An equivariant infinite loop space machine

Anna Marie Bohmann¹ Angélica M. Osorno ²

1Northwestern University and MSRI

2Reed College and MSRI

Connections for Women: Algebraic Topology **MSRI** January 23, 2014

何 ト イヨ ト イヨ ト

Classical infinite loop space machines

Infinite loop space machines: turn algebraic/categorical data into spectra.

Permutative Categories Infinite Loop Spaces Connective Spectra

Give Eilenberg–Mac Lane spectra, K-theory, Thom spectra

Many varieties: E_{∞} operads (May), Γ -spaces (Segal)...

Equivariant infinite loop space machines

Goal: Build a machine that produces *genuine equivariant* spectra from appropriate categorical/algebraic data.

つひひ

Equivariant infinite loop space machines

Goal: Build a machine that produces *genuine equivariant* spectra from appropriate categorical/algebraic data.

Definition

A *genuine G -equivariant* spectrum has deloopings for all finite dimensional real *G* representations.

Lewis–May–Steinberger; Costenoble–Waner; Shimakawa; work in progress by May–Merling–Osorno, Guillou–May

イタト イミト イヨト

つへへ

Main Theorem

Let *G* be a finite group.

Main Theorem (Bohmann–Osorno)

There is an equivariant infinite loop space machine that produces genuine *G*-equivariant spectra from a "Mackey functor of permutative categories".

つひひ

Mackey functors

Definition

The *Burnside category* of *G* is a category with

- objects: finite *G*-sets
- morphisms: (group completion of isomorphism classes of) spans of finite *G*-sets

Definition

A *Mackey functor* is an additive functor from the Burnside category to abelian groups.

Homotopy Mackey functors

Homotopy groups of genuine *G*-spectra are given by *Mackey functors*.

For *G*-spaces:

 $G/H \longmapsto \pi_n(X^H)$

 $\mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B}$

 QQQ

Homotopy Mackey functors

Homotopy groups of genuine *G*-spectra are given by *Mackey functors*.

For *G*-spaces:

$$
G/H \longmapsto \pi_n(X^H)
$$

$$
\downarrow \qquad \qquad \uparrow
$$

$$
G/K \longmapsto \pi_n(X^K)
$$

ALCOHOL:

Homotopy Mackey functors

Homotopy groups of genuine *G*-spectra are given by *Mackey functors*.

For *G*-spaces:

$$
G/H \longmapsto \pi_n(X^H)
$$

$$
\downarrow \qquad \qquad \uparrow
$$

$$
G/K \longmapsto \pi_n(X^K)
$$

For *G*-spectra:

- \bullet Get additional map $\pi_n(X^H) \to \pi_n(X^K)$
- Encoded as a Mackey functor $\pi_n(X)(-)$

 QQ

Mackey structure for genuine *G*-spectra

"Mackey functor" shape captures the essence of genuine *G*-spectra.

Theorem [Guillou–May]

For finite *G*, the category of genuine *G*-spectra is Quillen equivalent to the category of "spectrally-enriched Mackey functors of spectra".

"Spectrally-enriched Mackey functors of spectra:"

- ¹ Build combinatorial Burnside 2-category *EG*
- ² Spectrally enrich via *K*-theory to get K*EG*
- **3** Take functors $\mathbb{K}\mathcal{E}G \rightarrow$ Spec into (nonequivariant) spectra

Our machine:

Our machine:

Our machine:

 Ω

E.

Our machine:

Our machine:

Definition

A Mackey functor of permutative categories is a "permutative category enriched" functor from the combinatorial Burnside 2-category to a 2-category of permutative categories.

PC-category

"Definition"

A PC*-category* is a "category enriched in permutative categories."

C consists of

- collection of objects
- \circ $C(X, Y)$ permutative category
- composition $C(Y, Z) \times C(X, Y) \rightarrow C(X, Z)$ is a bilinear functor

Applying *K*-theory to morphisms gives a spectrally enriched category K*C*.

医毛囊 医牙囊 医心包

Combinatorial Burnside 2-category

Definition

The combinatorial Burnside 2-category *EG* is a PC-category with

- objects: finite *G*-sets *X, Y*
- morphisms $\mathcal{E}G(X, Y)$: permutative category of spans of finite *G*-sets

under disjoint union

Usual Burnside category is a quotient of *EG*.

つひひ

The categorical input

Definition

Let Perm be the **PC**-category with

- \bullet objects: permutative categories A , B
- morphisms Perm(*A, B*): category of symmetric monoidal functors $A \rightarrow B$ and strictly unital natural transformations

Mackey functors of permutative categories are functors $\mathcal{E}G \rightarrow$ Perm preserving the **PC**-category structure.

つへへ

Key ingredients

- Guillou–May Theorem
- A good *K*-theory machine: behaves well with respect to bilinear maps
- A lemma:

Lemma

There is a spectrally enriched functor Φ : KPerm \rightarrow Spec that takes a permutative category *A* to the *K*-theory spectrum of *A*.

 QQ

The machine goes!

How do we turn a functor $\mathcal{E}G \rightarrow$ Perm into a functor $K\mathcal{E}G \rightarrow$ Spec?

4 同 下

ラメ メラメ

 QQQ

The machine goes!

How do we turn a functor $\mathcal{E}G \rightarrow$ Perm into a functor $K\mathcal{E}G \rightarrow$ Spec?

The machine goes!

How do we turn a functor $\mathcal{E}G \rightarrow$ Perm into a functor $\mathbb{K} \mathcal{E}G \rightarrow$ Spec?

