2 dXkp1. XNy
universal k-point density

p2 may be nonunique since GS may be degenerate
Map highly nontrivial and not comp'ly feasible — still uses high-dim. wavefunctions.

Design comp'ly feasible DFT's & approximate the map
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Connection DFT <— OT (simulation)

Left: simulation of the universal map p — p2. Right: optimal transport prediction.
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Connection DFT <— OT (theory)

In the semiclassical limit, exact DFT reduces to an OT problem.

Theorem (Cotar/GF /Kliippelberg, CPAM 2013)

h2
FHK = i v, (—=A
[l vemin | W5 +.Z.|x,-—x,-|
oT
min v(x1, .., xy) = F
- VGPN,WHP/R 1<;</v ,—XJ| ) 2

where Py is the set of symmetric probability measures on R3V.
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Connection DFT <— OT (theory)

In the semiclassical limit, exact DFT reduces to an OT problem.

Theorem (Cotar/GF /Kliippelberg, CPAM 2013)

h2
FHK = i v, (—=A
e} WG’LTI],I?U'—)p (W ( 2 +‘Zj Ixi — Xl

dy(x1, .., xn) =: FOT[p]

h min /
YEPN =P JR3N.

where Py is the set of symmetric probability measures on R3V.

— X
1<i<j <N Xi J|

» Limit problem (up to passage to prob.measures) introduced in
two remarkable papers in physics lit., without being aware this
is an OT pb. seidr9o, Seidi/Gori-Giorgi/Savin'07
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Connection DFT <— OT (theory)

In the semiclassical limit, exact DFT reduces to an OT problem.

Theorem (Cotar/GF /Kliippelberg, CPAM 2013)

h2
FHK = i v, (—=A
(] vemin | W5 +Z}.|x;—x,-|

dy(x1, .., xn) =: FOT[p]

h min /
YEPN =P JR3N.

where Py is the set of symmetric probability measures on R3V.

— X
1<i<j </v Xi J|

» Limit problem (up to passage to prob.measures) introduced in
two remarkable papers in physics lit., without being aware this
is an OT pb. seidr9o, Seidi/Gori-Giorgi/Savin'07

» Difficulty (regularity issue): Any W with |W|?> = y=optimal plan
of OT pb. has W ¢ H1, W ¢ 12, T[W] = +o0, and hence
cannot be used as trial state in var. principle for FFK.
Smoothing the optimal OT plan doesn't work either, since this
destroys the marginal constraint.



Way out: new smoothing technique which preserves
marginals

Given: arbitrary (nonsmooth) transport plan v with smooth

marginals pa

Goal: smooth transport plan 4 close to «, with same marginals
» Smoothen ~. Note: this modifies the marginals.

» Make it “strongly positive” (i.e. bigger or equal a positive
constant times the tensor product of its marginals), by mixing
in a small amount of the tensor product plan.

» Re-instate the marginal constraint (see next slide)
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Re-instating the marginal constraint
Given: two measures pa and pg in LY(RY), a transport plan 44
with /7 € WL2(R29).

Goal: transport plan vg_,5 which is “close” to ya4_4 if pg is close
to pa, and also has /7 € W12, Available regularity on opt. maps
far too weak to achieve this. Use a hybrid map/plan.
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Re-instating the marginal constraint

Given: two measures pa and pg in LY(RY), a transport plan 44
with /7 € W12(R29).

Goal: transport plan vg_,5 which is “close” to ya4_4 if pg is close
to pa, and also has /7 € W12, Available regularity on opt. maps
far too weak to achieve this. Use a hybrid map/plan.

First, define a suitable plan ya_g: Let f(x) := min{pa(x), pa(x)},
fa:=(pa—f)+, fs = (pg — f)+. Do nothing on f, and move f4 to
fg via the tensor product plan.

Let vg_.4 be the corresponding reverse plan.

Now compose: first transport B to A, then A to A, then A back to
B.

