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Gevrey norms

Gevrey classes. Maurice Gevrey (1884-1957)

In 1918, Maurice Gevrey defined the following:
Definition: Let m ≥ 1. Gm(T) (Gevrey space of class m) is the set of f = f (x)
s.t.

∃C , τ > 0, |f (k)(x)| ≤ C τ−k(k!)m, C , τ > 0, ∀ k, x .

Remark:

m = 1: analytic functions.

m > 1: Gm(T) contains compactly supported functions.

Proposition: f ∈ Gm(T) iff

∃C , σ > 0, |f̂ (k)| ≤ Ce−σk
1/m
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Gevrey norms

Gevrey norms

In physical space

‖f ‖2
G
m,σ
τ

:=
∑
j∈N

(
τ j(j!)−mjσ

)2

‖∂ j f ‖2
L2 (1)

In Fourier space

‖f ‖2
Gm,στ := ‖|ξ|σeτ |ξ|

1/m

f̂ (ξ)‖2
L2 (2)

m is the Gevrey class
σ is a Sobolev correction
τ is the radius of analyticity when m = 1.
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Gevrey norms

Gevrey norms (mostly for analytic regularity) are used in many PDE problems :

Temam-Foias

Bardos-BenAchour

Ferrari-Titi

Levermore-Oliver-Titi

Sammartino and Caflisch

Kukavica-Temam-Vicol-Ziane

Rauch
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Prandtl system and D’Alembert’s paradox

Prandtl system: Ludwig Prandtl (1875 -1953)

Aerodynamic boundary layers were first introduced by Ludwig Prandtl in a
paper presented on August 12, 1904 at the third International Congress of
Mathematicians in Heidelberg, Germany. It divided the flow field into two areas:

1) One inside the boundary layer, dominated by viscosity and creating the
majority of drag experienced by the boundary body (Prandtl system),

2) One outside the boundary layer, where viscosity can be neglected without
significant effects on the solution (Euler)
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D’Alembert’s paradox. D’Alembert (1717-1783)

In particular, this gave an answer to the D’Alembert’s (1717-1783) paradox (or
the hydrodynamic paradox). This paradox was a contradiction reached in 1752
by French mathematician Jean le Rond D’Alembert who proved that for
incompressible and inviscid potential flow the drag force is zero on a body
moving with constant velocity relative to the fluid.
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Prandtl system and D’Alembert’s paradox

Starting point: Navier-Stokes in a half-plane (Ω = R2
+).

Dimensionless form:

{
∂tu + u · ∇u +∇p − ε∆u = 0,

∇ · u = 0.
(NS)

ε = ν
UL

(ε−1 is the Reynolds number)

Flow around an airplane wing: ε ∼ 10−5-10−6.

Tempting simplification : ε = 0.{
∂tu + u · ∇u +∇p = 0,

∇ · u = 0.
(E)

Case Ω = R2: this simplification can be justified in general in the case without
boundaries (Swann, Kato, Constantin, ...).

Case Ω = R2
+: not so clear !
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Problem with the boundary condition.

If ε = 0 (Euler): non-penetration condition:

u · n|∂Ω = 0

If 0 < ε� 1 (Navier-Stokes): no-slip condition:

u|∂Ω = 0

Strong velocity gradients, near the boundary: boundary layer.

Question: How does concentration in the boundary layer affect the asymptotics
ε→ 0 ?



Gevrey spaces and inviscid damping for 2D Euler

Gevrey class, Prandtl system and inviscid damping

Prandtl system and D’Alembert’s paradox

Prandtl boundary layer theory (1904)

Asymptotic model, involving two different asymptotic expansions of the
solution uε:

away from the boundary: Euler:

uε ≈ uE = (uE , vE )(t, x , y).

near the boundary: concentration at scale
√
ε:

uε ≈
(
u
(
t, x , y/

√
ε
)
,
√
ε v
(
t, x , y/

√
ε
))

where u = u(t, x ,Y ), v = v(t, x ,Y ), (x ,Y ) ∈ R× [0,+∞[.