Eilenberg–Mac Lane spectra for Mackey functors

Connective topological *K*-theory

 $\rightarrow \equiv$ \rightarrow

Eilenberg–Mac Lane spectra for Mackey functors

$$
\mathcal{B}\mathsf{G}\xrightarrow{\mathcal{M}}\mathsf{Ab}
$$

Connective topological *K*-theory

 $\rightarrow \equiv$ \rightarrow

Examples

Eilenberg–Mac Lane spectra for Mackey functors

$$
\mathcal{E}G \longrightarrow \mathcal{B}G \stackrel{M}{\longrightarrow} Ab
$$

Connective topological *K*-theory

 $\rightarrow \equiv$

Examples

Eilenberg–Mac Lane spectra for Mackey functors

$$
\mathcal{E}G \longrightarrow \mathcal{B}G \stackrel{M}{\longrightarrow} Ab \longrightarrow \text{Perm}
$$

Connective topological *K*-theory

 $\rightarrow \equiv$

AN EQUIVARIANT INFINITE LOOP SPACE MACHINE

ANNA MARIE BOHMANN AND ANGELICA OSORNO ´

Ordinary infinite loop space machine to equivariant machines

Infinite loop space machines turn algebraic/categorical data into spectra. There are a variety of such. They take permutative categories (strict symmetric monoidal categories) as input and produce Eilenberg-MacLane spectra, *K*-theory, Thom spectra.

The goal for an *equivariant* infinite loop space machine is to produce a *genuine equivariant* spectrum: this has deloopings for all finite dimensional real *G* representation spheres (*G* a finite group). Given a *G*-representation *V* with group acting, take the 1-point compactification to get a representation sphere S^V . There is previous work by Lewis-May-Steinberger, Costenoble-Waner, and Shimakawa and work-in-progress to do this by May-Merling-Osorno and Guillou-May. The problem is these machines don't give good control over the fixed points. Our machine very directly gives this fixed point information.

Theorem (Bohmann-Osorno). *There is an equivariant infinite loop space machine that produces genuine G-equivariant spectra from a "Mackey functor of permutative categories."*

MACKEY FUNCTORS

Definition. The *Burnside category* of *G* is a category whose objects are finite *G*-sets and whose morphism are (group completions of isomorphism classes of) spans of finite *G*-sets $X \leftarrow Z \rightarrow Y$. A *Mackey functor* is an additive functor from the Burnside category to abelian groups.

Why are Mackey functors important? Homotopy groups of genuine *G*-spectra are given by Mackey functors. For *G*-spaces:

$$
G/H\mapsto \pi_n(X^H)
$$

and

$$
G/H \longmapsto \pi_n(X^H)
$$

\n
$$
\downarrow \qquad \qquad \uparrow
$$

\n
$$
G/K \longmapsto \pi_n(X^K)
$$

For *G*-spectra, you get an additional map $\pi_n(X^H) \to \pi_n(X^K)$. All this information is encoded as a Mackey functor $\pi(x)(-)$.

"Mackey functor" shape categories capture the essence of genuine *G*-spectra.

Theorem (Guillou-May). *For finite G, the category of genuine G-spectra is Quillen equivalent to the category of "spectrally-enriched Mackey functors of spectra."*

Date: Connections for Women: Algebraic Topology — MSRI — 23 January, 2014.

Using this equivalence, our machine really produces spectrally-enriched Mackey functors of spectra. Now I really owe you the definition of a Mackey functor of permutative categories.

Mackey functors of permutative categories

Definition. A *PC-category* is a "category enriched in permutative categories." This is a (strict) 2-category C with extra structure: $C(X, Y)$ is a permutative category and composition $C(Y, Z) \times C(X, Y) \rightarrow C(X, Z)$ is a bilinear functor. A *PC-functor* is an enriched functor of permutative categories.

Applying a good *K*-theory machine (e.g., Elmendorf-Mandell) to the morphism categories gives a spectrally enriched category KC.

Definition. The *combinatorial Burnside 2-category* E*G* is a PC-category with objects finite *G*-sets and morphisms $\mathcal{E}G(X, Y)$ the permutative category of spans of finite *G*-sets under disjoint union. The usual Burnside category $\mathcal{B}G$ is a quotient of $\mathcal{E}G$.

Definition. Let Perm be the PC-category with objects permutative categories and morphisms $\text{Perm}(\mathcal{A}, \mathcal{B})$ the category of symmetric monoidal functors and strictly unital natural transformations.

Mackey functors of permutative categories are PC-functors $\mathcal{E}G \to \text{Perm}$.

THE MACHINE

The key ingredients are the Guillou-May theorem, a good *K*-theory machine (behaves well with respect to bilinear maps), and a lemma:

Lemma. *There is a spectrally enriched functor* ϕ : **KPerm** \rightarrow **Spec** *that takes a permutative category* A *to the K-theory spectrum of* A*.*

Start with a PC-functor $\mathcal{E}G \to \text{Perm}$, apply K to get $K\mathcal{E}G \to K\text{Perm}$, then postcompose to get $K\&G \rightarrow K\text{Perm} \rightarrow \text{Spec}.$

Example. Eilenberg-MacLane spectra for Mackey functors. Given a Mackey functor $M: BG \to Ab$ we can get a PC-functor $EG \to BG \xrightarrow{M} Ab \to \text{Perm}$.

Example. connective topological *K*-theory

Department of Mathematics, Harvard University,1Oxford Street, Cambridge, MA 02138 *E-mail address*: eriehl@math.harvard.edu