OPERADS IN ALGEBRAIC TOPOLOGY II

KATHRYN HESS

Contents

The little <i>n</i> -disks operad	1
Topology of little <i>n</i> -disks	2 3
The Deligne Conjecture	

Yesterday I gave you a very elementary introduction to operads. The examples I gave you weren't very topological. Today we're going to get into some topology.

THE LITTLE *n*-DISKS OPERAD

Goal. We'll consider how to interpolate "up to homotopy" between As and Com. There is an operad morphism $As \rightarrow Com$.

Definition. We'll write \mathscr{D}_n for the *little n-disks operad* (where $(\mathcal{M}, \otimes, I) = (\mathbf{Top}^{\text{nice}}, \times, \{*\})$). Define

$$\mathscr{D}_n(r) = \operatorname{sEmb}(\bigsqcup_r D^n, D^n), \quad D^n = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}.$$

Here sEmb is the space of standard embeddings (a subspace of the mapping space with compact-open topology). This means that on each summand we have a map $D^n \to D^n$ of the form $x \mapsto \lambda x + c$, $0 \le \lambda \le 1$. We'll only consider embeddings like this. No rotations are allowed.

An element of $D_2(4)$ looks like a big 2-disk with 4 (disjoint) little 2-disks inside it. Note that Σ_r acts on $\mathcal{D}_n(r)$ by permuting the little disks.

The operad multiplication $\mathscr{D}_n \circ \mathscr{D}_n \to \mathscr{D}_n$ is defined by iterated embeddings of little disks. For example, the following composite is an element of of $\mathscr{D}_2(9)$:

Date: Connections for Women: Algebraic Topology - MSRI - 24 January, 2014.

KATHRYN HESS

Remark. There exists an injective operad morphism $\iota_n : \mathscr{D}_n \hookrightarrow \mathscr{D}_{n+1}$ given by "equatorial embedding." For n = 1, the closed unit interval gets embedded as a diameter (the horizontal, say) of the closed 2-disk. Then any embedded little intervals are embedded as diameters of little 2-disks centered about the equator. So there exists a functor $\iota_n^* : \operatorname{Alg}_{\mathscr{D}_{n+1}} \to \operatorname{Alg}_{\mathscr{D}_n}$.

Let $\mathscr{D}_{\infty} = \operatorname{colim}_n \mathscr{D}_n$.

Proposition.

(i) $\mathscr{D}_1 \xrightarrow{\simeq} \operatorname{As} and \pi_0 \mathscr{D}_1(r) = \Sigma_r.$ (ii) $\mathscr{D}_{\infty} \xrightarrow{\simeq} \operatorname{Com}.$

Q. What about \mathcal{D}_n for $1 < n < \infty$?

Theorem (May, Boardman-Vogt).

- (i) Every n-fold based loop space is a \mathcal{D}_n -algebra.
- (ii) If Y is a \mathcal{D}_n -algebra and if $\pi_0 Y$ is a group (and not just a monoid with respect to its induced binary multiplication), then there exists a space X so that $Y \simeq \Omega^n X$.

Indication of the proof of (i). Observe that $\Omega^n X \cong \text{Map}((D^n, \partial D^n), (X, x_0))$. To show that $\Omega^n X$ is a \mathcal{D}_n -algebra, we want

$$\mathscr{D}_n(r) \times \Omega^n X \times \cdots \times \Omega^n X \xrightarrow{\phi_r^{\circ}} \Omega^n X.$$

Given $d \in \mathscr{D}_n(r)$ and $(\alpha_1, \ldots, \alpha_r)$ a list of *r*-elements of Map $((D^n, \partial D^n), (X, x_0))$ the composite $d \circ (\alpha_1, \ldots, \alpha_r)$ is the map of pairs $(D^n, \partial D^n) \to (X, x_0)$ that acts via α_i on disk *i* and is constant at the basepoint x_0 outside the embedded disks. These actions assemble into a continuous map because the boundary of each embedded disk is also mapped to x_0 via α_i .

May and Boardman-Vogt have different proofs for (ii). The key observation (in one of the proofs) is that the free \mathcal{D}_n -algebra on a space *X* is $\Omega^n \Sigma^n X$.

Remark. If n > 1, $r \ge 1$, then $\mathscr{D}_n(r)$ is path connected. In particular, $\mathscr{D}_n(2)$ is path connected for all n > 1. This is the space of binary operations on a \mathscr{D}_n -algebra. And thus, there exists a path from any multiplication $m \in \mathscr{D}_n(2)$ to any $m\tau \in \mathscr{D}_n(2)$ (where $\tau \in \Sigma_2$ is the non-identity permutation). This implies that all of the binary multiplications in a \mathscr{D}_n -algebra are homotopy commutative.

TOPOLOGY OF LITTLE *n*-DISKS

Q. What do the spaces $\mathcal{D}_n(r)$ look like?

Proposition. $\mathscr{D}_n(r) \xrightarrow{\simeq} \operatorname{Conf}(r; \mathring{D}^n)$, the space of labelled configurations of r points in the open n-disk \mathring{D}^n . The map takes the embedded disks to their centers.