Z
ve—8(x,w) / /vs_m X,y) X”“>O(y) A —>A(%Z)XPLO()’YA—>B(27W) dy .
Re JRI A()/) PA(Z)

38



Qualitative theory, N=2

Minimize fRﬁ |dy(x,y) subject to: ~ has equal marginals p.

Theorem (Cotar/GF/Klueppelberg, arXiv 2011/CPAM 2013) For
p e P(RY) N LY(RY),

> unique minimizer -y

> Minimizer of '"Monge form’, v(x, y) = p(x)d7(x)(y) for some
map T : RY — RY

» T(x)=x+ o (()‘2/2 for some potential v : R3 — R
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Qualitative theory, N=2

Minimize fRﬁ |dy(x,y) subject to: ~ has equal marginals p.

Theorem (Cotar/GF/Klueppelberg, arXiv 2011/CPAM 2013) For
p € P(RY) N LY(RY),
> unique minimizer -y
> Minimizer of '"Monge form’, v(x, y) = p(x)d7(x)(y) for some
map T : RY — RY

» T(x)=x+ W for some potential v : R3 — R

Similar statements on physical grounds in Seidl 99, Seidl/Gori-Giorgi/Savin 07
Similar rigorous results: Buttazzo/Gori-Giorgi/DePascale 12
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Why T (x) = x + eooks?

Optimal transport answer: Generalize 1/|x —y| —

c(x,y) =lx —y) = k(|x — yI)

£* := generalized Legendre transform of ¢

— Extend k to all of R via k(r) :==+o0if r <0

— k* ordinary Leg.trf. of k, i.e. k*(p) :=sup,(p-r— k(r))

—£(2) = k7 (=l2])

Gangbo-McCann theory for opt.map: T(x) = x — V{*(Vv(x))
Check that theory (originally for convex costs) generalizes to
Coulomb; advice by Robert McCann gratefully acknowledged

Explicit computation: {(x —y) = 1/|x — y| = (*(z) = —2/|z|
Physics answer: (Seidl 1999)
Vv (x)=Coulomb force on electron at x by electron at T(x),

ie. Vv(x) = \'IT((XX)):;P'

41



Exact solution, 2 particles in 1D

Special case of results in Cotar, GF, Kliippelberg, CPAM
p=uniform measure on [0,1]

Yopt (X ¥) = p(x)d7(x)(¥)
S| /™

“ X

o Rad T 1

T rigidly switches right and left half of [0,1],
T(x)=x+1/2for x <1/2, x—1/2 for x > 1/2
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Special case of results in Cotar, GF, Kliippelberg, CPAM
p=uniform measure on [0,1]

Yopt (X ¥) = p(x)d7(x)(¥)
S| /™

“ X

0> T 1

T rigidly switches right and left half of [0,1],
T(x)=x+1/2for x <1/2, x—1/2 for x > 1/2

(% )

1
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Exact solution, 2 particles in 1D

Special case of results in Cotar, GF, Kliippelberg, CPAM
p=uniform measure on [0,1]

Yopt (X, ¥) = P(X)37(x)(¥)

e %l T 1 *

T rigidly switches right and left half of [0,1],
T(x)=x+1/2for x <1/2, x—1/2 for x > 1/2

(% )

1

1
e 1

Generalization to N particles in 1D: Colombo, DePascale, DiMarino
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Physical realization

Beryllium atom, angular pair density

Accurate numerics (many DOF's, no insight in mechanism)
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Physical realization

Beryllium atom, angular pair density

Accurate numerics (many DOF's, no insight in mechanism)

0
Ed

2n

Optimal transport
Position of maxima of pair density (x — y = 7) correctly captured

46



Exact solution, 2 particles in 3D, radial density

’YOpt(X7 }/) = p(X)éT(X)(y)

Optimal map T determined by:

|;E>X<§| = |X7| (opposite direction)
4 S p(r)dr = 47Tf‘T 2p(r)dr (mass balancing).

Pf of this: 1. Coulomb cost c(|x — y|) = 1/|x — y| convex, decreasing in the distance.

