
Density functional theory and

optimal transport with Coulomb cost

Gero Friesecke

TU Munich

Workshop at MSRI, October 17, 2013
Organizers: Yann Brenier, Michael Cullen, Wilfrid Gangbo, Allen Tannenbaum

Ch. Mendl (TUM), C. Klüppelberg (TUM),
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Optimal transport with Coulomb cost
Minimize ∫

R3N

∑
1≤i<j≤N

1

|xi − xj |
dγ(x1, .., xN)

over symmetric N-body probability measures γ on R3N with given
one-body marginal ρ, i.e.

ρ(x1) =

∫
R3(N−1)

γ(x1, .., xN) dx2 · · · dxN .

Simplifying feature: all marginals equal because γ symmetric
Complicating features: cost decreases with distance; multi-marginal

Plan:
- Quantum mechanics → Density functional theory → OT
- Qualitative theory
- Exactly soluble examples
- Large N
C.Cotar, G.F., C.Klüppelberg, CPAM 66, 548-599, 2013 (arXiv 2011)
G.F., Ch.Mendl, B.Pass, C.C, C.K., arXiv 2013 (to appear in J.Chem.Phys.)
C.C., G.F., B.Pass, arXiv 1307.6540, 2013
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Quantum mechanics of atoms and molecules – overview

Chemical behaviour of atoms and molecules is described accurately,
at least in principle, by quantum mechanics.

Quantum mechanics for a molecule with N electrons boils down to a
partial differential equation (called electronic Schrödinger equation)
for a function Ψ ∈ L2(R3N ,C).
Born formula: |Ψ(x1, .., xN)|2 = joint prob.density of positions x1, .., xN ∈ R3

To simulate chemical behaviour, approximations are needed. (Full
Schröd.eq.: R→ 10 gridpoints means R3N → 103N gridpoints.
E.g., H2O has 10 electrons, so 1030 gridpts! Curse of dimension.)
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Density functional theory (DFT) – overview

DFT is the standard approximation to quantum mechanics in
simulations with more than a dozen or so electrons.

DFT approximates quantum mechanics via a closed eq./var.principle
for the marginal density ρ(x1) =

∫
|Ψ(x1, .., xN)|2dx2 · · · dxN .

All one-point marginals equal, since |Ψ|2 is symmetric in the xi . (Pauli principle)

Roughly, DFT models ≈ semi-empirical models of the pair density
ρ2(x1, x2) =

∫
|Ψ(x1, .., xN)|2dx3..dxN in terms of its marginal ρ.

– Nobel Prize 1998 for its inventor Walter Kohn
– Routinely used in phys., chem., materials, molecular biology

(predict binding energies/molecular geometries; ex.: Momany, Carbohyd. Res. 2005)

– Kohn: existence of ’exact’ (but comp’ly unfeasible) fctnal; reasonable approx.
– Nowadays many ingenious (semi-empirical) functionals: LDA, B3LYP, PBE, ...

(most cited physicist of all time is a designer of DFT models, J.Perdew)
– Successful in many instances but rare drastic failures too (e.g. Cr2 doesn’t bind)
– Accuracy not that high; lack of systematic derivability/improvability of functionals
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Quantum mechanics of atoms and molecules – Details

I Goal: compute lowest eigenvalue (”ground state energy”) E0 of
the following linear operator (”electronic Hamiltonian”)

He` =
N∑
i=1

(−~2

2
∆xi ) +

∑
1≤i<j≤N

1

|xi − xj |
+

N∑
i=1

vR(xi )

(depends on position vector R = (R1, ..,RM) of atomic nuclei
via potential vR(xi ) = −

∑M
α=1

Zα
|xi−Rα|)

I He` acts on Hilbert space L2
anti (R3N) of square-integrable,

antisymmetric functions Ψ : (R3)N → C, Ψ = Ψ(x1, .., xN)
(”eletronic wavefunctions”)

I Rayleigh-Ritz variational principle:

