OPERADS IN ALGEBRAIC TOPOLOGY II

KATHRYN HESS

CONTENTS

Yesterday I gave you a very elementary introduction to operads. The examples I gave you weren't very topological. Today we're going to get into some topology.

The little *n*-disks operad

Goal. We'll consider how to interpolate "up to homotopy" between As and Com. There is an operad morphism $As \rightarrow Com$.

Definition. We'll write \mathcal{D}_n for the *little n-disks operad* (where $(\mathcal{M}, \otimes, I) = (\text{Top}^{\text{nice}}, \times, \{*\})$). Define

$$
\mathscr{D}_n(r)=\mathrm{sEmb}(\coprod_r D^n, D^n), \quad D^n=\{x\in\mathbb{R}^n\mid ||x||\leq 1\}.
$$

Here sEmb is the space of standard embeddings (a subspace of the mapping space with compact-open topology). This means that on each summand we have a map $D^n \to D^n$ of the form $x \mapsto \lambda x + c$, $0 \le \lambda \le 1$. We'll only consider embeddings like this. No rotations are allowed.

An element of $D_2(4)$ looks like a big 2-disk with 4 (disjoint) little 2-disks inside it. Note that Σ_r acts on $\mathscr{D}_n(r)$ by permuting the little disks.

The operad multiplication $\mathscr{D}_n \circ \mathscr{D}_n \to \mathscr{D}_n$ is defined by iterated embeddings of little disks. For example, the following composite is an element of of $\mathcal{D}_2(9)$:

Date: Connections for Women: Algebraic Topology — MSRI — 24 January, 2014.

2 KATHRYN HESS

Remark. There exists an injective operad morphism $\iota_n : \mathcal{D}_n \hookrightarrow \mathcal{D}_{n+1}$ given by "equatorial embedding." For $n = 1$, the closed unit interval gets embedded as a diameter (the horizontal, say) of the closed 2-disk. Then any embedded little intervals are embedded as diameters of little 2-disks centered about the equator. So there exists a functor ι_n^* : $\mathbf{Alg}_{\mathcal{D}_{n+1}} \to \mathbf{Alg}_{\mathcal{D}_n}$.

Let $\mathscr{D}_{\infty} = \operatorname{colim}_{n} \mathscr{D}_{n}$.

Proposition.

 (i) $\mathscr{D}_1 \xrightarrow{\simeq} \text{As}$ *and* $\pi_0 \mathscr{D}_1(r) = \Sigma_r$. (ii) $\mathscr{D}_{\infty} \stackrel{\simeq}{\rightarrow}$ Com.

Q. What about \mathcal{D}_n for $1 \leq n \leq \infty$?

Theorem (May, Boardman-Vogt).

- *(i) Every n-fold based loop space is a Dn-algebra.*
- *(ii)* If Y is a \mathscr{D}_n -algebra and if $\pi_0 Y$ is a group (and not just a monoid with respect to *its induced binary multiplication), then there exists a space X so that* $Y \simeq \Omega^n X$.

Indication of the proof of (i). Observe that $\Omega^n X \cong \text{Map}((D^n, \partial D^n), (X, x_0))$. To show that $\Omega^n X$ is a \mathscr{D}_n -algebra, we want

$$
\mathscr{D}_n(r)\times \Omega^n X\times\cdots\times \Omega^n X\stackrel{\phi_r^\flat}{\longrightarrow}\Omega^n X.
$$

Given $d \in \mathcal{D}_n(r)$ and $(\alpha_1, \ldots, \alpha_r)$ a list of *r*-elements of Map($(D^n, \partial D^n)$, (X, x_0)) the composite $d \circ (a_1, \ldots, a_r)$ is the map of pairs $(D^n, \partial D^n) \to (X, x_0)$ that acts via α_i on disk *i* and is constant at the basepoint x_0 outside the embedded disks. These actions assemble into a continuous map because the boundary of each embedded disk is also mapped to $x₀$ via α_i .

May and Boardman-Vogt have different proofs for (ii). The key observation (in one of the proofs) is that the free \mathscr{D}_n -algebra on a space *X* is $\Omega^n \Sigma^n X$.

Remark. If $n > 1$, $r \ge 1$, then $\mathcal{D}_n(r)$ is path connected. In particular, $\mathcal{D}_n(2)$ is path connected for all $n > 1$. This is the space of binary operations on a \mathcal{D}_n -algebra. And thus, there exists a path from any multiplication $m \in \mathcal{D}_n(2)$ to any $m\tau \in \mathcal{D}_n(2)$ (where $\tau \in \Sigma_2$) is the non-identity permutation). This implies that all of the binary mutliplications in a \mathscr{D}_n -algebra are homotopy commutative.

