
Quasirandom processes

by Jim Propp (UMass Lowell;
visiting UCB and MSRI)

March 12, 2012

Slides for this talk are on-line at

http://jamespropp.org/opp12.pdf

Slides for a different version of this talk (with more about
quasirandom processes) can be found at

http://jamespropp.org/cvc11.pdf

1 / 23

http://jamespropp.org/
http://jamespropp.org/opp12.pdf
http://jamespropp.org/cvc11.pdf


Acknowledgments

Thanks to Dave Auckly for inviting me to give this talk.

This talk describes past and on-going work with Tobias Friedrich,
Ander Holroyd, Lionel Levine, and Yuval Peres; with thanks also to
Matt Cook, Dan Hoey, Rick Kenyon, Michael Kleber, Oded
Schramm, Rich Schwartz, and Ben Wieland.

2 / 23



Quasirandom processes
Consider the sequence (x1, x2, x3, . . . ) = (.618, .236, .854, . . . )
whose nth term is the fractional part of n times (1 +

√
5)/2.

Nobody would ever call this sequence random, or even
pseudorandom. But it would be considered quasirandom for some
purposes, because it’s uniformly distributed in [0, 1].

In fact, it’s more evenly spread out than a random sequence would
typically be: for an interval I in [0, 1] of length L, the discrepancy

#{1 ≤ k ≤ n : xk ∈ I} − nL

is of magnitude O(log n) rather than of typical magnitude O(
√

n).
In low dimensions, quasirandom sampling gives more accurate
estimates of integrals than random sampling.

(There’s another usage of the word “quasirandom” current among
graph-theorists, tracing back to Chung, Graham and Wilson
(1989), but that is a different story.)
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Quasirandom processes

I’m a probabilist, so the “integrals” that interest me most are
probabilities and expected values, and the measure with respect to
which I’m integrating is the probability measure associated with a
random process.

(Example: the measure space is the sequence of outcomes of
infinitely many flips of a fair coin, where each initial string of
length n has probability measure 2−n.)

I’m also a combinatorialist, so the kinds of probabilistic systems I
like best are discrete ones, like Markov chains. And I want to
quasirandomize these processes by using very simple combinatorial
constructions.
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Rotors

Quasirandom analogue of a fair coin-flip process:

H,T,H,T,H,T, . . .

Quasirandom analogue of a fair die-role process:

1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, . . .

(This generalizes to arbitrary discrete probability distributions,
including ones with infinitely many values and/or irrational
probabilities; see “Discrete low-discrepancy sequences” by Angel,
Holroyd, Martin, and Propp, arXiv:0910.1077.)

5 / 23

http://arxiv.org/abs/0910.1077


Rotor-routers

A Markov chain can be thought of as a random walk on a graph,
where a walker at vertex u has probability p(u, v) of moving to a
vertex v in the next time-step, regardless of her previous history.

Instead of making these choices randomly, we can use a rotor
situated at each vertex u to tell the walker which v to go to next.

E.g., if p(u, v1) = p(u, v2) = 1/2, then we use a simple 2-way rotor
at u, and the walker follows the rule “Do whatever you didn’t do
the last time you were at u.”

6 / 23



Gambler’s ruin

A gambler starts with $1, and makes a sequence of fair bets, each
of which results in her purse going either up by $1 or down by $1.

The gambler stops when she reaches either $0 or $3.

We can view this as a random walk on a path of length three, with
a source at $1 and sinks at $0 and $3.

$0 $1 $2 $3

o-----<-o->---<-o->-----o

Sink Source Sink

What is the probability that, starting with $1, the gambler reaches
$3?
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Gambler’s ruin, repeated

The probability that, starting with $1, the gambler reaches $3, is
1/3.

So, if the gambler does this procedure n times, starting from the
source $1 and returning to $1 after each arrival at $0 or $3, she
will reach $3 rather than $0 about n/3 times.

To quasirandomize this, replace the random gambles by rigged
gambles, where the gambler wins her current gamble if and only
she lost her gamble the last time she had the exact same amount
of money in her purse.
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Gambler’s ruin with rotor-routing
See http://www.cs.uml.edu/∼jpropp/rotor-router-model/;
select The Applet (tab at top of page) and set Graph/Mode to
Walk on Finite Graph A.

(This applet was written by Hal Canary and Yutai Wong while they
were undergraduates at the University of Wisconsin.)

The color at a site conveys the same information as the rotor there.

The rotor-walker ends up with $3 (“success”) one-third of the
time, just like the random-walker.

But for a random walker, the number of successes in the first n

trials typically differs from n/3 by O(
√

n), while for a rotor-walker,
the number of successes in the first n trials differs from n/3 by at
most a constant.

This generalizes to arbitrary finite-state Markov chains, and some
infinite-state Markov chains as well.
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Random walk on the two-dimensional grid

Starting from (0, 0), the walker takes random steps in the set
{E ,W ,N,S} = {(1, 0), (−1, 0), (0, 1), (0,−1)}, stopping upon
arriving at either (0, 0) or (1, 1).

Starting from anywhere, the walker ends up in {(0, 0), (1, 1)} with
probability 1.

The probability that a random walker who starts at (0, 0) ends up
at (1, 1) rather than (0, 0) (“success”) is π/8.
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Rotor-walk on the two-dimensional grid

The walker successively goes . . . ,N,E,S,W,N,E,S,W,. . . upon
leaving a particular vertex.

Rule: The rotor advances and the walker then moves in the
direction indicated by the current (updated) state of the rotor;
thus, if a vertex u been visited, and the rotor at that site points in
a direction, this is the direction that was travelled by the walker
after the walker’s most recent visit to u.

