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Introduction

One might be interested in solutions to polynomial equations with Q or Z coe�cients.
This leads to the notion of a scheme. A scheme X is locally associated to a collection of
polynomial equations and it records to solutions X(R) in any ring R containing the coe�-
cients. Note X(C) has a topology coming from C.

Example. Consider y2 = f (x) = (x � r1)(x � r2) · · · (x � r2n) where the coe�cients f (x) 2
Q[x]. Let X be the associated scheme. We have a map X(C) ! C defined by (x, y) 7! x.
Sitting above any point except for the ri we have two di↵erent points in X(C). Let’s suppose
the ri are distinct. This defines a 2-sheeted covering space. If we cut intervals from r1 to
r2, . . ., r2n�1 to r2n and similarly in the covering spaces, we can glue the two sheets of
the covering space together after flipping the top copy. Up to homotopy, we’re gluing in
cylinders connecting the slits in the two sheets of the cover. This gives us a surface of
genus n � 1 minus two points (the points at infinity).

It’s a lovely fact that the topology of X(C) gives information about X(Q), which are
X(Z) points for X a subset of projective space.

Theorem (Faltings). For genus � 2, X(Q) < 1.

So something simple like the genus gives us solutions over much more delicate fields.
On a much more immediate level X(R) = X(C)Gal(C/R); i.e., the R-points are the fixed

points of the conjugation action on the C-points. We would like to have an action of
Gal(C/Q) on X(C), but this does not exist. So instead, we’ll replace X(C) by the Étale
homotopy type.

Étale homotopy type. This was introduced by Artin-Mazur and further refined by Fried-
lander. First we’ll justify the desire to replace the C-points by the Étale homotopy type.
For schemes over C (only considering rings that are extensions of C), The Étale homotopy
type Ét(X) is a profinite completion of X(C).
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LetS denote spaces. Then proS is the category of prospaces defined by formally adding
inverse limits to the category of spaces. We write {Z↵}↵2A which we think of as being the
formal limit of an inverse system limA Z.

Let C be the class of finite groups. Let CS be the class of spaces whose homotopy
groups lie in C. We have an inclusion functor proCS ,! proS has a left adjoint and this is
the profinite completion. We can regard a space as a prospace (by just taking the constant
inverse system). This defines

S! proS! proCS
which is how we usually think of the profinite completion functor.

Under certain hypotheses the Étale points are the profinite completion of the C-points.

Theorem (Artin-Mazur [AM, 12.9, 11.1]). For X of finite type over C, locally Noetherian,
geometrically unibranched, then there is a canonical X(C) ! Ét(X) which is profinite
completion.

Profinite completion gets denoted by (�)^.

Example. K(G, 1)^ = K(Ĝ, 1) where G ! Ĝ is the profinite completion of G, i.e., the
initial map from G to an inverse limit of finite groups.

Construction motivating the definition of the Étale homotopy type. Let X be a topo-
logical space andU an open cover of X. We have

`
U2U U ! X. We’ll define a category

whose space of objects ins
`

U2U U and whose space of morphisms is the fiber product�`
U2U U

� ⇥X
�`

U2U U
�
. The nerve of U is the simplicial space with N(U)n the n-fold

fiber product of
`

U2U U over X. Then you get

|N(U)•|! X

that is a weak equivalence so long as X has a partition of unity.
We likewise have a map

|N(U)•| //

✏✏

X

|⇡0N(U)|
The vertical is a weak equivalence when the intersections are weakly equivalent to a dis-
joint union of points.

Example. Let X = S 1 and let U be the open cover consisting of two intervals U1 and
U2. The 0-simplices of N(U) are U1

`
U2 while the 1-simplices are U1 \ U2. So the

geometric realization looks like two arcs (representing U1 and U2) glued to two rectangles
(�1 ⇥ (U1 \ U2)), which is indeed weakly equivalent to S 1.