Topology of little *n*-disks

Q. What do the spaces $\mathcal{D}_n(r)$ look like?

Proposition. $\mathscr{D}_n(r) \xrightarrow{\simeq} \text{Conf}(r; \mathring{D}^n)$, the space of labelled configurations of r points in the *open n-disk D*˚ *n. The map takes the embedded disks to their centers.*

In particular, $\mathscr{D}_n(2) \simeq S^{n-1}$. This says that we have a whole sphere's worth of binary multiplications (that are all homotopic).

Remark. If \mathcal{P} is a topological operad, then $H_*\mathcal{P}$ (where $(H_*\mathcal{P})(r) = H_*(\mathcal{P}(r))$) is an operad in graded abelian groups.

The trick is that there is a natural transformation $H_*\mathscr{P}(r) \otimes H_*(\mathscr{P}(t)) \to H_*(\mathscr{P}(r) \times$ $P(t)$ for all *r* and *t* using the fact that homology is a monoidal functor.

Theorem (F. Cohen). *If* **k** *is a field*

(i) $H_*(\mathscr{D}_1; \mathbb{k}) = \text{As}$

$$
(ii) H_*(\mathscr{D}_\infty; \Bbbk) = \text{Com}
$$

(iii) $H_*(\mathscr{D}_n; \mathbb{k}) = \mathscr{G}_n$, the *n*-Gerstenhaber operad.

A \mathscr{G}_n -algebra is an object *A* with a commutative and associative multiplication *m*: *A* \otimes $A \rightarrow A$ with a bracket $\langle -, - \rangle$: $A \otimes A \rightarrow A$ of degree $1 - n$ that satisfies a graded Jacobi identity and anticommutativity. Also, for all $c \in A$, $\langle -, c \rangle$: $A \rightarrow A$ is a derivation with respect to $\langle ab, c \rangle = \pm a \langle b, c \rangle \pm \langle a, c \rangle b$.

More generally:

Definition. A *topological operad* $\mathscr E$ is an $\mathscr E_n$ -operad $(1 \le n \le \infty)$ if it is weakly equivalent (as an operad) to \mathscr{D}_n :

$$
\mathscr{D}_n \xleftarrow{\simeq} \bullet \xrightarrow{\simeq} \mathscr{E}.
$$

Example. The *Barratt-Eccles operad* $\mathscr E$ is an $\mathscr E_{\infty}$ -operad. Here $\mathscr E(r) = E\Sigma_r$ (the total space of the classifying space of the group).

The Deligne Conjecture

 \mathcal{D}_2 plays a central role in the Deligne conjecture.

Definition. Let *A* be an associative **k**-algebra, for a commutative ring **k**. The *Hochschild cochain complex* of *A* is

$$
\text{Hom}(\mathbb{k},A) \xrightarrow{d^0} \text{Hom}(A,A) \xrightarrow{d^1} \text{Hom}(A^{\otimes 2},A) \xrightarrow{d^2} \cdots
$$

where d^n : Hom($A^{\otimes n}$, A) \rightarrow Hom($A^{\otimes n+1}$, A) is given by

 $(dⁿf)(a₀ \otimes \cdots \otimes a_n) = a₀ f(a₁ \otimes \cdots \otimes a_n) + \sum$ \sum_{i} $\pm f(a_0 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n) \pm f(a_0 \otimes \cdots \otimes a_{n-1}) a_n.$

The notation for this is $C^*(A, A)$. The *Hochschild cohomology of A* is $H^*(A, A) = H^*(C^*(A, A))$. This classifies infinitesimal deformations of the multiplication on *A*.

Theorem (Gerstenhaber). $H^*(A, A)$ *is a* \mathscr{G}_2 -*algebra.*

Recall that $\mathscr{G}_2 = H_* \mathscr{D}_2$. Let $\mathscr{S} = C_* \mathscr{D}_2$ (applying chains, not homology), an operad in chain complexes.

Conjecture (Deligne, 1993). *The G*2*-algebra structure on H*⇤(*A*, *A*) *lifts (up to homotopy) to an* \mathscr{S}' *-algebra structure, where* $\mathscr{S}' \simeq \mathscr{S}$ *.*

There are many partial results and (later) complete proofs. For example, Gerstenhaber-Voronov (1994) and Voronov (1999) build

$$
\mathscr{S} \xleftarrow{\simeq} \tilde{\mathscr{S}} \xrightarrow{\simeq} \mathscr{H} \to \text{End}(C^*(A, A))
$$

where $\mathscr H$ is a homotopy Gerstenhaber operad and $\tilde{\mathscr I}$ is a geometric resolution of $\mathscr S$. Also McClure-Smith (1999) show that there is some $\tilde{\mathcal{D}} \simeq \mathcal{D}_2$ so that

$$
\mathscr{D} \xleftarrow{\simeq} C_* \widetilde{\mathscr{D}} \xrightarrow{\simeq} \mathscr{H} \to \text{End}(C^*(A, A)).
$$

Department of Mathematics, Harvard University,1Oxford Street, Cambridge, MA 02138 *E-mail address*: eriehl@math.harvard.edu