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Introduction

Yesterday we showed that for X a scheme we can introduce Ét(X), a prosimplicial set
(an object in proS). We say X is over k (write X/k) if the coe�cients of the associated
polynomials are in k and we are only considering solutions X(R) where k ! R, or more
precisely X ! speck.

We have the following properties:
• X/C then Ét(X) ' X(C)^
• k a field, the Ét(speck) ' BGk where Gk = Gal(ks/k), the Galois group of the

separable closure. Then

Ét(speck), Ét(specL)]
=�! Homout,cts(Gk,GL).

• For X/k, then Xk = speck ⇥speck X and there is a fiber sequence

Ét(Xk)! Ét(X)! Ét(speck).

• If X is normal, then ⇡1Ét(X) = ⇡S GA
1 (X) = ⇡1X.

Grothendieck’s anabelian conjectures

Q. Choose a, b 2 Q⇤. When is GQ[
p

a] � GQ[
p

b]?

The answer is lovely: it’s if and only if Q[
p

a] � Q[
p

b], which is true if and only if
a = b 2 Q⇤/(Q⇤)2.

So we conclude that

Isosch(specQ[
p

a], specQ[
p

b])
=�! Isoho(proS)(Ét(specQ[

p
a]), Ét(specQ[

p
b])).

Theorem (Neukirch-Uchida). For K, L finite extensions of Q,

Iso(K, L)
=�! Isocts,out(GK ,GL).
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In Grothendieck’s set-up, this property is viewed as a property of the fundamental
groups. Recall that here the absolute Galois groups are the fundamental groups. Grothendieck’s
anabelian conjectures predict a large family of schemes that are controlled by their funda-
mental groups.

Finite extensions of Q are called number fields.

Conjecture (Grothendieck). For K a number field, there is a full subcategory AnK of
schemes over K. AnK includes smooth curves with Euler characteristic � < 0, speck, and
total spaces of fibrations where the bases and fibers are in AnK. For all X1, X2 2 AnK,
then

(1) Mordense
sch (X1, X2)

=�! Morcts,open
GK

(⇡1X1, ⇡1X2).

On the left-hand side we have maps with dense image, and on the right-hand side we
have maps with open image.

Theorem (Mochizuki). If K is a sub p-adic field, X1 is smooth, and X2 is smooth with
negative Euler characteristic. Then (1) holds.

This provides some evidence for the anabelian conjecture.

The section conjecture

The section conjecture tells us what the solutions to the polynomials are expected to be.

Conjecture (Grothendieck). Let X be a smooth curve of genus � 2 and compact over K.1

Then the natural map
X(K)

=�! [Ét(specK), Ét(X)]
is a bijection.

The section conjecture is open. There exist curves X, as in the statement of the section
conjecture, so that X(K) = ;, [Ét(specK), Ét(X)] = ;. It seems strange that the set of
homotopy classes of maps could be empty — why not just send everything to a point? The
point is that this notation is for maps over Ét(specK). Given

X1 //

""

EE
EE

EE
EE

X2

||yy
yy
yy
yy

specK

apply Ét to get
Ét(X1) //

%%

JJ
JJ

JJ
JJ

J
Ét(X2)

yytt
tt
tt
tt
t

Ét(specK)

So it is possible that there are no “sections” of the given map Ét(X2) ! Ét(specK). So
the section conjecture is true for such X. (Explicitly constructed example due to Stix,
Haran-Szamuely, Wittenberg.)

The section conjecture behaves well for finite étale covering spaces. If the section con-
jecture holds for X and if Y ! X is a finite covering space, then the section conjecture
holds for Y .

1Compactness is not necessary but without this hypothesis the statement is more complicated.
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Model theory. A really lovely piece of work on the section conjecture is actually in model
theory, as in the kind of model theory that is going on in the sister program. One can replace
⇡1X with GK(X) (the Galois group on the rational functions) and state the “birational section
conjecture.” This is like saying the section conjecture holds as you pass to smaller and
smaller classes of Zariski opens.

Koenigsmann showed the birational section conjecture holds for finite extensions of Qp

using model theory [S].

Relationship to Sullivan’s conjecture. Let X be a smooth curve with negative Euler char-
acteristic. We have Ét(X) = EGK ⇥GK Ét(XK)! Ét(specK) = BGK . If we had a section �,
we could pull it back along EGK ! BGK to get a section �0

Ét(X) = EGK ⇥GK Ét(XK)

✏✏

EGK ⇥ Ét(XK)oo

✏✏

Ét(specK) = BGK

�

DD

1
�
�

EGKoo

�0

ZZ

�

�
1

This gives �0 2 Map(EGK , Ét(XK))GK = Ét(XK)hGK . This says that

[Ét(specK), Ét(X)]
=�! ⇡0Ét(XK)hGK .

Thus, the section conjecture says that X(K)
=�! ⇡0Ét(XK)hGK .

Sullivan’s conjecture is a theorem proved by Miller, Carlsson, Lannes. It says that for
G a finite p-group, X a finite G-CW complex, the map

(XG)^p ! (X^p )hG

is a weak equivalence.
This leads to a version of the section conjecture over R which is true and has several

di↵erent proofs.

Example. Consider y2 = f (x) = (x � 1)(x � 2)(x � 3)(x � 4). There is a map from the
scheme X ! A1 to the a�ne line given by (x, y) 7! x. This defines a 2-sheeted cover.
Again, we cut slits between 1 and 2 and between 3 and 4 in both the base and in both
sheets of the cover. We flip one over before gluing them together along cylinders. This
gives a torus minus the two points at infinity. (Note before we needed genus greater than 2,
but with Sullivan’s conjecture it doesn’t matter. The point is solutions are discrete so that
fixed points equal homotopy fixed points.)

The goal of this example is see that the map ⇡0X(R)! ⇡0X(C)hGR is a bijection. When
x is greater than 4, less than 0, or lies between 2 and 3, y2 is positive. On the torus, these
points define two non-intersecting (but homotopic) circles on the torus that enclose the
hole formed between the two attached cylinders, one circle mapping down to (2, 3) and
the other mapping down to x < [0, 4]. When we choose a basepoint b 2 X(R), we can
identify ⇡0X(C)hGR = H1(GR, ⇡1X(C)). Given x 2 X(R), we can choose path � from x to
the basepoint b. Then define X(R) ! H1(GR, ⇡1X(C)) by x 7! [g 7! ��1g�]. We see that
⇡1X(C) = Z � Z(1) and H1(GR, ⇡1X(C)) = Z/2. So the map

X(R)! H1(GR,Z � Z(1)) = Z/2

sends b 7! 0 and everything not in the component of the basepoint to 1.

You’ll have to trust me that the example can be worked out. It can even be worked out for
arbitrary fields and for elliptic curves. For any field k, the map X(k) ! [Ét(speck), Ét(X)]
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can be identified with the Kummer map of the elliptic curve. This example is an elliptic
curve whenever you have a k-point. We just worked out the Kummer map over R.

There is a way to rephrase the section conjecture in terms of fixed points and homotopy
fixed points [Q].
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