2. McCann ('economy of scale'): concave, increasing costs.
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Exact solution, 2 particles in 3D, radial density

Vopt(Xv y) = p(X)éT(x)(y)
2
e

Optimal map T determined by:

% = —|X7| (opposite direction)

4m f:o‘:l r’p(r)dr = 4r fOIT(X)‘ r?p(r)dr (mass balancing).

Pf of this: 1. Coulomb cost c(|x — y|) = 1/|x — y| convex, decreasing in the distance.

2. McCann ('economy of scale'): concave, increasing costs.
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Open: '"Monge solutions’ [alias sparsity] for N>27
Recall: semiclassical limit of HK functional for N particles has form

min{/z c(xi,x;) dv |~y + p, ¥ symm. prob.meas.on R3"}
i<j

Curse of dimension (just like original Schrodinger eq.)
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Open: '"Monge solutions’ [alias sparsity] for N>27
Recall: semiclassical limit of HK functional for N particles has form

min{/z c(xi,x;) dv |~y + p, ¥ symm. prob.meas.on R3"}
i<j
Curse of dimension (just like original Schrodinger eq.)

Seidl '99: Suggests minimizers should be supported on 3D subsets
of R3V,

’}/(Xl7 . XN) — symmetrization of p(X1)5(X2 — T2(X]_)) s (5(XN — TN(Xl))

l.e., only need N — 1 maps T; : R3 — R3 instead of 1 fctn on R3VN
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Open: '"Monge solutions’ [alias sparsity] for N>27
Recall: semiclassical limit of HK functional for N particles has form

min{/z c(xi,x;) dv |~y + p, ¥ symm. prob.meas.on R3"}
i<j
Curse of dimension (just like original Schrodinger eq.)

Seidl '99: Suggests minimizers should be supported on 3D subsets
of R3V,

’}/(Xl7 . XN) — symmetrization of p(X1)5(X2 — T2(X]_)) s (5(XN — TN(Xl))
l.e., only need N — 1 maps T; : R3 — R3 instead of 1 fctn on R3VN

Carlier'07 (without being aware of Seidl:) True for harmonic cost
c(xy)=x—yf
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Open: '"Monge solutions’ [alias sparsity] for N>27
Recall: semiclassical limit of HK functional for N particles has form

min{/z c(xi,x;) dv |~y + p, ¥ symm. prob.meas.on R3"}
i<j
Curse of dimension (just like original Schrodinger eq.)

Seidl '99: Suggests minimizers should be supported on 3D subsets
of R3V,

’}/(Xl7 . XN) — symmetrization of p(X1)5(X2 — T2(X]_)) s (5(XN — TN(Xl))
l.e., only need N — 1 maps T; : R3 — R3 instead of 1 fctn on R3VN

Carlier'07 (without being aware of Seidl:) True for harmonic cost
c(x,y) = Ix—y?

Pass'12: False for repulsive harmonic cost c(x,y) = —|x — y|2.
There exist minimizers supported on (3N — 3)-dimensional subsets.
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Open: '"Monge solutions’ [alias sparsity] for N>27
Recall: semiclassical limit of HK functional for N particles has form

min{/z c(xi,x;) dv |~y + p, ¥ symm. prob.meas.on R3"}
i<j
Curse of dimension (just like original Schrodinger eq.)
Seidl '99: Suggests minimizers should be supported on 3D subsets
of R3V,
’}/(Xl7 . XN) — symmetrization of p(X1)5(X2 — T2(X]_)) s (5(XN — TN(Xl))
l.e., only need N — 1 maps T; : R3 — R3 instead of 1 fctn on R3VN

Carlier'07 (without being aware of Seidl:) True for harmonic cost
c(x,y) = Ix—y?

Pass'12: False for repulsive harmonic cost c(x,y) = —|x — y|2.
There exist minimizers supported on (3N — 3)-dimensional subsets.

