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The equation

Full compressible Euler system (polytropic gas):
∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2 + P) = 0

∂t(ρE ) + ∂x(ρuE + uP) = 0,

where E = 1
2u2 + e. The equation of state for a polytropic

gas is given by (γ > 1)

P = (γ − 1)ρe

Isentropic gas dynamics (γ > 1):

∂tρ+ div (ρu) = 0,

∂t(ρu) + div (ρu ⊗ u) +∇ργ = 0.
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Main goal

We consider shocks, that it discontinuous, piecewise constant
solutions.

We restrict ourselves to the 1D case.

We are interested in contraction properties of those special
solutions.

It is closely related to the study of asymptotic limits to shocks
(for instance, from Navier-Stokes to Euler).

Remark: We can consider more general systems than the
Euler case.
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Extremal shocks

For general system: ∂tU + ∂x f (U) = 0.
Curves of UR such that (UL,UR , σ) is a shock.

for s ≈ 0, σ ≈ λi (UL) where λi (UL) is the i th eigenvalue of f ′(U).
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A physical motivation

Shocks are fundamental solutions in physics. But, the
derivation of the macroscopic model is problematic for those
solutions (no local thermodynamical equilibrium for the
derivation from kinetic equations, for instance).

The difficulty come from the production of layers.

What happens if the system carries too much energy for the
stability of the layer ?
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Mathematical motivations

In 1D, Shocks are the scale invariant solutions of the equation.

In PDE, the stability of scale invariant solutions is
fundamental for the study of the behavior of general solutions.

Parabolic equations (regularity): Kohn and nirenberg,
Caffarelli....
dispersive equations (blow-ups): Merle, Koenig...
Conservations laws: strong traces, well-posedness of solutions
and asymptotic limits: Bressan, Liu...

Remark: For conservation laws, it is based on L1 stability of
the shocks.
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Entropy

The system in play have entropies which are strictly convex with
respect to the conserved quantities.

Full Euler system:

η(ρ, ρu, ρE ) = (γ − 1)ρ ln ρ− ρ ln e

The Isentropic Euler system has also a convex entropy (which
is the physical energy):

U = (ρ, ρu), η(U) = ρu2/2 + ργ/(γ − 1).

To be an entropy means that any physical solutions verify:∫
η(U(t, x)) dx

is not increasing.
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Relative entropy

We define the relative entropy between two states U1,U2 ∈ V

η(U1|U2) = η(U1)− η(U2)− η′(U2)(U1 − U2).

If η is strictly convex then

η(U1|U2) ≈ |U1 − U2|2.

Dafermos- DiPerna (79’): If U2 is a Lipschitz solution and U1 is a
weak solution, then

d

dt

∫
R
η(U1|U2) dx ≤ C (U2)

∫
R
η(U1|U2) dx .

Especially, if at t = 0
∫

R η(U1|U2) dx ≈ ε2, then at t: ≈ eCtε2.
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Strong stability L2 (I)

It implies a STRONG stability of Lipschitz solutions in L2.

Weak/strong uniqueness, Dafermos DiPerna, Lions, Brenier,
Feireisl....

Can be used for asymptotic limit and hydrodynamic. In other
context, see Yau (91’), Bardos Golse Levermore (91’),...
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Strong stability L2 (II)

In this context, the consistence implies the convergence. The
nonlinearities are driven by the strong stability of the limit
function.

Can we follow the same strategy for shocks ?
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The scalar case

For SCALAR conservation laws, Kruzkov theory provides a L1

contraction: For any weak entropic solutions u, v :

‖u(t)− v(t)‖L1(R) ≤ ‖u(0)− v(0)‖L1(R).

But it is not true for L2 !!

Alexis F. Vasseur The university of Texas at Austin Collaborators: Kyudong Choi, Nicholas Leger, Denis SerreRelative entropy and contraction to extremal shocks for conservation laws



Introduction
Strong stability of shocks

A first application to asymptotic analysis

The scalar case
Criteria for contractions
Contraction for extreme shocks

The scalar case

For SCALAR conservation laws, Kruzkov theory provides a L1

contraction: For any weak entropic solutions u, v :

‖u(t)− v(t)‖L1(R) ≤ ‖u(0)− v(0)‖L1(R).

But it is not true for L2 !!

Alexis F. Vasseur The university of Texas at Austin Collaborators: Kyudong Choi, Nicholas Leger, Denis SerreRelative entropy and contraction to extremal shocks for conservation laws



Introduction
Strong stability of shocks

A first application to asymptotic analysis

The scalar case
Criteria for contractions
Contraction for extreme shocks

Problem with shocks and L2 theory

The contraction in L2 is NOT valid for shocks.

