
LIMITS OF QUASI-CATEGORIES WITH (CO)LIMITS

EMILY RIEHL

Joint with Dominic Verity.

Introduction

This talk concerns quasi-categories which are a model for (1, 1)-categories, which are
categories with objects, 1-morphisms, 2-morphisms, 3-morphisms, and so on, with every-
thing above level one invertible. Specifically, a quasi-category is a simplicial set in which
any inner horn has a filler. We think of the horn filling as providing a weak composition
law for morphisms in all dimensions.

Our project is to redevelop the foundational category theory of quasi-categories (pre-
viously established by Joyal, Lurie, and others) in a way that makes it easier to learn. In
particular, the proofs more closely resemble classical categorical proofs. Today I want to
illustrate this by mentioning one new theorem (to appear on the arXiv on Monday) and
then describing as much as I can about its proof.

Theorem. Homotopy limits of quasi-categories that have and functors that preserve X-
shaped (co)limits have X-shaped (co)limits, and the legs of the limit cone preserve them.

Here X can be any simplicial set. X-shaped colimits might be pushouts, filtered colimits,
initial objects, colimits of countable sequences, and so on. The two theorems (for X-shaped
limits or colimits) are dual, so I won’t mention colimits further.

By “homotopy limits” I mean Bousfield-Kan style homotopy limits, which are defined
via a particular formula. Here there is no dual result for homotopy colimits. This has to
do with the fact that the quasi-categories are the fibrant objects in a model structure on
simplicial sets. And actually, the result that we prove is for a more general class of limits,
including the homotopy limits, that I will describe along the way.

Today I’ll focus on a special case of the theorem: quasi-categories admitting and func-
tors preserving ;-shaped limits, aka terminal objects. In fact, the general case reduces to
this special one, though I won’t have time to explain how.

Warmup

To warm up, let’s prove the following result:

Theorem. The homotopy limit of a diagram of quasi-categories is a quasi-category.

Here a diagram means a simplicial functor D : A! qCat1. Here qCat1 is the simpli-
cially enriched category of quasi-categories, defined to be a full subcategory of simplicial
sets. The domain A is either a small category or a small simplicial category; we care about
both cases.
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Projective cofibrant weighted limits. Homotopy limits are examples of projective cofi-
brant weighted limits. By a weight, in the context of the diagram D above, I mean a
simplicial functor W : A! sSet. For instance:

Example. Taking the weight to be N(A/�) : A ! sSet, the corresponding limit notion is
the Bousfield-Kan homotopy limit.

Example. If A is the category • ! •  •, we might define W to be the functor with

image �0 d1

�! �1 d0

 � �0. The weighted limit in then a comma object.

Example. There is a weight whose weighted limit defines the quasi-category of homotopy
coherent algebras for a homotopy coherent monad. Some of you heard me talk about this
last week at the Joint Meetings.

A weight W is projective cofibrant if ; ! W is a retract of a composite of pushouts
of coproducts of maps @�n ⇥ A(a,�) ! �n ⇥ A(a,�) for n � 0 and a 2 A. These are
exactly the cofibrant objects in the projective model structure on the category of simplicial
functors sSetA.

The weighted limit is a bifunctor

weighted limit : (weight)op ⇥ diagram
{�,�}����! limit object

that is completely characterized by the following two axioms:
(i) {A(a,�),D} = Da, i.e., the weighted limit weighted by a representable functor

just evaluates the diagram at that object.
(ii) {�,D} sends colimits in the weight to limits in the weighted limit.

Proof strategy. These two facts combine to give us a strategy for the proof of our warm-up
theorem, which I will now restate:

Theorem. A projective cofibrant weighted limit of a diagram of quasi-categories is a
quasi-category.

Proof. It su�ces to show that qCat1 is closed under
(i) splittings of idempotents (i.e., retracts)

(ii) limits of towers of isofibrations
(iii) pullbacks of isofibrations
(iv) products
(v) cotensors (�)Y with any simplicial set Y

and moreover that a monomorphism X ,! Y induces an isofibration (�)Y ! (�)X of quasi-
categories. Here an isofibration is a fibration between fibrant objects in the Joyal model
structure on simplicial sets. All of the facts (i)-(iii) follow immediately from the fact that
the quasi-categories are the fibrant objects in this monoidal model structure. ⇤

Quasi-categories with terminal objects

Now let us consider qCat;,1 ⇢ qCat1, the simplicial category of quasi-categories ad-
mitting and functors preserving terminal objects (and all higher morphisms whose vertices
are functors preserving terminal objects). Our aim is to prove:

Theorem. A projective cofibrant weighted limit of a diagram in qCat;,1 is in qCat;,1.
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As before, it su�ces to show that qCat;,1 is closed under the classes of limits (i)-(v)
and that cotensors with monomorphisms induce isofibrations that preserve terminal ob-
jects. Before going any further, we should define a terminal object in the quasi-categorical
context.

Definition. A vertex t in a quasi-category A is terminal if any of the following equivalent
conditions are satisfied:

(i) Any sphere in A whose final vertex is t has a filler.
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(ii) There is an adjunction of quasi-categories A
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(iii) For all simplicial sets X, the constant functor X
!�! �0 t�! A is terminal in h(AX),

the homotopy category of the mapping space AX .

Definitions (ii) and (iii) refer implicitly to qCat2, the strict 2-category of quasi-categories,
defined by applying the homotopy category functor to the hom-spaces of qCat1.

To conclude, I’ll quickly prove parts (iv), (i), and (v) of the theorem. Parts (ii) and (iii)
are no more di�cult, but require some basic facts about isofibrations and terminal objects.

Lemma (products). Suppose ti 2 Ai is terminal. Then (ti)i2I 2
Q

i2I Ai is terminal.

Proof. Given a sphere
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the fact that the ti 2 Ai are terminal for each i defines the components of the filler. Note
that each projection ⇡i prefers this particular terminal object. This implies that it preserves
all terminal objects because all terminal objects are isomorphic. ⇤

Lemma (idempotents). Suppose t 2 A is terminal, e : A ! A is an idempotent (e2 = e),
and e preserves terminal objects (so et 2 A is terminal). We split the idempotent by forming
the equalizer

Ae // // eq(A
e //

id
// A)

Then et 2 Ae is terminal.
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Proof. Observe that e2 = e implies that et 2 Ae. Given a sphere
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//

et
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the fact that et is terminal in A implies there exists a filler a : �n ! A for the composite
sphere in A. One can check that ea : �n ! Ae fills the sphere in Ae ⇤

Products and idempotents are both conical limits. For cotensors, we’ll switch to the
equivalent definition (iii).

Lemma (cotensors). Suppose t 2 A is terminal and Y is a simplicial set. Then Y
!�! �0 t�! A

is terminal in AY.

Proof. To say t 2 A is terminal is to say that for any simplicial set X and any map X ! A
there is a unique 2-cell
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By 2-cell I mean a morphism in h(AX), i.e., an endpoint-preserving homotopy class of 1-
simplices in AX . This is true for any X so in particular, we have a unique 2-cell as on the
left below.
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The 2-category of quasi-categories is cartesian closed, so applying the 2-adjunction �⇥Y a
(�)Y , this transposes to a unique 2-cell in the triangle on the right. By (iii) this says exactly
that the constant map at t is terminal in AY . ⇤
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