Formally (with y instead of Y ):
∂tu + u∂xu + v∂yu + ∂xp − ∂2

yu = 0, x ∈ R, y > 0,

∂yp = 0, x ∈ R, y > 0,

∂xu + ∂yv = 0, x ∈ R, y > 0.
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Boundary conditions:

no-slip: u(t, x , 0) = v(t, x , 0) = 0.

matching to the Euler flow:

u(t, x ,+∞) = UE (t, x) := uE (t, x , 0),

p(t, x ,+∞) = PE (t, x) := pE (t, x , 0).

Finally, Prandtl equation reads (with (x , y) ∈ R2
+):


∂tu + u∂xu + v∂yu − ∂2

yu = −∂xPE ,

∂xu + ∂yv = 0,

u|y=0 = v |y=0 = 0,

u|y=+∞ = UE .

(P)

Questions: Experimental evidence ? Mathematical justification ?

More precisely: is (P) well-posed ? Asymptotic expansion of uε ?
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Many experimental studies (flows around obstacles)...
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... which exhibit many instabilities.

Example: Boundary layer separation.
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Explanation for the separation: adverse pressure gradient.

UE > 0, −∂xPE < 0. Loss of monotonicity (in y), followed by separation.
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Cauchy problem for Prandtl

Positive results:

Analytic data (w.r.t. x): locally well-posed ([Sammartino and Caflisch 1998],

[Lombardo-Cannone and Sammartino 2003], [Kukavica and Vicol 2012]).

Monotonic data (w.r.t. y): locally well-posed, globally if ∂xPE < 0
([Oleinik 1968], [Xin-Zhang 2004] (Crocco transform). [Alexandre-Wang-Xu

and Yang 2012], [Masmoudi and Wong 2012]).

Questions: Non-monotonic data ? Sobolev theory ?

Studied in [Gérard-Varet and Dormy 2010]. For better understanding:

Linearization around a shear flow (U(y), 0).


∂tu + U∂xu + vU ′ − ∂2

yu = 0, in T× R+.

∂xu + ∂yv = 0, in T× R+,

(u, v)|y=0 = (0, 0), lim
y→+∞

u = 0.

(PL)
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Theorem (Gevrey well-posedness [Gérard-Varet and M ])

Let τ0 > 0, s � 1 even, σ ≥ γ + 1
2
� 1. Let

u0 ∈ G 7/4
τ0

(T; Hs+1
γ−1), ω0 := ∂yu0 ∈ G 7/4

τ0
(T; Hs

γ),

satisfying: u0|y=0 = 0, as well as (H1), (H2). Then there exists T > 0,
0 < τ ≤ τ0 and a unique solution

u ∈ L∞
(
0,T ; G 7/4

τ (T; Hs+1
γ−1)

)
, ω ∈ L∞

(
0,T ; G 7/4

τ (T; Hs
γ)
)
,

of (P), with initial data u0.

Hs
γ is a weighted Sobolev space.
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Two main points :

The Gevrey requirement is due to an instability in the linearized problem

The proof used the physical space representation of the Gevrey norm
because the cancellation of Tak Kwong Wong and M is given in physical
space.
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Sommerfeld paradox and Orr mechanism

Sommerfeld (1868-1951) paradox (or turbulence paradox) says that
mathematically the Couette flow (linear shear) is linearly stable (spectral
stability) for all Reynolds numbers, but experimentally transition to turbulence
is observed under perturbations of any size when the Reynolds number is large.

One of the main explanation was given by W. Orr (1866-1934) in 1907 and is
based on the Orr mechanism.
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Couette flow

Couette flow

(U(y), 0) is a stationary solution of 2D Euler (called a ‘shear flow’).

When U(y) = y , it is called ‘planar Couette flow’

Kelvin, Rayleigh, Orr, Sommerfeld etc studied the linear stability of
Couette flow and understood that there were no exponentially unstable
modes regardless of the Reynolds number (spectral stability).