E0 = min
||Ψ||=1

〈
Ψ,He`Ψ

〉
L2

22



Quantum mechanics of atoms and molecules – Details

I Goal: compute lowest eigenvalue (”ground state energy”) E0 of
the following linear operator (”electronic Hamiltonian”)

He` =
N∑
i=1

(−~2

2
∆xi ) +

∑
1≤i<j≤N

1

|xi − xj |
+

N∑
i=1

vR(xi )

(depends on position vector R = (R1, ..,RM) of atomic nuclei
via potential vR(xi ) = −

∑M
α=1

Zα
|xi−Rα|)

I He` acts on Hilbert space L2
anti (R3N) of square-integrable,

antisymmetric functions Ψ : (R3)N → C, Ψ = Ψ(x1, .., xN)
(”eletronic wavefunctions”)

I Rayleigh-Ritz variational principle:

E0 = min
||Ψ||=1

〈
Ψ,He`Ψ

〉
L2

23



Quantum mechanics of atoms and molecules – Details

I Goal: compute lowest eigenvalue (”ground state energy”) E0 of
the following linear operator (”electronic Hamiltonian”)

He` =
N∑
i=1

(−~2

2
∆xi ) +

∑
1≤i<j≤N

1

|xi − xj |
+

N∑
i=1

vR(xi )

(depends on position vector R = (R1, ..,RM) of atomic nuclei
via potential vR(xi ) = −

∑M
α=1

Zα
|xi−Rα|)

I He` acts on Hilbert space L2
anti (R3N) of square-integrable,

antisymmetric functions Ψ : (R3)N → C, Ψ = Ψ(x1, .., xN)
(”eletronic wavefunctions”)

I Rayleigh-Ritz variational principle:

E0 = min
||Ψ||=1

〈
Ψ,He`Ψ

〉
L2

24



Connection quantum mechanics ↔ DFT

Hohenberg-Kohn-Theorem (1964) There exists a universal (i.e.,
molecule-independent) functional FHK of the single-particle density ρ such
that for any potential vR , the exact QM ground state en. satisfies

E0 = min
ρ

(
FHK [ρ] + N

∫
R3

vR(x)ρ(x) dx
)
,

where the min is over ρ : R3 → R, ρ ≥ 0,
∫
ρ = 1.

Proof 1. The non-universal part of the energy only depends on ρΨ:

〈Ψ,
∑
i

v(xi )Ψ〉 =

∫ ∑
i

v(xi )|Ψ(x1, .., xN)|2 = N

∫
R3

v(x) ρΨ(x) dx .

2. Partition the min over Ψ into a double min, first over Ψ subject to fixed

ρ, then over ρ: letting Huniv
e` := −~2

2 ∆ +
∑

i<j
1

|xi−xj | ,

E0 = inf
Ψ

(
〈Ψ,Huniv

e` Ψ〉+ N

∫
v(r) ρΨ(r) dr

)
= inf

ρ
inf

Ψ7→ρ

(
〈Ψ,Huniv

e` Ψ〉
)

︸ ︷︷ ︸
=:FHK [ρ]

+N

∫
v(r) ρ(r) dr .

25



Connection quantum mechanics ↔ DFT
Hohenberg-Kohn-Theorem (1964) There exists a universal (i.e.,
molecule-independent) functional FHK of the single-particle density ρ such
that for any potential vR , the exact QM ground state en. satisfies

E0 = min
ρ

(
FHK [ρ] + N

∫
R3

vR(x)ρ(x) dx
)
,

where the min is over ρ : R3 → R, ρ ≥ 0,
∫
ρ = 1.

Proof 1. The non-universal part of the energy only depends on ρΨ:

〈Ψ,
∑
i

v(xi )Ψ〉 =

∫ ∑
i

v(xi )|Ψ(x1, .., xN)|2 = N

∫
R3

v(x) ρΨ(x) dx .

