OPERADS IN ALGEBRAIC TOPOLOGY I

KATHRYN HESS

Contents

Introduction	1
Operads: definitions and elementary examples	2
Algebras	3

INTRODUCTION

I'm really going to start from the beginning and build things up because operads are really important tools in algebraic topology.

Slogan. Operads encode *n*-ary operations and relations among them.

Motivating examples.

(i) Associative monoids. Suppose I have a set *X* with a binary multiplication $\mu: X \times X \rightarrow X$ such that μ is associative:

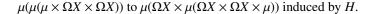
$$\begin{array}{c|c} X \times X \times X \xrightarrow{\mu \times X} & X \times X \\ X \times \mu & & & \downarrow \mu \\ X \times X \xrightarrow{\mu} & X \end{array}$$

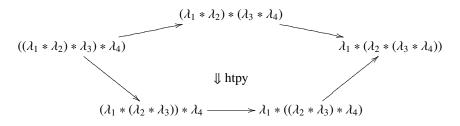
From the binary operation (X, μ) we get higher *n*-ary operations $X^{\times n} \to X$. In fact there exist *n*! distinct *n*-ary operations, depending on how one permutes the inputs.

- (ii) Commutative monoids. Suppose we have (X, μ) as before where μ is associative and commutative: $\mu(x_1, x_2) = \mu(x_2, x_1)$. Again, this generates higher *n*-ary operations $X^{\times n} \to X$ but now there is a unique *n*-ary operation for each *n*.
- (iii) Based loop spaces. Let X be a based space and consider the space ΩX of based loops. We can define $\mu: \Omega X \times \Omega X \to \Omega X$ that sends a pair of loops to their concatenation: $(\lambda_1, \lambda_2) \mapsto \lambda_1 * \lambda_2$. This operation isn't strictly associative, but it is homotopy associative. There exists a based homotopy $H: \mu(\mu \times \Omega X) \simeq_* \mu(\Omega X \times \mu)$. Moreover, there exists a homotopy between the two homotopies from

Date: Connections for Women: Algebraic Topology - MSRI - 23 January, 2014.

KATHRYN HESS





(iv) Double loop spaces: $\Omega^2 X$. This has two homotopy associative multiplications that satisfy an up-to-homotopy Eckmann-Hilton relation. This implies that they are homotopy commutative and that they are the same up to homotopy.

OPERADS: DEFINITIONS AND ELEMENTARY EXAMPLES

Let $(\mathcal{M}, \otimes, I)$ be a closed symmetric monoidal category. Here *closed* means that $- \otimes X \colon \mathcal{M} \to \mathcal{M}$ has a right adjoint $\operatorname{Hom}(X, -) \colon \mathcal{M} \to \mathcal{M}$. In particular, the counit of this adjunction defines a natural morphism

$$ev_X$$
: Hom $(X, Y) \otimes X \to Y$

for all $X, Y \in \mathcal{M}$. I also want \mathcal{M} to be cocomplete.

Example. (sSet, \times , {*}), (Top^{nice}, \times , {*}), (Ch_R, \otimes , R).

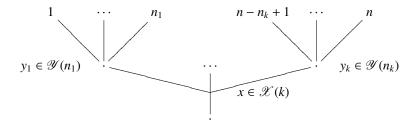
Definition. Let \mathcal{M}^{Σ} denote the category of *symmetric sequences* in \mathcal{M} . Objects are $\mathscr{X} = (\mathscr{X}(n))_{n\geq 0}$ where $\mathscr{X}(n) \in \mathcal{M}$ is an object that admits a Σ_n -action (i.e., there exists a homomorphism $\Sigma_n \to \operatorname{Aut}(\mathscr{X}(n))$). A morphism $f : \mathscr{X} \to \mathscr{Y}$ is a collection of Σ_n -equivariant maps $f_n : \mathscr{X}(n) \to \mathscr{Y}(n)$ for all $n \geq 0$.

Remark. \mathcal{M}^{Σ} admits several monoidal structures. For example,

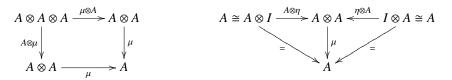
- the *level monoidal structure* \otimes with $(\mathscr{X} \otimes \mathscr{Y})(n) = \mathscr{X}(n) \otimes \mathscr{Y}(n)$ given the diagonal Σ_n -action. The unit is $\mathscr{C} = (\mathscr{C}(n))$, where $\mathscr{C}(n) = I$.
- the graded monoidal structure, the matrix monoidal structure
- the *composition monoidal structure* \circ , which is non-symmetric. For $n \ge 1$, define

$$(\mathscr{X} \circ \mathscr{Y})(n) = \prod_{k \ge 1, \vec{n} = (n_1, \dots, n_k), \sum n_i = n} \mathscr{X}(k) \otimes_{\Sigma_k} (\mathscr{Y}(n_1) \otimes \dots \otimes \mathscr{Y}(n_k)) \otimes_{\Sigma_{n_1} \times \dots \times \Sigma_{n_k}} I[\Sigma_n]$$

where $I[\Sigma_n]$ is the tensor of n! copies of the monoidal unit I. The unit for \circ is the symmetric sequence \mathscr{I} that has I in arity one and the initial object everywhere else. Here is a schematic picture:



Recall. A *monoid* in a monoidal category $(\mathcal{M}, \otimes, I)$ is $A \in \mathcal{M}$, a multiplication $\mu: A \otimes A \to A$, and a unit $\eta: I \to A$ so that



Definition. An *operad* in \mathcal{M} is a monoid in \mathcal{M}^{Σ} with respect to the composition monoidal structure. I.e., (\mathcal{P}, μ, η) where $\mathcal{P} = (\mathcal{P}(n))_{n>0}, \mu \colon \mathcal{P} \circ \mathcal{P} \to \mathcal{P}, \eta \colon \mathcal{I} \to \mathcal{P}$. Here

$$\mu \longleftrightarrow \{\mu_{k,\vec{n}} \colon \mathscr{P}(k) \otimes (\mathscr{P}(n_1)(\otimes \cdots \otimes \mathscr{P}(n_k)) \to \mathscr{P}(n))\}_n$$

with appropriate equivariance conditions.

Example.

(i) Let $X \in \mathcal{M}$. The *endomorphism operad* on X is End(X) where $End(X)(n) = Hom(X^{\otimes n}, X)$ and μ : $End(X) \circ End(X) \rightarrow End(X)$ corresponds to

$$\mu_{k,\vec{n}}$$
: Hom $(X^{\otimes k}, X) \otimes (\text{Hom}(X^{\otimes n_1}, X) \otimes \cdots \otimes \text{Hom}(X^{\otimes n_k}, X)) \to \text{Hom}(X^{\otimes n}, X)$

given by $f \otimes (g_1 \otimes \cdots \otimes g_k) \mapsto f \circ (g_1 \otimes \cdots \otimes g_k)$. (This can also be defined abstractly using the adjunctions.)

(ii) The associative operad $As(n) = I[\Sigma_n]$. Here

$$\Sigma_k \times (\Sigma_{n_1} \times \cdots \times \Sigma_{n_k}) \xrightarrow{\mu} \Sigma_n$$

is defined so that $\sigma(\tau, \tau_1, ..., \tau_k)$ is the permutation of *n* letters partitioned into *k* boxes where each τ_i permutes the elements of a box and τ permutes the boxes.

(iii) The *commutative operad* is $\text{Com} = \mathscr{C}$ with $\mathscr{C}(n) = I$. Here μ consists of the unit isomorphisms $I \otimes (I \otimes \cdots \otimes I) \xrightarrow{\cong} I$. This was the monoidal unit for the level monoidal structure.

Algebras

Definition. Let (\mathscr{P}, μ, η) be an operad in \mathcal{M} . A \mathscr{P} -algebra is an object $X \in \mathcal{M}$ together with an operad map $\phi \colon \mathscr{P} \to \text{End}(X)$.

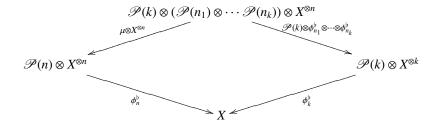
You can think of this as being a representation of \mathscr{P} on *X*. What does this mean? The components of the map are Σ_n -equivariant maps

$$\phi_n \colon \mathscr{P}(n) \to \operatorname{End}(X)(n) = \operatorname{Hom}(X^{\otimes n}, X).$$

These transpose to maps

$$b_n^{\flat} \colon \mathscr{P}(n) \otimes_{\Sigma_n} X^{\otimes n} \to X.$$

Since ϕ is an operad map, there exist an "associativity" relation:



Slogan. $\mathscr{P}(n)$ parametrizes the *n*-ary operations on the \mathscr{P} -algebra *X*.

Example.

(i) An As-algebra is a monoid

$$\operatorname{As}(n) \otimes_{\Sigma_n} X^{\otimes n} \cong X^{\otimes n} \to X.$$

(ii) A Com-algebra is a commutative monoid

$$\operatorname{Com}(n) \otimes_{\Sigma_n} X^{\otimes n} \cong X^{\otimes n}/_{\Sigma_n} \to X.$$

Remark. A morphism of operads $\phi \colon \mathscr{P} \to \mathscr{Q}$ induces a functor $\phi^* \colon \operatorname{Alg}_{\mathscr{Q}} \to \operatorname{Alg}_{\mathscr{P}}$ by pullback of structure: $\mathscr{P} \to \mathscr{Q} \to \operatorname{End}(X)$.

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, 1 OXFORD STREET, CAMBRIDGE, MA 02138 *E-mail address*: eriehl@math.harvard.edu

4