It has since been a classical question of fluid mechanics to determine in
what sense Couette flow might be nonlinearly stable in 2D Euler.

Experiments with fluids have been unable to sustain planar Couette flow
at high Reynolds numbers despite the spectral stability.

We will be studying this question in the simplest setting: (x , y) ∈ T× R.
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Couette flow

Couette flow: Orr mechanism

The first serious attempt of resolving the apparent paradox was made by
Orr in 1907 (see also Trefethen-Trefethen-Reddy-Driscoll, Li-Lin)

He made two fundamental observations about 2D Euler linearized around
the Couette flow:
(a) The perturbed velocity field formally decays asymptotically like O(t−1) in

the x component and O(t−2) in the y component.
(b) Before ultimately decaying, the velocity field can amplify dramatically, and

potentially exit the linear regime.

(b) was Orr’s suggested resolution of the disagreement between
experiment and theory.

The decay occurs despite the fact that 2D Euler is time-reversible (so in
some sense we couldn’t really have (a) without (b)).

(a) is roughly analogous to Landau damping for the Vlasov equations!

The decay of the velocity field in 2D Euler is referred to as inviscid
damping.
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Couette flow

Stability and Instability in hydrodynamics

Many mathematical results

C.C.-Lin

Drazin-Howard and Drazin-Reid

Arnold

Friedlander-Strauss-Vishik

Grenier

Bardos-Guo-Strauss

Z. Lin
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Orr mechanism: transient amplification and damping by mixing

Vorticity transport in shear

The (at first) surprising damping in linearized Euler can be attributed to
vorticity mixing.

2D incompressible Euler in vorticity-transport form in a background shear
flow: {

ωt + y∂xω +∇⊥ψ · ∇ω = 0
∆ψ = ω.

(3)

The vorticity ω, and the velocity ∇⊥ψ it creates through the Biot-Savart
law, are the perturbation from the background shear flow.
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Orr mechanism: transient amplification and damping by mixing

Mixing as a linear decay estimate

Linearizing 2D Euler around Couette flow gives the passive transport:

ωt + y∂xω = 0. (4)

Hence ω(t, x , y) = ω0(x − ty , y).

In Fourier space ω̂(t, k, η) = ω̂0(k, η + kt).

There are several things to observe:
(a) ω(t) ⇀

∫
ω0(x , y)dx (the trajectories are not pre-compact - lose

information to small scales as t → ∞)
(b) ∂yω(t, x , y) = O(t) but ∂xω and (∂y + t∂x )ω are bounded.
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Orr mechanism: transient amplification and damping by mixing

Mixing as a linear decay estimate

Consider solving now for the streamfunction ∆ψ = ω0(x − ty , y).

Change coordinates to z = x − ty and write φ(t, z , y) = ψ(t, x , y). Then
it turns out ∂zzφ+ (∂y − t∂z)2φ = ω0(z , y).

In Fourier (in the moving frame (z , y))

φ̂(k, η) =
ω̂0(k, η)

k2 + |η − kt|2
.

This is basically the computation carried out by Orr, modernized and
adapted to our geometry.

The fundamental decay estimate: ‖φk 6=0‖Hs . 〈t〉−2‖ω0‖Hs+2 . Damping
costs regularity.

The transient amplification that occurs at η = kt and subsequent decay is
called the Orr mechanism. We call the time t = η

k
the ‘Orr critical time’.
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Stability and instability of Couette flow

Orr mechanism: transient amplification and damping by mixing

Recall that in the moving frame the streamfunction is given by

φ̂(k, η) = − ω̂0(k, η)

k2 + |η − kt|2
.

Consider a pure plane wave with η � k being sheared (based on a picture of

Boyd):

Figure: The center image occurs at the critical time t = η/k

.

The right half is mixing and losing kinetic energy but the left-half is un-mixing.