2. Partition the min over Ψ into a double min, first over Ψ subject to fixed

ρ, then over ρ: letting Huniv
e` := −~2

2 ∆ +
∑

i<j
1

|xi−xj | ,

E0 = inf
Ψ

(
〈Ψ,Huniv

e` Ψ〉+ N

∫
v(r) ρΨ(r) dr

)
= inf

ρ
inf

Ψ7→ρ

(
〈Ψ,Huniv

e` Ψ〉
)

︸ ︷︷ ︸
=:FHK [ρ]

+N

∫
v(r) ρ(r) dr .

26



Connection quantum mechanics ↔ DFT
Hohenberg-Kohn-Theorem (1964) There exists a universal (i.e.,
molecule-independent) functional FHK of the single-particle density ρ such
that for any potential vR , the exact QM ground state en. satisfies

E0 = min
ρ

(
FHK [ρ] + N

∫
R3

vR(x)ρ(x) dx
)
,

where the min is over ρ : R3 → R, ρ ≥ 0,
∫
ρ = 1.

Proof 1. The non-universal part of the energy only depends on ρΨ:

〈Ψ,
∑
i

v(xi )Ψ〉 =

∫ ∑
i

v(xi )|Ψ(x1, .., xN)|2 = N

∫
R3

v(x) ρΨ(x) dx .

2. Partition the min over Ψ into a double min, first over Ψ subject to fixed

ρ, then over ρ: letting Huniv
e` := −~2

2 ∆ +
∑

i<j
1

|xi−xj | ,

E0 = inf
Ψ

(
〈Ψ,Huniv

e` Ψ〉+ N

∫
v(r) ρΨ(r) dr

)
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ρ
inf

Ψ7→ρ
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〈Ψ,Huniv

e` Ψ〉
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Connection quantum mechanics ↔ DFT
Hohenberg-Kohn-Theorem (1964) There exists a universal (i.e.,
molecule-independent) functional FHK of the single-particle density ρ such
that for any potential vR , the exact QM ground state en. satisfies

E0 = min
ρ

(
FHK [ρ] + N

∫
R3

vR(x)ρ(x) dx
)
,

where the min is over ρ : R3 → R, ρ ≥ 0,
∫
ρ = 1.
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i
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Existence of a universal map ρ→ ρ2

Corollary of the HK theorem There exists a universal (i.e.,
molecule-independent) map from single-particle densities ρ(x1) to
pair densities ρ2(x1, x2) which gives the exact pair density of any
N-electron molecular ground state Ψ(x1, .., xN) in terms of its
single-particle density.

Proof Ψ∗ := minimizer of 〈Ψ,Huniv
e` Ψ〉 subject to marginal

constraint Ψ 7→ ρ

ρ2 := pair density of minimizer, i.e.
ρ2(x1, x2) =

∑
s1,..,sN

∫
|Ψ∗(x1, s1, .., xN , sN)|2dx3..dxN

Analogously, ρk(x1, .., xk) :=
∫
|Ψ∗(x1, .., xk , .., xN)|2dxk+1..dxN

universal k-point density

ρ2 may be nonunique since GS may be degenerate

Map highly nontrivial and not comp’ly feasible – still uses high-dim. wavefunctions.

Design comp’ly feasible DFT’s ≈ approximate the map
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Connection DFT ←→ OT (simulation)

Left: simulation of the universal map ρ→ ρ2. Right: optimal transport prediction.
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Connection DFT ←→ OT (theory)
In the semiclassical limit, exact DFT reduces to an OT problem.

Theorem (Cotar/GF/Klüppelberg, CPAM 2013)

FHK [ρ] = min
Ψ∈H1,Ψ 7→ρ

〈Ψ, (−~2

2
∆ +

∑
i<j

1

|xi − xj |
)Ψ〉L2


→

~→0 min
γ∈PN ,γ 7→ρ

∫
R3N

∑
1≤i<j≤N

1

|xi − xj |
dγ(x1, .., xN) =: FOT [ρ]

where PN is the set of symmetric probability measures on R3N .