Set Graph/Mode to 2-D Walk.

Under suitable initial settings of the rotors, it can be shown that
the number of successes in the first n trials differs from nπ/8 by at
most C log n for some constant C . (For a proof, see
“Rotor Walks and Markov Chains” by Holroyd and Propp.)
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Two open problems

Can we tighten the preceding result, so that O(log n) is replaced
by something smaller? (Empirically, it seems that O(log log n) or
even O(1) might be closer to the truth.)

Can we broaden the preceding result, so that it applies to a wider
class of initial rotor-settings?
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The quasirandom quincunx

Modify the random walk process so that the walker can only go
East or South. Rotated by 45 degrees, this is the quincunx or
Galton board process.

In the quasirandom version we put a 2-way rotor at each site;
assume all the 2-way rotors all point the same way at the start.

To see what happens, view the animated gif file
http://jamespropp.org/quincunx.gif or the “movie-version”
http://jamespropp.org/Galton.swf

What’s going on here?
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Internal DLA

Physicists Meakin and Deutch in 1986 proposed a model for
electropolishing, etching, and corrosion that was independently
reinvented by mathematicians Diaconis and Fulton in the 1990s as
a pure mathematics construction.

We use random walk to grow a blob.

At stage 0, the blob is empty.

At stage 1, the blob consists of just the source (0,0).

To turn the stage-n blob into the stage-(n + 1) blob, a particle
starts from the source and does random walk until it reaches a
vertex that isn’t in the blob; the new vertex gets added to the blob.

14 / 23



Roundness of Internal DLA

Lawler, Bramson, and Griffeath (1992) showed that the internal
DLA cluster of size n, rescaled by

√

n/π, converges almost surely
to a disk of radius 1.

Lawler (1995) showed that the inward and outward fluctuations
from roundness are O(n1/6), and it was finally shown in 2010 (by
two different research groups working independently and using
different methods) that the fluctuations are Θ(log n).
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Quasirandom Internal DLA

We can replace the random walkers by rotor-walkers.

To see what quasirandom Internal DLA looks like using the
rotor-router-model applet, set Graph/Mode to 2-D Aggregation; to
see what one has after a million particles have joined the
aggregate, see http://jamespropp.org/million.gif.
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Roundness of quasirandom Internal DLA

Levine and Peres proved in 2007 that when n = πr2 particles have
been joined the aggregate, the inradius of the set of occupied sites
is at least r − O(log r), while the outradius is at most r + O(rα)
for any α > 1/2.

But empirically we observe that the blobs are much rounder.

E.g., for a rotor-router blob of cardinality n = 232 (and radius
r =

√

n/π ≈ 36975), the inradius and outradius of the blob
measured from the point (1/2, 1/2) (which is believed to be the
limiting location of the center of mass of the blob on both
empirical and theoretical grounds) differ by only 0.366 ≈ r/105.
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Fast simulation

The naive method of constructing the rotor-router Internal DLA
blob of cardinality n takes Θ(n2) steps. Friedrich and Levine have
found clever shortcuts that let them construct the rotor-router
Internal DLA blob of size n much more quickly (experimentally, in
time about n log n).

They have implemented their method, creating blobs so big that
the only way to study them is via a Google Maps interface that
allows the user to navigate between different scales. See
http://rotor-router.mpi-inf.mpg.de/.

Friedrich’s website shows rotor-router blobs associated with not
just the standard style of rotor (rotating clockwise) but other styles
of rotor as well.
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Interesting spots

There are places in the picture where many adjacent sites have the
same color, forming a monochromatic patch.

Matt Cook and Dan Hoey independently noticed that if one
normalizes the blob to be the inside of the unit disk in the complex
plane, the patches occur precisely at complex numbers of the form
(A + Bi)−1/2 with A,B integers (not both 0), though if A or B is
large, one needs n to be quite large before the patch becomes
visible.

One also finds patches on which the coloring is not constant but
periodic of small period. E.g., on the boundary of the disk, one
sees this behavior near points (a + bi)/

√
a2 + b2 with a, b integers

(not both 0).
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Interesting curves

In some of the pictures, the eye detects curves, especially the
“lrdu” picture (though it’s hard to say, mathematically speaking,
exactly what the eye is detecting along those curves).

Rick Kenyon pointed out that some of these curves appear to be
the images of circles of radius 1/2 centered at points a + bi under
the map z 7→ 1/

√
z ; see http://jamespropp.org/RRcircles.pdf.
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Prospects

To the extent that quasirandom processes share properties with
their random counterparts, they teach us that many of the
theorems of probability theory remain true when hypotheses of
randomness are replaced by weaker hypotheses of discrepancy.

To the extent that quasirandom processes have properties
different from their random counterparts, the task of proving that
these properties actually prevail offers exciting challenges to
theorists, blending combinatorics, probability, and geometry.
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Fifteen years in one slide

I spent most of 1987 – 2002 working on questions like the
following (see http://jamespropp.org/hexagon.gif to get a feel for
what random tilings look like):

◮ How many tilings of a particular region (using specified tiles)
are there?

◮ How can we sample from the uniform distribution on the set
of tilings?

◮ What does a random tiling look like?
◮ Why do we see “frozen regions” near the boundary?
◮ What is the shape of the interface between the frozen and

non-frozen regions?
◮ What do we see inside the non-frozen region?
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Research programs

◮ “how you started your research program”: going to
conferences, reading, refereeing, talking to people

◮ “how you have continued it”: good collaborators (including
bright undergraduates and people who program better than I
do)

◮ “the things that you find useful in maintaining a successful
research career”: giving talks, using MathOverflow
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