Open: Coulomb cost ¢(x,y) =1/|x — y| (Pass: ex. with 4D supp.)
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Large N
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Optimal transport with infinitely many particles
Theorem (Cotar, GF, Pass, arXiv 2013) a) For pair interactions

N -1
Velv\:!: <2> Z c(xi, ;)
1<i<j<N

with a potential ¢(x1, x2) = £(x1 — x2) with positive Fourier transform, and
any given one-body density p with [ p = 1, the infinite-body energy

lim / VN (x1,..,xn)dv(x1, x2,...) = / c(x1, x2)dy(x1, x2, ...)
N—=oo J(R3yeo (R3)o°
is minimized over symmetric probability measures «y in infinitely many
variables with v — p if and only if

7(X17 X2, X3, ) = p(Xl)p(X2)p(X3) e
(independent product measure).

b) The optimal cost per particle pair of the N-body OT problem,
infyysp [ VA dyy, tends to the mean field cost

J c(x,¥)p(x) ply) dx dy(= inf s, Co[2]) as N — oo.
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Optimal transport with infinitely many particles

Theorem (Cotar, GF, Pass, arXiv 2013) a) For pair interactions

Vé!—(’;l)_l > clxix)

1<i<j<N

with a potential ¢(x1, x2) = £(x1 — x2) with positive Fourier transform, and

any given one-body density p with [ p = 1, the infinite-body energy
N—oco (R3)°°
is minimized over symmetric probability measures «y in infinitely many
variables with v — p if and only if
7(X17 X2, X3, ) = p(Xl)p(X2)p(X3) e
(independent product measure).

b) The optimal cost per particle pair of the N-body OT problem,
infyysp [ VA dyy, tends to the mean field cost

J c(x,¥)p(x) ply) dx dy(= inf s, Co[2]) as N — oo.

Infinite-body minimizer not of "Monge’ form.

Open: thermodynamic (O(N)) correction. Note total N-body cost O(N

lim /3 Vel\e/(xh..,x,v)d'y(xl,Xg,...):/ c(x1, x2)dv(x1, x2, ...
(R3)ee

)

)
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Intuition, 1: reformulation via representability
GF, Mendl, Pass, Cotar, Kliippelberg, arXiv 2013 /to appear in J.Chem.Phys.
Recall 1-body and 2-body marginals:

pi(x1) = / pn (X1, -, XN ) dx2..dxy
R3(N—1)

pa(x1, x2) / PN (X1, -, X ) dxs..dxp
R3(N—2)

Notation: py — p1, py — p2, etc.

Def. A probability measure p» on R° is said to be
N-density-representable, N > 2, if there exists a symmetric
probability measure py on R3V such that py — ps, and
infinite-density-representable if there exists a symm. po, on (R3)>

s.th. pso — po.
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Intuition, 1: reformulation via representability
GF, Mendl, Pass, Cotar, Kliippelberg, arXiv 2013 /to appear in J.Chem.Phys.
Recall 1-body and 2-body marginals:

pi(x1) = / pn (X1, -, XN ) dx2..dxy
R3(N—1)

pa(x1,x2) = / PN (X1, -, X ) dxs..dxp
R3(N-2)

Notation: py — p1, py — p2, etc.

Def. A probability measure p» on R° is said to be
N-density-representable, N > 2, if there exists a symmetric
probability measure py on R3V such that py — ps, and
infinite-density-representable if there exists a symm. po, on (R3)>

s.th. pso — po.

— highly nontrivial restriction

— precise characterization deep open question

— some nec.cdns were derived by physicists (Davidson, Ayers) and probabilists
(under the name 'exchangeable sequences of random variables’, Aldous)

which to this day are unaware of each other
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Example of a pair density which is not 3-representable

Violates the necessary condition of GF et al that for any partition of
R3 into two subsets A and B,

/ p> + p2 < 2( p2 + p2)
AxB BxA AxA BxB

59



Example of a pair density which is not 3-representable

P, (%)

Violates the necessary condition of GF et al that for any partition of
R3 into two subsets A and B,