I Limit problem (up to passage to prob.measures) introduced in
two remarkable papers in physics lit., without being aware this
is an OT pb. Seidl’99, Seidl/Gori-Giorgi/Savin’07

I Difficulty (regularity issue): Any Ψ with |Ψ|2 = γ=optimal plan
of OT pb. has Ψ 6∈ H1, Ψ 6∈ L2, T [Ψ] = +∞, and hence
cannot be used as trial state in var. principle for FHK .
Smoothing the optimal OT plan doesn’t work either, since this
destroys the marginal constraint.
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Way out: new smoothing technique which preserves
marginals

Given: arbitrary (nonsmooth) transport plan γ with smooth
marginals ρA

Goal: smooth transport plan γ̃ close to γ, with same marginals

I Smoothen γ. Note: this modifies the marginals.

I Make it “strongly positive” (i.e. bigger or equal a positive
constant times the tensor product of its marginals), by mixing
in a small amount of the tensor product plan.

I Re-instate the marginal constraint (see next slide)

36



Re-instating the marginal constraint

Given: two measures ρA and ρB in L1(Rd), a transport plan γA→A

with
√
γ ∈W 1,2(R2d).

Goal: transport plan γB→B which is “close” to γA→A if ρB is close
to ρA, and also has

√
γ ∈W 1,2. Available regularity on opt. maps

far too weak to achieve this. Use a hybrid map/plan.

First, define a suitable plan γA→B : Let f (x) := min{ρA(x), ρB(x)},
fA := (ρA − f )+, fB = (ρB − f )+. Do nothing on f , and move fA to
fB via the tensor product plan.

Let γB→A be the corresponding reverse plan.

Now compose: first transport B to A, then A to A, then A back to
B.

γB→B(x , ω) :=

∫
Rd

∫
Rd

γB→A(x , y)
χρA>0(y)

ρA(y)
γA→A(y , z)

χρA>0(z)

ρA(z)
γA→B(z , ω) dy dz .
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Qualitative theory, N=2

Minimize
∫
R6

1
|x−y |dγ(x , y) subject to: γ has equal marginals ρ.

Theorem (Cotar/GF/Klueppelberg, arXiv 2011/CPAM 2013) For
ρ ∈ P(Rd) ∩ L1(Rd),

I unique minimizer γ

I Minimizer of ’Monge form’, γ(x , y) = µ(x)δT (x)(y) for some

map T : Rd → Rd

I T (x) = x + ∇v(x)

|∇v(x)|3/2 for some potential v : R3 → R

Similar statements on physical grounds in Seidl 99, Seidl/Gori-Giorgi/Savin 07

Similar rigorous results: Buttazzo/Gori-Giorgi/DePascale 12
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Why T (x) = x + ∇v(x)
|∇v(x)|3/2 ?

Optimal transport answer: Generalize 1/|x − y | −→
c(x , y) = `(x − y) = k(|x − y |)

`∗ := generalized Legendre transform of `
– Extend k to all of R via k(r) := +∞ if r < 0
– k∗ ordinary Leg.trf. of k, i.e. k∗(p) := supp(p · r − k(r))
– `∗(z) := k∗(−|z|)

Gangbo-McCann theory for opt.map: T (x) = x −∇`∗(∇v(x))

Check that theory (originally for convex costs) generalizes to
Coulomb; advice by Robert McCann gratefully acknowledged

Explicit computation: `(x − y) = 1/|x − y | =⇒ `∗(z) = −2
√
|z |

Physics answer: (Seidl 1999)

∇v(x)=Coulomb force on electron at x by electron at T (x),

i.e. ∇v(x) = T (x)−x
|T (x)−x |3 .
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Exact solution, 2 particles in 1D
Special case of results in Cotar, GF, Klüppelberg, CPAM

ρ=uniform measure on [0,1]
γopt(x , y) = ρ(x)δT (x)(y)

T rigidly switches right and left half of [0,1],
T (x) = x + 1/2 for x < 1/2, x − 1/2 for x > 1/2