Example for Burgers:

∂tu + ∂xu
2 = 0.

Figure: Burgers
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Problem with shocks and L2 theory

The contraction in L2 is NOT valid for shocks.

Example for Burgers:

∂tu + ∂xu
2 = 0.

An ε perturbation of a shock S at t = 0 will give an error
≈
√
εt at time t.

This is because it perturbs the SPEED of the shock.

However, the perturbation of the profile of the shock
decreases (up to a translation).
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Contraction up to a shift for the scalar case

Theorem

(Leger) Consider (UL,UR , σ) a shock. Then there exist a constant
C > 0 such that for any U0 ∈ L2(R) there exists a Lipschitzian
map x(t) such that:∫ ∞

−∞
|U(t, x)− S(x − x(t))|2 dx ≤

∫ ∞
−∞
|U0(x)− S(x)|2 dx

|x(t)− σt| ≤ C
√

t(1 + t)‖U0 − S‖L2 .

For x < 0, S(x) = UL, for x > 0, S(x) = UR .
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General systems

We consider a strictly hyperbolic system of conservation laws

∂tu + ∂x f (u) = 0, u(t, x) ∈ Rn. (1)

We want to investigate whether we can expect some contraction to
shocks with respect to the relative entropy, up to a shift.

Consider S(x) = uL for x < 0 and S(x) = uR for x > 0, where
(uL, uR , σ) is a shock.
Do we have for any weak solution u of (1), the existence of
t → X (t) such that∫

R
η(u(t, x)|S(x − X (t))) dx ≤

∫
R
η(u0(x)|S(x)) dx?
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Criteria for systems (Serre, V.) (I)

Let (η, q) be a entropy/entropy flux for the system.
Let (uL, uR , σ) a given shock. For any function g , we denote
[g ] = g(uR)− g(uL).

For any fixed state u ∈ Rn, we denote

Dsm = [η′ · f − q]− [η′] · f (u).

For any other entropic discontinuity (u−, u+, h), we denote

DRH = [η′·f−q]−h[η′·u−η]+q+−q−−h(η+−η−)−[η′]·(f−hu)±.
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Criteria for systems (Serre, V.) (II)

Let Π be the hyperplane {u ∈ Rn|η(u|uL) = η(u|uR)}.
We say that (uL, uR , σ) is relative-entropy stable, if Dsm ≤ 0
on Π, and if for every (u−, u+, h) entropy discontinuity such
that u− and u+ are separated by Π, we have DRH ≤ 0.

Theorem

(Serre, V.) If (uL, uR , σ) is relative-entropy stable, if and only if, for
any weak solution u, there exists a shift x(t) such that for any
t > 0 ∫

R
η(u(t)|S(· − x(t)) dx ≤

∫
R
η(u0|S) dx .
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Euristic of the proof (I)

We conpute at each time the minimum of

h 7→ E (u(t); h) :=

∫ h

−∞
η(u|uL)dx +

∫ ∞
h

η(u|uR)dx

and consider the evolution of this minimum as time increases.

the minimum is therefore achieved at some finite h = h(t),
where we have

d

dh

∣∣∣∣
h(t)−0

E ≤ 0 ≤ d

dh

∣∣∣∣
h(t)+0

E

with dE/dh = η(u|uL)− η(u|uR).

If u is continuous at h(t) then u ∈ Π. Else, u− is on the same
side of Π as uL, and u+ is on the same side as uR .
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Euristic of the proof (I)

If u is continuous at h(t), η(u|uL)− η(u|uR) = 0 at h(t).

Figure: Continuous case
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Euristic of the proof (I)

If u is not continuous at h(t), (u−, u+) is a shock such that u− is
on the same side of Π as uL, and u+ is on the same side as uR .

Figure: Discontinuous case
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Euristic of the proof (II)

However t → h(t) may be not continuous.

instead, we solve an ODE for t → x(t) in the sense of
Filippov...
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Example of systems (Serre, V.)

The Keyfitz-Kranzer systems are relative-entropy stable for φ
decreasing and ρ→ ρφ(ρ) convex.

∂tu + ∂x(φ(|u|)u) = 0, u(t, x) ∈ Rn.

The Euler systems are NOT !!!

But we have still a contraction if we change the pseudo-norm.
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Contraction for shocks

Theorem

(V.) Consider (UL,UR , σ) a extreme shock. Then there exists a
constant a > 0 depending only on the shock with the following
property.

