OPERADS IN ALGEBRAIC TOPOLOGY I

KATHRYN HESS

CONTENTS

INTRODUCTION

I'm really going to start from the beginning and build things up because operads are really important tools in algebraic topology.

Slogan. Operads encode *n*-ary operations and relations among them.

Motivating examples.

(i) Associative monoids. Suppose I have a set *X* with a binary multiplication μ : *X* \times $X \rightarrow X$ such that μ is associative:

$$
X \times X \times X \xrightarrow{\mu \times X} X \times X
$$

\n
$$
X \times \mu \downarrow \qquad \qquad \downarrow \mu
$$

\n
$$
X \times X \xrightarrow{\mu} X
$$

From the binary operation (X, μ) we get higher *n*-ary operations $X^{\times n} \to X$. In fact there exist *n*! distinct *n*-ary operations, depending on how one permutes the inputs.

- (ii) Commutative monoids. Suppose we have (X, μ) as before where μ is associative and commutative: $\mu(x_1, x_2) = \mu(x_2, x_1)$. Again, this generates higher *n*-ary operations $X^{\times n} \to X$ but now there is a unique *n*-ary operation for each *n*.
- (iii) Based loop spaces. Let *X* be a based space and consider the space ΩX of based loops. We can define $\mu: \Omega X \times \Omega X \to \Omega X$ that sends a pair of loops to their concatenation: $(\lambda_1, \lambda_2) \mapsto \lambda_1 * \lambda_2$. This operation isn't strictly associative, but it is homotopy associative. There exists a based homotopy $H: \mu(\mu \times \Omega X) \simeq_{*}$ $\mu(\Omega X \times \mu)$. Moreover, there exists a homotopy between the two homotopies from

Date: Connections for Women: Algebraic Topology — MSRI — 23 January, 2014.

2 KATHRYN HESS

 $\mu(\mu(\mu \times \Omega X \times \Omega X))$ to $\mu(\Omega X \times \mu(\Omega X \times \Omega X \times \mu))$ induced by *H*.

(iv) Double loop spaces: $\Omega^2 X$. This has two homotopy associative multiplications that satisfy an up-to-homotopy Eckmann-Hilton relation. This implies that they are homotopy commutative and that they are the same up to homotopy.

Operads: definitions and elementary examples

Let (M, \otimes, I) be a closed symmetric monoidal category. Here *closed* means that $-\otimes$ *X* : $M \rightarrow M$ has a right adjoint Hom(*X*, -): $M \rightarrow M$. In particular, the counit of this adjunction defines a natural morphism

$$
ev_X\colon \text{Hom}(X,Y)\otimes X\to Y
$$

for all $X, Y \in \mathcal{M}$. I also want M to be cocomplete.

Example. (sSet, \times , {*}), (Top^{nice}, \times , {*}), (Ch_R, \otimes , R).

Definition. Let M^{Σ} denote the category of *symmetric sequences* in M. Objects are $\mathcal{X} =$ $(\mathscr{X}(n))_{n\geq 0}$ where $\mathscr{X}(n) \in \mathcal{M}$ is an object that admits a Σ_n -action (i.e., there exists a homomorphism $\Sigma_n \to \text{Aut}(\mathscr{X}(n))$. A morphism $f: \mathscr{X} \to \mathscr{Y}$ is a collection of Σ_n -equivariant maps f_n : $\mathscr{X}(n) \to \mathscr{Y}(n)$ for all $n \geq 0$.

Remark. M^{Σ} admits several monoidal structures. For example,

- the *level monoidal structure* \otimes with $(\mathcal{X} \otimes \mathcal{Y})(n) = \mathcal{X}(n) \otimes \mathcal{Y}(n)$ given the diagonal Σ_n -action. The unit is $\mathcal{C} = (\mathcal{C}(n))$, where $\mathcal{C}(n) = I$.
- the graded monoidal structure, the matrix monoidal structure
- the *composition monoidal structure* \circ , which is non-symmetric. For $n \geq 1$, define

$$
(\mathscr{X} \circ \mathscr{Y})(n) = \coprod_{k \geq 1, \vec{n} = (n_1, \ldots, n_k), \sum n_i = n} \mathscr{X}(k) \otimes_{\Sigma_k} (\mathscr{Y}(n_1) \otimes \cdots \otimes \mathscr{Y}(n_k)) \otimes_{\Sigma_{n_1} \times \cdots \times \Sigma_{n_k}} I[\Sigma_n]
$$

where $I[\Sigma_n]$ is the tensor of *n*! copies of the monoidal unit *I*. The unit for \circ is the symmetric sequence $\mathscr I$ that has *I* in arity one and the initial object everywhere else. Here is a schematic picture:

Recall. A *monoid* in a monoidal category (M, \otimes, I) is $A \in M$, a multiplication $\mu: A \otimes A \rightarrow$ *A*, and a unit $\eta: I \rightarrow A$ so that

Definition. An *operad* in M is a monoid in M^{Σ} with respect to the composition monoidal structure. I.e., (\mathcal{P}, μ, η) where $\mathcal{P} = (\mathcal{P}(n))_{n>0}, \mu: \mathcal{P} \circ \mathcal{P} \to \mathcal{P}, \eta: \mathcal{I} \to \mathcal{P}$. Here

$$
\mu \leftrightarrow \{ \mu_{k,n} : \mathscr{P}(k) \otimes (\mathscr{P}(n_1)(\otimes \cdots \otimes \mathscr{P}(n_k)) \rightarrow \mathscr{P}(n)) \}_n
$$

with appropriate equivariance conditions.

Example.

(i) Let $X \in \mathcal{M}$. The *endomorphism operad* on *X* is End(*X*) where End(*X*)(*n*) = Hom($X^{\otimes n}$, X) and μ : End(X) \circ End(X) \rightarrow End(X) corresponds to

$$
\mu_{k,\vec{n}}\colon \text{Hom}(X^{\otimes k}, X) \otimes (\text{Hom}(X^{\otimes n_1}, X) \otimes \cdots \otimes \text{Hom}(X^{\otimes n_k}, X)) \to \text{Hom}(X^{\otimes n}, X)
$$

given by $f \otimes (g_1 \otimes \cdots g_k) \mapsto f \circ (g_1 \otimes \cdots \otimes g_k)$. (This can also be defined abstractly using the adjunctions.)

(ii) The *associative operad* $\text{As}(n) = I[\Sigma_n]$. Here

$$
\Sigma_k \times (\Sigma_{n_1} \times \cdots \times \Sigma_{n_k}) \xrightarrow{\mu} \Sigma_n
$$

is defined so that $\sigma(\tau, \tau_1, \ldots, \tau_k)$ is the permutation of *n* letters partitioned into *k* boxes where each τ_i permutes the elements of a box and τ permutes the boxes.

(iii) The *commutative operad* is Com = $\mathcal C$ with $\mathcal C(n) = I$. Here μ consists of the unit isomorphisms $I \otimes (I \otimes \cdots \otimes I) \stackrel{\cong}{\to} I$. This was the monoidal unit for the level monoidal structure.

ALGEBRAS

Definition. Let (\mathcal{P}, μ, η) be an operad in M. A $\mathcal{P}-algebra$ is an object $X \in M$ together with an operad map $\phi: \mathscr{P} \to \text{End}(X)$.

You can think of this as being a representation of $\mathscr P$ on *X*. What does this mean? The components of the map are Σ_n -equivariant maps

$$
\phi_n
$$
: $\mathscr{P}(n) \to \text{End}(X)(n) = \text{Hom}(X^{\otimes n}, X)$.

These transpose to maps

$$
\phi_n^{\flat} \colon \mathscr{P}(n) \otimes_{\Sigma_n} X^{\otimes n} \to X.
$$

Since ϕ is an operad map, there exist an "associativity" relation:

Slogan. $\mathcal{P}(n)$ parametrizes the *n*-ary operations on the \mathcal{P} -algebra *X*.

Example.

(i) An As-algebra is a monoid

$$
\mathrm{As}(n) \otimes_{\Sigma_n} X^{\otimes n} \cong X^{\otimes n} \to X.
$$

(ii) A Com-algebra is a commutative monoid

$$
\mathrm{Com}(n)\otimes_{\Sigma_n}X^{\otimes n}\cong X^{\otimes n}/_{\Sigma_n}\to X.
$$

Remark. A morphism of operads $\phi \colon \mathscr{P} \to \mathscr{Q}$ induces a functor $\phi^* \colon \mathbf{Alg}_{\mathscr{Q}} \to \mathbf{Alg}_{\mathscr{P}}$ by pullback of structure: $\mathscr{P} \to \mathscr{Q} \to \text{End}(X)$.

Department of Mathematics, Harvard University,1Oxford Street, Cambridge, MA 02138 *E-mail address*: eriehl@math.harvard.edu