Generalization to N particles in 1D: Colombo, DePascale, DiMarino
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Physical realization
Beryllium atom, angular pair density

x y

Accurate numerics (many DOF’s, no insight in mechanism)

Optimal transport
Position of maxima of pair density (x − y = π) correctly captured
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Exact solution, 2 particles in 3D, radial density
γopt(x , y) = ρ(x)δT (x)(y)

Optimal map T determined by:
T (x)
|T (x)| = − x

|x| (opposite direction)

4π
∫ −|x|
−∞ r2ρ(r)dr = 4π

∫ |T (x)|
0

r2ρ(r)dr (mass balancing).

Pf of this: 1. Coulomb cost c(|x − y |) = 1/|x − y | convex, decreasing in the distance.

2. McCann (’economy of scale’): concave, increasing costs.
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Open: ’Monge solutions’ [alias sparsity] for N>2?
Recall: semiclassical limit of HK functional for N particles has form

min{
∫ ∑

i<j

c(xi , xj) dγ | γ 7→ ρ, γ symm. prob.meas.on R3N}

Curse of dimension (just like original Schrödinger eq.)

Seidl ’99: Suggests minimizers should be supported on 3D subsets
of R3N ,

γ(x1, .., xN) = symmetrization of ρ(x1)δ(x2 −T2(x1)) · · · δ(xN −TN(x1))

I.e., only need N − 1 maps Ti : R3 → R3 instead of 1 fctn on R3N

Carlier’07 (without being aware of Seidl:) True for harmonic cost
c(x , y) = |x − y |2

Pass’12: False for repulsive harmonic cost c(x , y) = −|x − y |2.
There exist minimizers supported on (3N − 3)-dimensional subsets.

Open: Coulomb cost c(x , y) = 1/|x − y | (Pass: ex. with 4D supp.)
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Large N
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Optimal transport with infinitely many particles
Theorem (Cotar, GF, Pass, arXiv 2013) a) For pair interactions

V N
ee =

(
N

2

)−1 ∑
1≤i<j≤N

c(xi , xj)

with a potential c(x1, x2) = `(x1 − x2) with positive Fourier transform, and
any given one-body density ρ with

∫
ρ = 1, the infinite-body energy

lim
N→∞

∫
(R3)∞

V N
ee (x1, .., xN)dγ(x1, x2, ...) =

∫
(R3)∞

c(x1, x2)dγ(x1, x2, ...)

is minimized over symmetric probability measures γ in infinitely many
variables with γ 7→ ρ if and only if

γ(x1, x2, x3, ...) = ρ(x1)ρ(x2)ρ(x3) · · ·
(independent product measure).

b) The optimal cost per particle pair of the N-body OT problem,
infγN 7→ρ

∫
V N
eedγN , tends to the mean field cost∫

c(x , y)ρ(x) ρ(y) dx dy(= infγ 7→ρ C∞[γ]) as N →∞.

Infinite-body minimizer not of ’Monge’ form.

Open: thermodynamic (O(N)) correction. Note total N-body cost O(N2)
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Intuition, 1: reformulation via representability
GF, Mendl, Pass, Cotar, Klüppelberg, arXiv 2013/to appear in J.Chem.Phys.

Recall 1-body and 2-body marginals:

p1(x1) =

∫
R3(N−1)

pN(x1, .., xN)dx2..dxN

p2(x1, x2) =

∫
R3(N−2)

pN(x1, .., xN)dx3..dxN

Notation: pN 7→ p1, pN 7→ p2, etc.

Def. A probability measure p2 on R6 is said to be
N-density-representable, N ≥ 2, if there exists a symmetric
probability measure pN on R3N such that pN 7→ p2, and
infinite-density-representable if there exists a symm. p∞ on (R3)∞

s.th. p∞ 7→ p2.