In particular, $\mathcal{D}_n(2) \simeq S^{n-1}$. This says that we have a whole sphere's worth of binary multiplications (that are all homotopic).

Remark. If \mathscr{P} is a topological operad, then $H_*\mathscr{P}$ (where $(H_*\mathscr{P})(r) = H_*(\mathscr{P}(r))$) is an operad in graded abelian groups.

The trick is that there is a natural transformation $H_*\mathscr{P}(r) \otimes H_*(\mathscr{P}(t)) \to H_*(\mathscr{P}(r) \times \mathscr{P}(t))$ for all *r* and *t* using the fact that homology is a monoidal functor.

Theorem (F. Cohen). If \Bbbk is a field

2

(*i*) $H_*(\mathscr{D}_1; \Bbbk) = \mathrm{As}$

(*ii*)
$$H_*(\mathscr{D}_{\infty}; \Bbbk) = \operatorname{Con}$$

(iii) $H_*(\mathcal{D}_n; \Bbbk) = \mathcal{G}_n$, the n-Gerstenhaber operad.

A \mathscr{G}_n -algebra is an object A with a commutative and associative multiplication $m: A \otimes A \to A$ with a bracket $\langle -, - \rangle: A \otimes A \to A$ of degree 1 - n that satisfies a graded Jacobi identity and anticommutativity. Also, for all $c \in A$, $\langle -, c \rangle: A \to A$ is a derivation with respect to $\langle ab, c \rangle = \pm a \langle b, c \rangle \pm \langle a, c \rangle b$.

More generally:

Definition. A *topological operad* \mathscr{E} is an \mathscr{E}_n -operad $(1 \le n \le \infty)$ if it is weakly equivalent (as an operad) to \mathscr{D}_n :

$$\mathscr{D}_n \xleftarrow{} \bullet \xrightarrow{} \mathscr{E}.$$

Example. The *Barratt-Eccles operad* \mathscr{E} is an \mathscr{E}_{∞} -operad. Here $\mathscr{E}(r) = E\Sigma_r$ (the total space of the classifying space of the group).

THE DELIGNE CONJECTURE

 \mathcal{D}_2 plays a central role in the Deligne conjecture.

Definition. Let *A* be an associative k-algebra, for a commutative ring k. The *Hochschild cochain complex* of *A* is

$$\operatorname{Hom}(\Bbbk, A) \xrightarrow{d^0} \operatorname{Hom}(A, A) \xrightarrow{d^1} \operatorname{Hom}(A^{\otimes 2}, A) \xrightarrow{d^2} \cdots$$

where d^n : Hom $(A^{\otimes n}, A) \to$ Hom $(A^{\otimes n+1}, A)$ is given by

 $(d^{n}f)(a_{0}\otimes\cdots\otimes a_{n}) = a_{0}f(a_{1}\otimes\cdots\otimes a_{n}) + \sum_{i} \pm f(a_{0}\otimes\cdots\otimes a_{i}a_{i+1}\otimes\cdots\otimes a_{n}) \pm f(a_{0}\otimes\cdots\otimes a_{n-1})a_{n}.$

The notation for this is $C^*(A, A)$. The *Hochschild cohomology of A* is $H^*(A, A) = H^*(C^*(A, A))$. This classifies infinitesimal deformations of the multiplication on *A*.

Theorem (Gerstenhaber). $H^*(A, A)$ is a \mathscr{G}_2 -algebra.

Recall that $\mathscr{G}_2 = H_* \mathscr{D}_2$. Let $\mathscr{S} = C_* \mathscr{D}_2$ (applying chains, not homology), an operad in chain complexes.

Conjecture (Deligne, 1993). *The* \mathscr{G}_2 *-algebra structure on* $H^*(A, A)$ *lifts (up to homotopy) to an* \mathscr{S}' *-algebra structure, where* $\mathscr{S}' \simeq \mathscr{S}$.

There are many partial results and (later) complete proofs. For example, Gerstenhaber-Voronov (1994) and Voronov (1999) build

$$\mathscr{S} \xleftarrow{\simeq} \widetilde{\mathscr{S}} \xrightarrow{\simeq} \mathscr{H} \to \operatorname{End}(C^*(A,A))$$

where \mathscr{H} is a homotopy Gerstenhaber operad and $\tilde{\mathscr{S}}$ is a geometric resolution of \mathscr{S} . Also McClure-Smith (1999) show that there is some $\tilde{\mathscr{D}} \simeq \mathscr{D}_2$ so that

$$\mathscr{D} \leftarrow C_* \widetilde{\mathscr{D}} \xrightarrow{-} \mathscr{H} \to \operatorname{End}(C^*(A,A)).$$

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, 1 OXFORD STREET, CAMBRIDGE, MA 02138 *E-mail address*: eriehl@math.harvard.edu