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Background

Let C be a category whose objects are (finite type) geometric
objects over a field k.

Morphisms in C are k-morphisms between these objects.

As an example take C to be the category of (finite type) k
schemes and k morphisms.

Let X 2 C, then ⇡geom

1 (X ) denotes the “geometric”
fundamental group of X , i.e. ⇡1(X ⌦ k̄)
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Background

It is well known that ⇡geom

1 (X ) is a finitely generated profinite
group.

Therefore, ⇡geom

1 (�) is a functor from C to the category of
(topologically) finitely generated profinite groups.

The (outer) automorphisms of this functor form group
denoted by Out(⇡geom

1 (C)).
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Background

If our outer automorphisms satisfy some Galois-style
properties then we have a canonical outer action of Gal(k̄/k)
on ⇡geom

1 (�) which is compatible with morphisms.

This gives a homomorphism

' : Gal(k̄/k) �! Out(⇡geom

1 (C))

which is injective in all the interesting cases.
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Background

Fresse recently showed that, over Q, a profinite version of
Out(⇡geom

1 (C)) is isomorphic to homotopy automorphisms of
D2.

A key component to Fresse’s computation is the development
of a rationalization of an operad.

Theorem (Fresse)

There exists a rationalization of the little 2-disks operad.
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Schematization

For any pointed connected space X , and field k, the
schematization of X , (X ⌦ k)sch, is the “closest a�ne stack”
to X .

The sheaf of groups ⇡1((X ⌦ k)sch, x) is represented by the
proalgebraic completion of the discrete group ⇡1(X , x).

There are functorial isomorphisms
H
n

((X ⌦ k)sch,G
a

) ⇠= H
n

(X , k).

If X is a simply connected finite CW-complex, there exist
functorial isomorphisms ⇡

i

((X ⌦ k)sch, x) ⇠= ⇡
i

(X , x)⌦G
a

.

For a connected nilpotent X and k = Q (respectively k = F
p

)
the object (X ⌦ k)sch is a model for the rational (respectively
p-adic) homotopy type of X .
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Schematization

Fix our ground field k = C.

Let Alg denote commutative, unital C-algebras and SchC be
a�ne schemes.

The geometric spectrum of a commutative algebra

Spec : (Alg)op ! SchC

gives us schemes.

This is an equivalence of categories.

The left adjoint is denoted by O.
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Schematization

To construct (X ⌦ k)sch we make use of a “derived” version of
the functors Spec and O.

We have to replace Alg and SchC
with model categories.

Let Alg� be the category of unital commutative cosimplical
C-algebras.

Alg� is a simplicial monoidal model category with weak
equivalences the quasi-isomorphisms (epimorphisms) of the
associated normalized chain complexes.

Marcy Robertson University of Western Ontario Schematic Homotopy Types of Operads



Schematization

To construct (X ⌦ k)sch we make use of a “derived” version of
the functors Spec and O. We have to replace Alg and SchC
with model categories.

Let Alg� be the category of unital commutative cosimplical
C-algebras.

Alg� is a simplicial monoidal model category with weak
equivalences the quasi-isomorphisms (epimorphisms) of the
associated normalized chain complexes.

Marcy Robertson University of Western Ontario Schematic Homotopy Types of Operads



Schematization

To construct (X ⌦ k)sch we make use of a “derived” version of
the functors Spec and O. We have to replace Alg and SchC
with model categories.

Let Alg� be the category of unital commutative cosimplical
C-algebras.

Alg� is a simplicial monoidal model category with weak
equivalences the quasi-isomorphisms (epimorphisms) of the
associated normalized chain complexes.

Marcy Robertson University of Western Ontario Schematic Homotopy Types of Operads



Schematization

To construct (X ⌦ k)sch we make use of a “derived” version of
the functors Spec and O. We have to replace Alg and SchC
with model categories.

Let Alg� be the category of unital commutative cosimplical
C-algebras.

Alg� is a simplicial monoidal model category with weak
equivalences the quasi-isomorphisms (epimorphisms) of the
associated normalized chain complexes.

Marcy Robertson University of Western Ontario Schematic Homotopy Types of Operads



Schematization

Let sPr⇤(C) denote the category of pointed simplicial

presheaves on Sch↵qcC .

The category of SchC sits inside sPr⇤(C)

sPr⇤(C) has a simplicial, monoidal model category structure.
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Schematization

We define the geometric spectrum of a co-simplicial algebra

Spec : (Alg�C )
op ! sPr⇤(C)

by

The presheaf of n-simplices of Spec(A) is given by

(SpecB) 7! Hom(An,B).

The functor Spec has a left adjoint functor O.
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Schematization

Theorem (Toën)

The functors Spec and O form a Quillen adjoint pair, i.e.

RSpec : Ho(Alg�) � Ho(sPr⇤) : LO

is well defined.
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Schematization

An a�ne stack is an object F in Ho(sPr⇤(C)) isomorphic to
RSpec(A)

Let F be a pointed simplicial presheaf.

The morphism F ! RSpecLO(F ) is universal among
morphisms from F to (equivariant) a�ne stacks. The stack
RSpecLO(F ) is then called an a�nization (schematization)
over C of the stack F and is denoted by (F ⌦ C)uni
((F ⌦ C)sch).
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Schematization

Theorem (Toën)

Any pointed, connected simplicial set (X , x) possesses a
schematization over C.
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Schematization of Operads

An operad is a graded object P = {P(n)}
n�0 together with a

(highly) non-commutative multiplication

P(n) � P(m) �! P(n +m � 1).