– highly nontrivial restriction
– precise characterization deep open question
– some nec.cdns were derived by physicists (Davidson, Ayers) and probabilists
– (under the name ’exchangeable sequences of random variables’, Aldous)
– which to this day are unaware of each other
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Example of a pair density which is not 3-representable

Violates the necessary condition of GF et al that for any partition of
R3 into two subsets A and B,∫

A×B
p2 +

∫
B×A

p2 ≤ 2(

∫
A×A

p2 +

∫
B×B

p2)

Physically: weight of ’neutral’ configurations can at most be twice
as big as weight of ’ionic’ configurations.
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Reformulation of N-body and infinite-body OT

For any given single-particle density ρ, and any cost of two-body

form VN
ee =

(N
2

)−1∑
1≤i<j≤N c(xi , xj) with c symmetric,

min
γN 7→ρ

∫
R3N

VN
eedγN = min

ρ2 7→ρ
ρ2 N-density-rep.

(
N

2

)∫
R6

c dρ2,

min
γ∞ 7→ρ

lim
N→∞

∫
(R3)∞

VN
eedγ = min

ρ2 7→ρ
ρ2 ∞-density-rep.

∫
R6

c dρ2.
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Optimal cost per particle pair as fctn of particle no.
Two-state toy model: F., Mendl, Cotar, Klüppelberg, Pass, JCP, in press

Ṽ SCE ,k
ee [ρ] := min

p2 k-rep.,p2 7→ρ

∫
c(x , y)dp2(x , y)

c(A,A) = c(B,B) = Udiag > c(A,B) = c(B,A) = UAB

ρ = (1− t)δA + tδB

Fact: lim
k→∞

Ṽ SCE ,k
ee [ρ] =

∫
c(x , y)ρ(x)ρ(y) dx dy mean field en. (!)
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Ṽ SCE ,k
ee [ρ] := min

p2 k-rep.,p2 7→ρ

∫
c(x , y)dp2(x , y)

c(A,A) = c(B,B) = Udiag > c(A,B) = c(B,A) = UAB

ρ = (1− t)δA + tδB

Fact: lim
k→∞
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Comparison of OT cost to true quantum interaction energy
Ab-initio-densities of atoms: F., Mendl, Cotar, Klüppelberg, Pass, to appear, JCP

He Li Be

1

2

3

4

5

6

7

Vee �a.u.� J

k��

LDA

exact

Vee
SCE

k�3

k�2
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Infinite-dimensional geometric intuition

lim
k→∞

(k-repr.ρ2’s) = convex hull of mean field measures ρ1 ⊗ ρ1

2-site system: ρ2 = αAAδAA + αABδAB + αBAδBA + αBBδBB

αBB1
1/200

2
1

1

2
1

αAB + αBA

1

αAA

General: de Finetti’s thm γ∞(x1, .., xN , ..) =
∫
P(R3)

∏∞
i=1 ρ1(xi )dν(ρ1)
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Why is the infinite-body minimizer for repulsive cost...
...a single independent measure and not a convex combination?

Answer, toy model: want to maximise off-diagonal coefficient αAB ,
hence maximum occurs on ’mean field line’

Answer, general case: novel probabilistic interpretation of
infinite-body OT functional

If γ infinitely rep’ble, then by de Finetti,

γ =

∫
P(Rd )

Q⊗∞dν(Q)

for some ν, and (when γ 7→ ρ)

C∞[γ] =

∫
R2d

`(x − y) dρ(x) dρ(y) +

∫
Rd

ˆ̀(z)varν(dQ)Q̂(z)dz .

Variance term: varν(dQ)Q̂(z) =
∫
P(Rd ) |Q̂(z)|2dν(Q)−

∣∣∣∫P(Rd ) Re(Q̂(z))dν(Q)
∣∣∣2

Minimized if and only if ν = δρ
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Summary

In the semiclassical limit, many-body quantum correlations reduce
to (still nontrivial, strongly correlated) multivariate distributions
governed by optimal transport problems.

For a large no. of particles, surprisingly, mean field/independent
distributions emerge.

Open: efficient description after ’un-doing’ the semiclassical limit.

http://www-m7.ma.tum.de

70