We have X ' {|⇡0N(U)|}U all covers is in pro(S). This is how we’ll associate a topolog-
ical space to a scheme. (From now on we’ll associate a simplicial space to its geometric
realization and drop the | � |.)
Further motivation. We can generalize the notion of a covering by opens to a Grothendieck
topology. Covers will still look like

`
U2U U ! X but the map U ! X isn’t required to

be the inclusion of an open set. This leads to an Étale topology that identifies certain maps
U ! X as “covers.” These are composites U ! V ! X where V ! X is the inclusion of
an open subset and U ! V is a covering space. The point of this is that such things are
still schemes (cut out by polynomial equations). This will allow us to consider Vs whose
intersections aren’t disjoint unions of contractible spaces but are instead K(⇡, 1)s.
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Example. X = K(G, 1). Let U = {X̃ ! X} be the universal cover. Then N(U) has n-
simplices the n-fold fiber product. The 2-fold fiber product consists of pairs of points with
common image and a path between them (a deck transformation, i.e., a group element).
So N(U) = X̃ ⇥ NG, where NG is the nerve of G regarded as a one object category. So
⇡0(NU) = K(G, 1).

Theorem (Sullivan [S]). More generally, letV be a covering by open sets of a topological
space X such that all intersections of elements of V are K(G, 1)s. Let U = {U ! V !
X}V2V where the first map is the universal cover. Then ⇡0N(U) ' X.

Example (loc cit). The Hopf map. X = C2 � {0} ' S 3. Let V include V1 = {(x, y) 2 X |
x , 0} ' S 1, V2 = {(x, y) 2 X | y , 0} ' S 1, and V1 \ V2 ' S 1 ⇥ S 1. Then

X = hocolim(S 1  S 1 ⇥ S 1 ! S 1).

LetU = {Ṽ1 ! X, Ṽ2 ! X, ˜V1 \ V2 ! X}. Then

⇡0N(U) = hocolim(N(Z) N(Z � Z)! N(Z)) ' S 3.

Similarly,
S 2 = hocolim(⇤  N(Z)! ⇤)

as the suspension of S 1. The Hopf map is the map of hocolims induced by the map between
diagrams that sends m � n to m � n.

The definition of the Étale homotopy type

The category of schemes has the Zariski topology and also the étale topology, which
includes finite covering spaces of Zariski opens. There is a notion of ⇡0. So for any U,
an étale cover of X, we still have the nerve of U with N(U)n the n-fold fiber product of`

U2U U over X.

Definition. If X is quasi-projective, Ét(X) is the prosimplicial set {⇡0N(U)}U where we’re
indexed by the étale coversU of X.

For schemes over C this is the profinite competition of the analytic topology of the
C-points.

There are some caveats:

• For general X, the N(U) are replaced by hypercovers.
• The category of étale covers of X is only cofiltered (left-filtering) up to homotopy.

The plan is to use the Étale homotopy type to discuss solutions to polynomial equations
taking Grothendieck’s anabelian conjectures as a method. In an ideal world, we’d give
some other points of view about the Étale homotopy type before stating the anabelian
conjectures with a motivating example. There are some sacrifices that have to be made.
Next time we’ll state the anabelian conjectures and connect them up with A1-homotopy
theory.

Other points of view. We can view {N(U)}U cover X as a cofibrant replacement of X. So
then we can think of Ét(X) as L⇡0, the left derived functor of ⇡0.

Alternatively, we can think of sheaves on the étale site of X. There is the global sections
functor �⇤ : Sh(étale site of X) ! S. The constant sheaf functor �⇤ is left adjoint to this.
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After passing to procategories, ⇡0 is left adjoint to �⇤. Let {Z↵}↵2A 2 proS. Then

Mor(Ét(X), {Z↵}↵2A) = Mor(L⇡0X, {Z↵}↵2A)
= Mor(X,�⇤{Z↵}↵2A)
= lim
↵2A

Mor(X,�⇤Z↵)

= lim�⇤�⇤Z↵.

The endofunctor �⇤�⇤ : S ! S that we can regard as a prospace. Lurie Higher topos
theory says this is the shape of the étale topos, i.e., is Ét(X).
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