Knots and surfaces in 3-dimensional space

Jennifer Schultens

March 13, 2012

Jennifer Schultens [Knots and surfaces in 3-dimensional space](#page-31-0)

Definition

A knot is a smooth embedding of the circle into 3-dimensional space.

 \leftarrow

 \sim 一 4 三 ト E

性 \sim

Figure: A knot

 \leftarrow \Box \rightarrow

K 御 と K 君 と K 君 と…

目

• Fact I: The mathematical study of knots includes several different branches, each with a very different "flavour": algebraic, geometric, ...

 QQ

- 4 国 8 14

- **Fact I:** The mathematical study of knots includes several different branches, each with a very different "flavour": algebraic, geometric, ...
- **Fact II:** Knots relate to nature, for instance via the tangles in long strands of DNA.

 Ω

Definition

Given a knot K in 3-dimensional space, an orientable (2-sided) surface S that has boundary K is called a spanning surface.

Seifert Surfaces

Figure: A Seifert surface

(Seifert) Every knot admits a spanning surface.

Jennifer Schultens [Knots and surfaces in 3-dimensional space](#page-0-0)

4日 8

4 冊 ▶ 一本語 × Э× 目

 $2Q$

(Seifert) Every knot admits a spanning surface.

 \Box

- 4 重 8 34 重 8

State

 299

э

(Seifert) Every knot admits a spanning surface.

Seifert's algorithm

- Step 1: Consider a projection of the knot and give it an orientation.
- Step 2: Resolve each crossing to obtain Seifert circles.

(Seifert) Every knot admits a spanning surface.

Seifert's algorithm

- Step 1: Consider a projection of the knot and give it an orientation.
- Step 2: Resolve each crossing to obtain Seifert circles.
- Step 3: The Seifert circles bound disks with a natural orientation.

(Seifert) Every knot admits a spanning surface.

Seifert's algorithm

- Step 1: Consider a projection of the knot and give it an orientation.
- Step 2: Resolve each crossing to obtain Seifert circles.
- Step 3: The Seifert circles bound disks with a natural orientation.
- Step 4: Connect disks via bands to obtain a spanning surface.

For a surface S constructed via Seifert's algorithm, the Euler characteristic of S, denoted by $\chi(S)$, can be computed as

$$
\chi(S) = \# \text{disks} - \# \text{bands}
$$

Definition

A Seifert surface for a knot K is a spanning surface of maximal Euler characteristic.

Fact I: Many knots K in \mathbb{S}^3 admit non-isotopic Seifert surfaces. (Eisner 1977)

つくい

- Fact I: Many knots K in \mathbb{S}^3 admit non-isotopic Seifert surfaces. (Eisner 1977)
- Fact II: Many knots K in \mathbb{S}^3 admit disjoint non-isotopic Seifert surfaces. (Eisner 1977)

 Ω

Figure: Connect sum of knots

 \leftarrow

 \sim

4. 重 \mathbf{h} ∍

 \sim

Þ

B

Seifert Surfaces

Figure: Connect sum of knots

 \leftarrow

4. 重 \mathbf{h} ∍

 \sim

 299

э

Figure: Schematic

 \leftarrow

Þ

4 重 $\,$ э **B**

×.

 \sim

Þ

Definition

The vertices of the Kakimizu complex $\mathit{Kak}(K)$ of a knot K in \mathbb{S}^3 are given by the isotopy classes of minimal genus Seifert surfaces for K.

つくい

Definition

The vertices of the Kakimizu complex $\mathit{Kak}(K)$ of a knot K in \mathbb{S}^3 are given by the isotopy classes of minimal genus Seifert surfaces for K.

The *n*-simplices of the Kakimizu complex of K, for $n > 1$, are given by n-tuples of vertices that admit representatives that are pairwise disjoint.

Example I: Fibered knots have trivial Kakimizu complexes.

つくへ

∢ 重 ★

- Example I: Fibered knots have trivial Kakimizu complexes.
- Example II: Hyperbolic knots have finite Kakimizu complexes.

つへへ

(Scharlemann-Thompson) The Kakimizu complex of a knot is connected.

Not stated in these terms.

The South

(Kakimizu) Suppose that K_1, K_2 are knots with unique minimal genus Seifert surfaces (up to isotopy). Then the Kakimizu complex of $K = K_1 \# K_2$ is a bi-infinite ray.

More recently, Kakimizu computed the Kakimizu complexes for all prime knots with up to 10 crossings.

(Banks) Suppose that K_1, K_2 are knots, then the Kakimizu complex of $K_1 \# K_2$ is the product of three complexes: The Kakimizu complex of K_1 , the Kakimizu complex of K_2 and the complex that has underlying space \bf{R} and vertices at the integers.

つくい

(Banks) There exist knots with locally infinite Kakimizu complex.

Theorem

(Banks) A knot has locally infinite Kakimizu complex only if it is a satellite of either a torus knot, a cable knot or a connected sum, with winding number 0.

Jessica Banks' results

Figure: An essential torus in a knot complement

 $2Q$

∍

4 重 \sim

 $(S 2007)$ The Kakimizu complex of a knot K is a flag complex.

化重 网络

 $(S 2007)$ The Kakimizu complex of a knot K is a flag complex.

Theorem

(Kapovich 2009) Let M be a Riemannian 3-manifold with smooth strictly convex boundary, together with a compact family J of smooth curves on $\partial M.$ Let $f_i: (S_i,\partial S_i) \rightarrow (M,\mathcal{J}),\ i=1,\ldots,n$ be incompressible surfaces which are pairwise non-isotopic and pairwise disjoint. Let $\mathsf{g}_i:(\mathsf{S}_i,\partial\mathsf{S}_i)\rightarrow(\mathsf{M},\mathcal{J}),\ i=1,\ldots,n$ be relative area minimizers in the proper isotopy classes of f_i , $i = 1, \ldots, n$. Then $g_1(S_1), \ldots, g_n(S_n)$ are also pairwise disjoint.

Contractibility of the Kakimizu complex

Theorem

(Przytycki-S 2010) The Kakimizu complex of a knot is contractible.

医单侧 医单侧

э

Implicit in Kakimizu's work is a projection map (coming from considerations involving covering spaces and Kakimizu's formulation of the distance on the Kakimizu complex) that, given two vertices v, w, produces a vertex $\pi_{\nu}(w)$ that is one step closer to v than w.

$$
d(v, \pi_v(w)) = d(v, w) - 1
$$

 Ω

(Przytycki-S 2010) The Kakimizu complex of a knot is contractible.

Idea of proof: Choose a vertex v in $Kak(K)$ and prove that the projection map onto v is a contraction of $Kak(K)$.

Challenge: Make sure that the projection map behaves well on links of vertices.

つくい

(Scharlemann-Thompson) The Kakimizu complex of a knot is connected.

Idea of new proof: Given any two vertices v, w , we construct a path