Gevrey spaces and inviscid damping for 2D Euler

Our main result : Asymptotic stability of nearly-Couette shear flows

Nonlinear inviscid damping

For many years the Orr mechanism was more or less completely forgotten,
but is now accepted as a fundmental mechanism for potential instabilities
(see e.g. Trefethen et. al., Lin/Zeng, Lindzen, Boyd, etc).

The transient growth of kinetic energy can be related the fact that the
linear operator is not normal (on the level of the velocity field) a scenario
also suggested by Orr. See also the notion of the ‘pseudo-spectrum’ (see
Trefethen et. al.).

It has remained an open question to determine what the nonlinear
evolution does...is it unstable? Lyapounov stable? Asymptotically stable?
In what norms?

The decay of the linear problem suggests that as t →∞, the velocity field
converges to a shear flow and the vorticity mixes as if it is being passively
transported.

Lin and Zeng show in 2011 that small perturbations to the vorticity in Hs

do not necessarily return to any shear flow if s < 3/2 (they can be trapped
in Kelvin’s cat’s eye vortices).
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Our main result : Asymptotic stability of nearly-Couette shear flows

Nonlinear inviscid damping

The recent ground-breaking work of Mouhot and Villani on nonlinear
Landau damping suggests that we are ready to prove nonlinear inviscid
damping for the Couette flow.

Our proof is pretty different...

Recall the norm

‖ω0‖2
λ :=

∑
k

∫
|ω̂0(k, η)|2 e2λ|k,η|s dη.

Hence our initial data is Gevrey- 1
s
.

This regularity class is a bit obscure, but the proof will reveal why it is
natural for this problem.

We also have to take mean-zero and well-localized:
∫
ω0dxdy = 0 and∫

y 2 |ω0(x , y)| dxdy sufficiently small.
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Our main result : Asymptotic stability of nearly-Couette shear flows

Asymptotic stability of nearly-Couette shear flows

Theorem (Bedrossian - Masmoudi 2013)

For all 1/2 < s ≤ 1, λ > λ′ > 0, there exists an ε0 = ε0(λ, λ′, s) ≤ 1/2 such
that if

‖ω0‖λ = ε < ε0,

then the vorticity mixes like passive advection in a shear flow up to a
logarithmic phase correction as t →∞, in the sense that: there exists an f∞,
u∞(y) and θ(t, y) = O(log t) such that

‖ω(t, x + ty + u∞(y)t + θ(t, y), y)− f∞(x , y)‖λ′ .
1

t
. (5)

Moreover, the velocity field U converges strongly in L2 to the shear flow
(y + u∞(y), 0):

‖Ux(t)− u∞‖2 .
1

〈t〉 (6a)

‖Uy (t)‖2 .
1

〈t〉2 , (6b)
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Proof Outline

Coordinate change and “quasi-linearity”

2D Euler is quasi-linear

The evolution of the vorticity is asymptotically like passive transport in a
shear flow:

ω(t, x , y) ∼ f∞ (x − ty − u∞(y)t − θ(t, y), y) , when t →∞.

Difficulty: there is a logarithmic phase correction (analogous to long-range
scattering in dispersive equations).

Way bigger difficulty: the background shear y + u∞(y) is determined by
the solution.

In this context, the Euler equations should be considered “quasi-linear”
(whereas the Vlasov equations are “semi-linear”).

This is especially dangerous since we need regularity to get the
damping...but we will only have bounded derivatives in certain directions
determined by the background shear flow that we don’t know.
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Proof Outline

Coordinate change and “quasi-linearity”

Time-dependent coordinates

We need coordinates to adapt with the solution, so that we are always
taking derivatives (and doing Fourier analysis) in the right direction.

We use:

z = x − tv (7a)

v = y +
1

t

∫ t

0

< Ux > (s, y)ds (7b)

where < Ux >=
∫
T Uxdx is the x-average of Ux .

v is named as such since it is an approximation of the shear velocity.

The z shift is ‘modding’ out by the background shear flow (Orr used this
trick too).

