Configuration Spaces

Safia Chettih

Connections for Women: Alg Top, MSRI

January 24, 2014

Safia Chettih (Connections for Women: Alg

Configuration Spaces

Definition

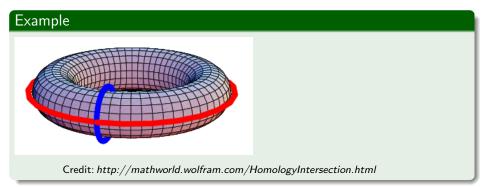
If M is a smooth, connected, oriented manifold,

$$Conf_n(M) = \{(x_1, \dots, x_n) \in M^n | x_i \neq x_j \text{ if } i \neq j\}$$
$$\overline{Conf_n}(M) = Conf_n(M) / \Sigma_n$$

$$\overline{\operatorname{Conf}}_n(\mathbb{R}^2) = K(\pi, 1)$$
 where $\pi = B_n$

э

Generators of $H_*(M)$ suggest hom classes of $Conf_n(M)$, $\overline{Conf}_n(M)$.



 $\alpha \in H_1(T)$ suggests $[N] \in H_1(Conf_n(T))$ where N=first point travels around α , the other points are fixed.

$$H_{i}(\operatorname{Conf}_{2}(T)) \cong H^{i}(\operatorname{Conf}_{2}(T)) \cong \begin{cases} \mathbb{Z} & i = 0\\ \mathbb{Z}^{4} & i = 1\\ \mathbb{Z}^{5} & i = 2\\ \mathbb{Z}^{2} & i = 3 \end{cases}$$
$$H_{i}(\overline{\operatorname{Conf}}_{2}(T)) \cong \begin{cases} \mathbb{Z} & i = 0\\ \mathbb{Z}^{2} \oplus \mathbb{Z}_{2} & i = 1\\ \mathbb{Z}^{3} & i = 2\\ \mathbb{Z}^{2} & i = 3 \end{cases}$$
$$H^{i}(\overline{\operatorname{Conf}}_{2}(T)) \cong \begin{cases} \mathbb{Z} & i = 0\\ \mathbb{Z}^{2} & i = 1\\ \mathbb{Z}^{3} \oplus \mathbb{Z}_{2} & i = 2\\ \mathbb{Z}^{2} & i = 3 \end{cases}$$

Safia Chettih (Connections for Women: Alg

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Which classes do we expect to appear in $H_*(Conf_n(M))$ or $H_*(\overline{Conf}_n(M))$?

- Inherit submanifolds representing classes via embeddings of $S^1 \hookrightarrow M$, $D^2 \hookrightarrow M$
- For $\overline{\operatorname{Conf}}_n(M)$, two points switching places is a 'mod-2' homology class which we expect to appear universally. (What about the 'mod-2' cohom class?)

Little n-disks operad $Disks^n$ has $Disks^n(r) = r$ disjoint balls in D^n

Proposition

 $\mathcal{D}isks^n(r)$ is homotopy equivalent to $Conf_r(\mathbb{R}^n)$

Theorem (Sinha, 2010)

 $H_*(\mathcal{D}isks^n) \cong H_*(Conf_*(\mathbb{R}^n) \cong \mathcal{P}ois^n \text{ as operads via nice geometric}$ operad structure on $H_*(Conf_r(\mathbb{R}^n))$

Definition

 $\mathcal{P}\textit{ois}^n{=}\mathsf{forests}$ of trees with numbered leaves and anti-symmetry, jacobi identity

Claim

Systems of orbits represent generators of $H_i(\text{Conf}_r(\mathbb{R}^n))$ and correspond to *r*-arity part of $\mathcal{P}ois^n$

Thank you!

- [F. R. Cohen, T. J. Lada, P. J. May] The homology of iterated loop spaces Lecture Notes in Mathematics 533 Springer (1976)
- E. R. Fadell, S. Y. Husseini Geometry and Topology of Configuration Spaces Springer Monographs in Mathematics (2001)
- D. P. Sinha]
 - The homology of the little disks operad

http://arxiv.org/abs/math/ 0610236 (2010)

CONFIGURATION SPACES

SAFIA CHETTIH

I'm going to give a quick overview of some interesting things to do with configuration spaces $\operatorname{Conf}_n(M)$, for ordered configurations, and $\overline{\operatorname{Conf}}_n(M)$ for unordered configurations. Note $\overline{\operatorname{Conf}}_n(\mathbb{R}^2)$ is a $K(\pi, 1)$ with π the braid group.

Generators of $H_*(M)$ suggest homology classes of $Conf_n(M)$ and $Conf_n(M)$.

For example, I've computed homology and cohomology for $\text{Conf}_2(T)$ and for $\text{Conf}_2(T)$. Note there is some 2-torsion for unordered configurations.

Which classes do we expect to appear in or $H_*Conf_n(M)$ or $H_*\overline{Conf_n(M)}$? One pattern arises from submanifolds representing classes via the embeddings $S^1 \hookrightarrow M$ and $D^2 \hookrightarrow M$. For unordered configurations, we expect the mod-2 homology classes that comes from two points switching places to appear universally.

Proposition. The little *n*-disks operad $\text{Disks}_n(r)$ is homotopy equivalent to $\text{Conf}_r(\mathbb{R}^n)$.

Theorem (Sinha). $H_*(\text{Disks}_n) \cong H_*(\text{Conf}_*(\mathbb{R}^n)) \cong \text{Pois}_n$, the Poisson operad, as operads via nice geometric operad structure on the homology of configurations of r points in \mathbb{R}^n .

Define the Poisson operad Pois_n to be forests of trees with numbered leaves and antisymmetry and jacobi identities. We claim that the system of orbits represent generators of $H_i(\text{Conf}_r(\mathbb{R}^n))$, which correspond to the *r*-arity part of Pois_n.

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, 1 OXFORD STREET, CAMBRIDGE, MA 02138 *E-mail address*: eriehl@math.harvard.edu

Date: Connections for Women: Algebraic Topology - MSRI - 24 January, 2014.