Consider any K > 0. There exists CK > 0 such that, for any weak
entropic solution such that ‖U‖L∞ ≤ K, there exists a Lipschtiz
path x(t) such that for any t > 0, the pseudo norm∫ 0

−∞
η(U(t, x + x(t))|UL) dx + a

∫ ∞
0

η(U(t, x + x(t))|UR) dx

is non increasing in time. Moreover, for every t > 0:

|x ′(t)| ≤ CK , |x(t)− σt| ≤ CK

√
t‖U0 − S‖L2(R).

Especially, we have for every t > 0

‖U(t, ·+ x(t))− S‖L2(R) ≤ CK‖U0 − S‖L2(R).

Finally, we can choose a < 1 of a 1-shock, and a > 1 for a n-shock
(n=2 for the isentropic case, and n=3 for the full Euler).

For x < 0, S(x) = UL, for x > 0, S(x) = UR .
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Contraction for extreme shocks

Remarks

Provides a contraction result in the class of bounded weak
solutions having a strong trace property. There is no smallness
conditions. We do not need the microstructure of the
solutions. The contraction is driven by the entropy.

The pseudo-norm depends only on the system and on the
fixed shock (UL,UR , σ). It does not depend on the weak
solution U. Only the drift x(t) depends on the L∞ norm of U.
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Hypotheses

Shocks is extremal and verifies the Liu property: d
dsσ(s) < 0

d
ds η(UL|S−(s)) > 0.
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Hypotheses

Surprisingly, if the increase of shock along the shock curve is
measured with the entropy (instead of the relative entropy), shocks
can be even not stable (see Freistuhler-Zumbrun). However, when
measured by the relative entropy, it verifies the Lopatinski
conditions (Texier-Zumbrun).
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the drift (1)

The main difficulty is to construct the drift x(t).

By choosing x ′(t) we can change the fluxes of entropy (depending
on the “value” of U(t, x(t)) !).
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the drift (2)

We will solve an ODE with a discontinuous flux. We use
Fillipov flow.
Generically, the interface x(t) is stuck in a shock !

Figure: Drift
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drift(3)

We can construct x(t) such that the only relevant shocks
(U−,U+) stuck at the interface are of the same family than
(UL,UR).

Moreover η(U−|UL) ≤ aη(U−|UR) and
η(U+|UL) ≤ aη(U+|UR).
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Non-homogeneous pseudo-distance

Figure: Drift
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Shocks and shock layers

Asymptotic limits to shocks involve the production of
LAYERS.

Figure: example of layer
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Shocks and shock layers

Asymptotic limits to shocks involve the production of
LAYERS.

The control of the layers usually involves smallness conditions:
Liu Zumbrun, Bressan (L1 theory)...
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Shocks and shock layers (2)

QUESTION:

Is the whole structure of the layer needed to perform
asymptotic limits ?

Would the entropy (relative entropy) be enough to drive the
convergence, whatever the fine structure in the layer ?

Do we have enough strong stability on shocks ?
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A first application to asymptotic analysis

Scalar case:
∂tUε + ∂xU

2
ε = ε∂xxUε.

For UL,UR , we define S(x) = UL if x < 0, and S(x) = UR if x > 0.
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The result

Theorem

(Choi, V.) There exists ε0 > 0, such that for any Uε solution to
the viscous Burgers equation with ε < ε0 and

‖(∂xU0)+‖L2 ≤ C ,

there exists X (t) Lipschitz such that for any time t > 0∫
η(Uε(t, x)|S0(x − X (t))) dx

≤
∫
η(U0(x)|S0(x)) dx + Cε(log+(1/ε) + 1)(1 + t).
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Case with small initial perturbation

If
∫
η(U0(x)|S(x)) dx ≤ Cε, Then we can study the layer

problem by scaling V (t, x) = U(εt, εx).

∂tV + ∂xV
2 = ∂xxV .

This problem has been extendedly studied (Ilin Oleinik (64’),
Osher and Ralston (82’), Goodman (89’), Jones Gardner and
Kapitula (93’), Freistuhler and Serre (96’), Kenig and Merle
(06’))

V converges to the layer Q(x − σt) up to a drift
(nondependent on time).

In this context, our result is weaker (the error is bigger than
ε).

But, in the case
∫
η(U0(x)|S(x)) dx >> ε, the layer study

collapse. (The layer can be destroyed). Still, we can obtain
the expected limit with a precise rate.
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Thank you

THANK YOU !
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