The change y → v is to ensure that the Biot-Savart law in the new
variables has the same Orr critical times.
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Coordinate change and “quasi-linearity”

Time-dependent coordinates

Define f (t, z , v) = ω(t, x , y) and the transformed streamfunction
φ(t, z , v) = ψ(t, x , y):

∂t f + ∂tv∂v f + ∂yv∇⊥z,v (φ− < φ >) · ∇z,v f = 0 (8a)

∂zzφ+ (∂yv)2 (∂v − t∂z)2 φ+ ∂yyv (∂v − t∂z)φ = f . (8b)

Note that powers of t do not appear in (8a) and the transport structure is
retained. We write:

∂t f + u · ∇z,v f = 0 (9)

∆tφ = f (10)

If ‖f ‖λ is small enough, ‖〈∇〉−4u‖λ = O(t−2 log t), so the goal is to get a
uniform-in-time estimate on f .

Upon changing variables back, this will imply the kind of damping we
want...
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Toy model for nonlinear mechanism

Control as regularity loss

We want to phrase our control not in amplitude growth but in regularity
loss (recall we need to pay regularity to get decay!).

Idea behind Cauchy-Kovalevskaya-type results for local well-posedness for
analytic initial data - for example vortex sheets.

Since Orr’s work, the unresolved fundamental question about the Couette
flow is whether the Orr mechanism always drives instability or whether or
not stability can still hold under some hypotheses (Orr pondered on this
question too).

Clearly, we need to have a good understanding of how the Orr mechanism
manifests in the nonlinear problem.
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Toy model for nonlinear mechanism

Paraproducts as ‘linearization’

Divide the nonlinearity based on the relative frequencies of the two factors
(known as a paraproduct - introduced by Bony),

∂t f + ulo · ∇fhi + uhi · ∇flo +R[f ] = 0, (11)

ulo · ∇fhi denotes the part of the product in which the frequencies of u are
much smaller than the frequencies of f .

Formally (11) resembles a linearization, and one can draw analogy with
the Newton scheme and terminology of Mouhot and Villani:

the second term describes the “transport” structure;
the third term describes “reaction”, in which the velocity field ‘pushes’
against the lower frequencies of f .

We can estimate the contribution from transport by adapting the Gevrey
regularity methods of Foias/Temam, Levermore/Oliver/Titi,
Kukavica/Vicol...

Since the velocity field is in ‘low frequency’ we can (mostly) avoid dealing
with the Orr critical times.
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Toy model for nonlinear mechanism

Nonlinear interactions and the Orr Mechanism

The reaction term is not so lucky...

At the critical times, uhi becomes large and there is maybe a strong
nonlinear effect.

In Vlasov, something analogous creates ‘plasma echoes’.

Experiments and numerical simulations confirm similar ‘Euler echoes’ in
2D Euler (Vanneste et. al., Yu et. al.).

Echoes are actually a special case of a potentially much worse repeating
cascade of information to modes which are unmixing (a scenario studied
by Vanneste et. al., Trefethen et. al., Waleffe, Baggett et. al. etc mostly
in 3D).
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Toy model for nonlinear mechanism

Nonlinear interactions and the Orr Mechanism

With the paraproduct in mind, we should use a model problem in which f
evolves linearly, interacting with a background flo , something like:

∂t f̂ (t, k, η) =
∑
l 6=0

∫
ξ

ξφ̂(t, l , ξ)(k − l)f̂lo(t, k − l , η − ξ)dξ.

Approximate φ with the linear problem:

φ(l , ξ) ≈ f̂ (t, l , ξ)

l2 + |ξ − lt|2

Our choice of v is made specifically so that this approximation is accurate
enough!

(∇f )lo reduces interactions of well-separated frequencies in v , so let’s
think of η as a parameter:

∂t f (t, k, η) =
∑
l 6=0

ηf̂ (t, l , η)

l2 + |η − lt|2
(k − l)f̂lo(t, k − l , 0).