A co-operad is a graded object P = {P(n)}
n�0 together with

a non-commutative co-multiplication

P(n +m � 1) �! P(n) � P(m).
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Schematization of Operads

We establish the following:

1 That Op01(sPr⇤) and HopfOp�01 admit a good notion of
homotopy theory.

2 That we have an adjunction

Spec : HopfOp�01 ⌧ Op01 : O

3 That the above adjunction is a Quillen adjunction.

Definition (R)

Given a P = {P(n)}
n�0 2 Op01(sPr⇤), then

RSpecLO(P) = {RSpecLO(P(n))}
n�0 is a schematization of P .
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Schematization of Operads-The Main Di�culty

The functor
O : sPr⇤(C) ! Alg�

is adjoint to Spec

We have a natural product

µ : O(X )⌦ O(Y ) �! O(X ⇥ Y )

which induces the Künneth morphism at the (reduced, sheaf)
cohomology level.

This map is a weak equivalence if X and Y satisfy some
conditions but is not an isomorphism in general.
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So given (co)operad P in sPr⇤ we have a chain of cosimplical
algebra morphisms

O(P(m+ n� 1))
�⇤
k! O(P(m)⇥P(n)) O(P(m))⌦O(P(n))

associated to the cooperad P(m + n � 1)! P(m) � P(n).

This assembles into O(P) = {O(P(n))} with a weak
homotopy comultiplication.

So we must rigidify to get a cooperad structure on O(P).
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Existence of Schematization

Theorem (R)

For the operad of little 2-discs, we get a zig-zag of operad
homomorphisms:

RSpecH⇤(LO(D2))! • • E2.

The map E2 ! RSpecH⇤(LO(E2)) is induced by • E2.

The existence of the map • E2 is equivalent to the
existence of an associator over C.

Drinfeld shows that AssC 6= ;.
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SCHEMATIC HOMOTOPY TYPES OF OPERADS

MARCY ROBERTSON

Introduction

The goal of this talk is to define the words in the title. Let C be a category whose objects
are (finite type) geometric objects over a field k. An example is the category of finite type
schemes over k. For X 2 C then there is a geometric fundamental group ⇡geom

1 (X) which is
⇡1(X⌦k). This ⇡geom

1 defines a functor from C to the category of finitely generated profintie
groups. The outer automorphisms form a group Out(⇡geom

1 (C). Under nice properties we
have a homomorphism

� : Gal(k/k)! Out(⇡geom
1 (C)

which is injective in the interesting cases. This group of outer automorphisms is called the
Grothendieck-Teichmuller group.

I want to generalize a result of Fresse, which shows that over Q, a profinite version
of this Out(⇡geom

1 (C) is isomorphic to the homotopy automorphisms of the little 2-disks
operad D2. A key component is the development of the rationalization of an operad.

Theorem (Fresse). There exists a rationalization of the little 2-disks operad.

Schematization

For any pointed connected space X and field k the schematization of X is (X ⌦ k)sch is
the “closest a�ne stack to X.” The sheaf of groups ⇡1((X ⌦ k)sch) is represented by the pro
algebraic completion of the discrete group ⇡1X. For X connected nilpotent and k = Q (or
Fp), then (X ⌦ k)sch is a model for the rational (or p-adic) homotopy type of X.

For the rest of the talk fix k = C and let Alg denote commutative, unital C-algebras, and
SchC the category of a�ne schemes.

The geometric spectrum of a commutative algebra is a scheme. There is a functor

Spec : Algop ! SchC.
There is a left adjoint O (global sections). I’m going to derive this adjunction using model
categories.

We have Alg�, cosimplicial algebras, a simplicial monoidal model category. Let sPr⇤(C)
denote the category of pointed simplicial presheaves on Sch f f qc

C . The category SchC sits
inside this via the Yoneda embedding. Again sPr⇤(C) is a simplicial monoidal model cat-
egory.

We define the geometric spectrum of a cosimplicial algebra

Spec : (Alg�
C)op ! sPr⇤(C).

Again this has a left adjoint O.

Theorem (Toën). The functors Spec and O form a Quillen adjoint pair. This gives an
adjunction (taking derived functors) between their homotopy categories.
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An a�ne stack is an object F in Ho(sPr⇤(C)) in the image of the derived functor of Spec.
For any pointed simplicial presheaf F, the counit of the derived adjunction is universal
among morphisms of F to (equivariant) a�ne stacks. The stack RSpecLO(F) is then called
the a�neatization.

Theorem (Toën). Any pointed connected simplicial set possesses a schematization over
C.

An operad is a graded object {P(n)}n�0 with a multiplication P(n)�P(m)! P(n+m�1).
A co-operad is a graded object with co-multiplication P(n + m � 1)! P(n) � P(m).

Write Op01 for connected co-operads. We show that Op01(sPr⇤) and HopfOp�
01 admit

a good notion of homotopy theory and there is a O a Spec Quillen adjunction on these
categories of comonoids.

Definition (R). Given P 2 Op01(sPr⇤) then RSpecLOP is a schematization of the operad
P.

The problem is that the left adjoint O is not strong monoidal. The map induced by
Künneth is a weak equivalence under some conditions but not an isomorphism. So we
have to rigidify to get a co-operad structure

Theorem (R). For the operad of little 2-disks, we get a zig-zag of operad homomorphisms:

RSpecH⇤(LO(D2))! • • D2
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