/ P2 +/ p2 < 2( p2 + p2)
AxB BxA AxA BxB

Physically: weight of 'neutral’ configurations can at most be twice
as big as weight of 'ionic’ configurations.
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Reformulation of N-body and infinite-body OT

For any given single-particle density p, and any cost of two-body
-1 . .
form VI = (g’) > 1<i<j<n €(xi, ;) with ¢ symmetric,

N
i VNdyy = i d
'yr,?»i]p /R3N ee@IN pTLDP <2> /]Rﬁ € ap2

p2 N-density-rep.
min lim VNdy = min cdpa.
Yootr=p N—00 (]R3)°° p2=rp R6
p2 oo-density-rep.
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Optimal cost per particle pair as fctn of particle no.
Two-state toy model: F., Mendl, Cotar, Klippelberg, Pass, JCP, in press

Ve ol = min [ e(x,y)dpa(x,y)
p2 k-rep.,pa2—p

C(A, A) = C(B, B) = Udiag > C(A, B) = C(B,A) = UAB
p=(1—1t)oa+ tig

V.. ol

Uyiogd

k=infinity
k=11
— k=6
k=4
k=2
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Optimal cost per particle pair as fctn of particle no.

Two- state toy model: F., Mendl, Cotar, Klippelberg, Pass, JCP, in press

Ve = min [ c(x,y)dpa(x.y)
p2 k-rep.,p2—p

C(A, A) = C(B, B) = Udiag > C(A, B) = C(B,A) = UAB
p=(1—1t)oa+ tig

= SCEk
V,. “led
Uyiogd
k=infinity
k=11
—— k=6
k=4
k=2
UAB
; ‘ t
0 1 1
2
ﬂ L | | »

Fact: lim
k—o00

\7eseCE’k[p] = [ c(x,y)p(x)p(y) dx dy mean field en.
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Comparison of OT cost to true quantum interaction energy
Ab-initio-densities of atoms: F., Mendl, Cotar, Kliippelberg, Pass, to appear, JCP

Vee [a.U.]

P N W s~ OO N
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Infinite-dimensional geometric intuition
klim (k-repr.pa's) = convex hull of mean field measures p; ® p;
—00

2-site system: pp, = aandan + aagdas + apadpa + agedss

azp+apy

LIV
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Infinite-dimensional geometric intuition
klim (k-repr.pa's) = convex hull of mean field measures p; ® p;
— 00

2-site system: pp, = apadan + aagdag + apadpa + agrdBB

azp+apy

LIV

General: de Finetti's thm oo (x1, .., Xn, -.) = fP(R3) [12, pr(xi)dv(p1)
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Why is the infinite-body minimizer for repulsive cost...

...a single independent measure and not a convex combination?
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Why is the infinite-body minimizer for repulsive cost...

...a single independent measure and not a convex combination?

Answer, toy model: want to maximise off-diagonal coefficient aap,
hence maximum occurs on 'mean field line’'
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Why is the infinite-body minimizer for repulsive cost...

...a single independent measure and not a convex combination?

Answer, toy model: want to maximise off-diagonal coefficient aap,
hence maximum occurs on 'mean field line’'

Answer, general case: novel probabilistic interpretation of
infinite-body OT functional

If v infinitely rep’ble, then by de Finetti,

= [ e"=an@)
P(RY)

for some v, and (when v — p)
Celil = [ =) do) do) + [ zvarsgae) Q(2)e
R2d Rd

. N . 2
Variance term: var,qq)Q(2) = fP(Rd) |Q(2)|2dv(Q) — ‘fp(Rd) RE(Q(Z))dV(Q)}
Minimized if and only if v =,
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Summary

In the semiclassical limit, many-body quantum correlations reduce
to (still nontrivial, strongly correlated) multivariate distributions
governed by optimal transport problems.

For a large no. of particles, surprisingly, mean field /independent
distributions emerge.

Open: efficient description after 'un-doing’ the semiclassical limit.

http://www-m7.ma.tum.de
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