Gevrey spaces and inviscid damping for 2D Euler

Proof Outline

Toy model for nonlinear mechanism

Nonlinear interactions and the Orr Mechanism

With the paraproduct in mind, we should use a model problem in which f
evolves linearly, interacting with a background flo , something like:

∂t f̂ (t, k, η) =
∑
l 6=0

∫
ξ

ξφ̂(t, l , ξ)(k − l)f̂lo(t, k − l , η − ξ)dξ.

Approximate φ with the linear problem:

φ(l , ξ) ≈ f̂ (t, l , ξ)

l2 + |ξ − lt|2

Our choice of v is made specifically so that this approximation is accurate
enough!

(∇f )lo reduces interactions of well-separated frequencies in v , so let’s
think of η as a parameter:

∂t f (t, k, η) =
∑
l 6=0

ηf̂ (t, l , η)

l2 + |η − lt|2
(k − l)f̂lo(t, k − l , 0).



Gevrey spaces and inviscid damping for 2D Euler

Proof Outline

Toy model for nonlinear mechanism

Nonlinear interactions and the Orr Mechanism

With the paraproduct in mind, we should use a model problem in which f
evolves linearly, interacting with a background flo , something like:

∂t f̂ (t, k, η) =
∑
l 6=0

∫
ξ

ξφ̂(t, l , ξ)(k − l)f̂lo(t, k − l , η − ξ)dξ.

Approximate φ with the linear problem:

φ(l , ξ) ≈ f̂ (t, l , ξ)

l2 + |ξ − lt|2

Our choice of v is made specifically so that this approximation is accurate
enough!

(∇f )lo reduces interactions of well-separated frequencies in v , so let’s
think of η as a parameter:

∂t f (t, k, η) =
∑
l 6=0

ηf̂ (t, l , η)

l2 + |η − lt|2
(k − l)f̂lo(t, k − l , 0).



Gevrey spaces and inviscid damping for 2D Euler

Proof Outline

Toy model for nonlinear mechanism

Nonlinear interactions and the Orr Mechanism

With the paraproduct in mind, we should use a model problem in which f
evolves linearly, interacting with a background flo , something like:

∂t f̂ (t, k, η) =
∑
l 6=0

∫
ξ

ξφ̂(t, l , ξ)(k − l)f̂lo(t, k − l , η − ξ)dξ.

Approximate φ with the linear problem:

φ(l , ξ) ≈ f̂ (t, l , ξ)

l2 + |ξ − lt|2

Our choice of v is made specifically so that this approximation is accurate
enough!

(∇f )lo reduces interactions of well-separated frequencies in v , so let’s
think of η as a parameter:

∂t f (t, k, η) =
∑
l 6=0

ηf̂ (t, l , η)

l2 + |η − lt|2
(k − l)f̂lo(t, k − l , 0).



Gevrey spaces and inviscid damping for 2D Euler

Proof Outline

Toy model for nonlinear mechanism

Toy model for nonlinear interactions

Fix η and take the time t = η
k

for k large. Hence (k, η) is critical.

At the future time η
k−1

, the mode (k − 1, η) becomes critical. So we are
worried about a high-to-low frequency cascade.

Our toy model is for the interactions between k and nearby non-critical
modes near the critical time t ≈ η

k
:

∂t fC ≈
k2

|η| fNC (12a)

∂t fNC ≈
|η|

k2 + |η − kt|2
fC , (12b)

fC denotes the evolution of the mode k (the C stands for ‘critical’) and
fNC denotes the nearby ‘non-critical’ modes.

We took absolute values so removed any potential for oscillations.

Analyzing this ODE will show that the cascade will create a growth
roughly like O(eK

√
η).

This suggests that as time goes to infinity, the solution (in these new
variables) could lose a large amount of Gevrey-2 regularity (hence the
requirement s > 1/2).
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Energy estimate

Energy Estimates

It is insufficient to estimate with imprecise norms such as one which just
measures the Gevrey-2 regularity, as this results in a time growth like
O(e

√
t) or a radius of regularity λ(t)→ 0 very fast.

Instead, we build the behavior of the toy model into the energy estimate.

The key idea is to design a norm which gets weaker in the right modes at
the right times so that

we have a uniform-in-time estimate,
we do not completely exhaust all of our regularity as t → ∞.

Several major difficulties to overcome:
The coefficients of the Biot-Savart law depend on the entire time history of
the solution! (ignored in our toy model)
The toy model assumes all the η modes are independent and throws out a
lot of other interactions too.
Transport vs reaction.
Need to also get estimates on the time evolution of the coordinate system...
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Energy estimate

‖A(t,∇)f ‖2
2 =

∑
k

∫
η

|A(t, k, η)f (t, k, η)|2 dη.

The multiplier A has several components :

Ak(t, η) = eλ(t)|k,η|s 〈k, η〉σJk(t, η)Bk(t, η).

The index λ(t) is the bulk Gevrey− 1
s

regularity and wil be chosen to satisfy

λ̇(t) = −Kλ
ε

〈t〉q (1 + λ(t)),

for some Kλ and q > 1.
The main multiplier for dealing with the Orr mechanism and the nonlinear
growth it yields is

Jk(t, η) =
eµ|η|

1/2

wk(t, η)
+ eµ|k|

1/2

where wk(t, η) describes the expected ‘worst-case’ growth due to nonlinear
interactions at the critical times
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Energy estimate

With this special norm, we can define our main energy:

E(t) =
1

2
‖Af ‖2

2 + 〈t〉4−ε‖ A

〈∂v 〉s
[∂tv ]‖2

2. (13)

In a sense, there are two coupled energy estimates we need to make: the one
on Af and the one on A∂tv .
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Energy estimate

1

2

d

dt

∫
|Af |2 dx = −CKλ − CKw − CKB +

∫
AfA(u · ∇f )dx , (14)

where the CK stands for ‘Cauchy-Kovalevskaya’ since these three terms arise
from the progressive weakening of the norm in time, and are expressed as

CKλ = −λ̇(t)‖ |∇|s/2 Af ‖2
2

CKw =
∑
k

∫
∂twk(t, η)

wk(t, η)

∣∣∣Ak(t, η)f̂k(t, η)
∣∣∣2 dη

CKB = −
∑
k

∫
∂tB(t, η)

B(t, η)

∣∣∣Ak(t, η)f̂k(t, η)
∣∣∣2 dη.

The rest of the proof is to control Transport and Reaction terms....
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Proof Outline

Energy estimate

We still need to prove :

Elliptic estimates to invert ∆tφ = f

Control of [∂tv ] which appears in E(t)
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Landau Damping

Mixing in the Vlasov equations

The collisionless Vlasov equations are the kinetic model for a probability
distribution f (t, x , v) : Td × Rd → [0,∞):{

∂t f + v · ∇x f + F (t, x) · ∇v f = 0
F (t, x) = −∇xW ∗x

(∫
f (t, ·, v)dv − 1

)
,

(15)

In physics a common mean-field interaction is W a repulsive Newtonian
potential: models the distribution of electrons in a plasma after neglecting
magnetic effects and ion momentum.

Another commonly used choice is W an attractive Newtonian potential:
the distribution of stars in a galaxy over time/length scales on which
relativistic effects are not important.

Any homogeneous distribution f 0(v) is a stationary solution to (15).

In 1946 Landau showed that the linearized Vlasov equations near the
Maxwellian has exponential asymptotic convergence: |F (t)| . e−λt -
called Landau damping.

Predicts asymptotic stability (in some sense) without dissipation, entropy
production etc of any kind.
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Landau Damping

Mixing by kinetic free transport

The fundamental mechanism is the same as in Euler: the phase mixing
(mixing in phase-space) due to the free transport ∂t f + v · ∇x f = 0 (van
Kampen ‘55).

Proving that this holds for the linearized Vlasov equations

∂t f + v · ∇x f + F (t, x) · ∇v f 0 = 0

is easy if you have some kind of smallness (e.g. weakly interacting
particles etc) and basically holds regardless of the form of W .

Without smallness, a serious linear stability analysis must be done, and the
exact form of f 0 and W is crucial (the most common mathematically
correct treatment is with a Laplace transform).

Landau damping and asymptotic stability for the nonlinear Vlasov
equations was proved by Mouhot and Villani in 2011 - the first result of its
kind.

We have a new proof of this result (slightly more general) with J.
Bedrossian and C. Mouhot.
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Landau Damping

Landau damping in the Vlasov equations

The collisionless Vlasov equations for a probability distribution
f (t, x , v) : Td × Rd → [0,∞):

∂t f + v · ∇x f + F (t, x) · ∇v f = 0
F (t, x) = −∇xW ∗x

(∫
f (t, ·, v)dv − 1

)
,

f (t = 0, x , v) = fin(x , v).

f 0(v) is an equillibrium so we can study mean-zero perturbations
f (t, x , v) = f 0(v) + h(t, x , v)

∂th + v · ∇xh + F (t, x) · ∇vh + F (t, x) · ∇v f 0 = 0,
F (t, x) = −∇xW ∗x

∫
h(t, ·, v)dv ,

h(t = 0, x , v) = hin(x , v).
(16)
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Landau Damping

Nonlinear Landau damping

Mouhot and Villani proved that Landau damping holds on Td × Rd for
sufficiently small h which are almost analytic.

By analyzing the plasma echoes, they predict that damping should hold in

all Gevrey− 1
s

for s > (2 + γ)−1 where
∣∣∣Ŵ (k)

∣∣∣ . |k|−1−γ .

Theorem (Bedrossian, Masmoudi, Mouhot 2013)

Let f 0 satisfy a suitable linear stability condition (but not necessarily ‘small’),
(2 + γ)−1 < s ≤ 1, M > d be an integer, and λ0 > λ′ > 0 be arbitrary. Then
there exists an ε0 = ε0(d ,M, f 0, λ0, λ

′, s) such that if hin is mean zero and∑
α∈Nd :|α|≤M

‖vαhin‖2
λ0;s < ε2 ≤ ε2

0,

then there exists a mean-zero f∞ satisfying

‖h(t, x + vt, v)− f∞(x , v)‖λ′;s . εe−
1
2

(λ0−λ′)ts , (17a)

‖eλ
′〈k,kt〉s ρ̂k(t)‖L2

k
. εe−

1
2

(λ0−λ′)ts . (17b)
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Landau Damping

Ideas of proof : We introduce a multiplier A

Ak(t, η) = eλ(t)〈k,η〉s 〈k, η〉σ,

where σ > d + 8 is fixed and λ(t) is an index (or ‘radius’) of regularity which is
decreasing in time.
Landau damping predicts that the solution evolves by kinetic free transport as
t →∞:

h(t, x , v) ∼ f∞(x − vt, v).

We ‘mod out’ by the lack of compactness of the free transport and work in the
coordinates z = x − vt with g(t, z , v) = h(t, x , v). Then (17a) becomes
equivalent to g(t)→ f∞ strongly in Gevrey− 1

s
.



Gevrey spaces and inviscid damping for 2D Euler

Landau Damping

We use a Bootstrap argument to propagate the following control:∑
α∈Nd :|α|≤M

‖〈∇z,v 〉A(vαg)(t)‖2
2 ≤ 4K1〈t〉7ε2 (18a)

∑
α∈Nd :|α|≤M

‖〈∇z,v 〉−βA(vαg)(t)‖2
2 ≤ 4K2ε

2 (18b)

∫ t

0

‖Aρ(τ)‖2
2dτ ≤ 4K3ε

2, (18c)

For the first two estimates, we use an energy method (like in Euler )
For the third, we use the stability assumption of the background.
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Thank you for your attention!


