Schematic Homotopy Types of Operads

Marcy Robertson University of Western Ontario

MSRI-Connecting To Women

January 24, 2014

Marcy Robertson University of Western Ontario Schematic Homotopy Types of Operads

- Let C be a category whose objects are (finite type) geometric objects over a field **k**.
- \bullet Morphisms in ${\mathcal C}$ are k-morphisms between these objects.

- Let C be a category whose objects are (finite type) geometric objects over a field **k**.
- \bullet Morphisms in ${\mathcal C}$ are k-morphisms between these objects.
- As an example take C to be the category of (finite type) **k** schemes and **k** morphisms.

- Let C be a category whose objects are (finite type) geometric objects over a field **k**.
- $\bullet\,$ Morphisms in ${\mathcal C}$ are k-morphisms between these objects.
- As an example take C to be the category of (finite type) **k** schemes and **k** morphisms.
- Let X ∈ C, then π₁^{geom}(X) denotes the "geometric" fundamental group of X, i.e. π₁(X ⊗ k̄)

• It is well known that $\pi_1^{geom}(X)$ is a finitely generated profinite group.

- It is well known that $\pi_1^{geom}(X)$ is a finitely generated profinite group.
- Therefore, π₁^{geom}(-) is a functor from C to the category of (topologically) finitely generated profinite groups.

- It is well known that $\pi_1^{geom}(X)$ is a finitely generated profinite group.
- Therefore, π₁^{geom}(-) is a functor from C to the category of (topologically) finitely generated profinite groups.
- The (outer) automorphisms of this functor form group denoted by $\mathbf{Out}(\pi_1^{geom}(\mathcal{C})).$

- If our outer automorphisms satisfy some Galois-style properties then we have a canonical outer action of $\operatorname{Gal}(\bar{\mathbf{k}}/\mathbf{k})$ on $\pi_1^{geom}(-)$ which is compatible with morphisms.
- This gives a homomorphism

$$\varphi : \operatorname{Gal}(\bar{\mathbf{k}}/\mathbf{k}) \longrightarrow \operatorname{Out}(\pi_1^{geom}(\mathcal{C}))$$

which is injective in all the interesting cases.

 Fresse recently showed that, over Q, a profinite version of Out(π₁^{geom}(C)) is isomorphic to homotopy automorphisms of D₂.

- Fresse recently showed that, over Q, a profinite version of Out(π₁^{geom}(C)) is isomorphic to homotopy automorphisms of D₂.
- A key component to Fresse's computation is the development of a **rationalization of an operad**.

Theorem (Fresse)

There exists a rationalization of the little 2-disks operad.

Schematization

 For any pointed connected space X, and field k, the schematization of X, (X ⊗ k)^{sch}, is the "closest affine stack" to X.

- For any pointed connected space X, and field k, the schematization of X, (X ⊗ k)^{sch}, is the "closest affine stack" to X.
- The sheaf of groups π₁((X ⊗ k)^{sch}, x) is represented by the proalgebraic completion of the discrete group π₁(X, x).
- There are functorial isomorphisms $H_n((X \otimes \mathbf{k})^{sch}, \mathbb{G}_a) \cong H_n(X, \mathbf{k}).$
- If X is a simply connected finite CW-complex, there exist functorial isomorphisms $\pi_i((X \otimes \mathbf{k})^{sch}, x) \cong \pi_i(X, x) \otimes \mathbb{G}_a$.
- For a connected nilpotent X and k = Q (respectively k = F_p) the object (X ⊗ k)^{sch} is a model for the rational (respectively p-adic) homotopy type of X.

• Fix our ground field $\mathbf{k} = \mathbb{C}$.

- Fix our ground field $\mathbf{k} = \mathbb{C}$.
- \bullet Let Alg denote commutative, unital $\mathbb{C}\text{-algebras}$ and $Sch_{\mathbb{C}}$ be affine schemes.

- Fix our ground field $\mathbf{k} = \mathbb{C}$.
- Let Alg denote commutative, unital $\mathbb{C}\text{-algebras}$ and $Sch_{\mathbb{C}}$ be affine schemes.
- The geometric spectrum of a commutative algebra

$$\operatorname{Spec}: (\operatorname{Alg})^{op} \to \operatorname{Sch}_{\mathbb{C}}$$

gives us schemes.

- This is an equivalence of categories.
- The left adjoint is denoted by O.

 To construct (X ⊗ k)^{sch} we make use of a "derived" version of the functors Spec and O. To construct (X ⊗ k)^{sch} we make use of a "derived" version of the functors Spec and O. We have to replace Alg and Sch_C with model categories.

- To construct (X ⊗ k)^{sch} we make use of a "derived" version of the functors Spec and O. We have to replace Alg and Sch_C with model categories.
- Let Alg^Δ be the category of unital commutative cosimplical $\mathbb{C}\text{-algebras}.$

- To construct (X ⊗ k)^{sch} we make use of a "derived" version of the functors Spec and O. We have to replace Alg and Sch_C with model categories.
- Let Alg^Δ be the category of unital commutative cosimplical $\mathbb{C}\text{-algebras}.$
- Alg^Δ is a simplicial monoidal model category with weak equivalences the quasi-isomorphisms (epimorphisms) of the associated normalized chain complexes.

 Let sPr_{*}(ℂ) denote the category of pointed simplicial presheaves on Sch^{ffqc}.

- Let $sPr_*(\mathbb{C})$ denote the category of pointed simplicial presheaves on $Sch_{\mathbb{C}}^{ffqc}$.
- The category of $\operatorname{Sch}_{\mathbb{C}}$ sits inside $\operatorname{sPr}_*(\mathbb{C})$

- Let $sPr_*(\mathbb{C})$ denote the category of pointed simplicial presheaves on $Sch_{\mathbb{C}}^{ffqc}$.
- The category of $\operatorname{Sch}_{\mathbb{C}}$ sits inside $\operatorname{sPr}_*(\mathbb{C})$
- $\bullet \ {\rm sPr}_*({\mathbb C})$ has a simplicial, monoidal model category structure.

• We define the geometric spectrum of a co-simplicial algebra

$$\operatorname{Spec}:(\operatorname{Alg}^{\Delta}_{\mathbb{C}})^{\textit{op}}\to\operatorname{sPr}_*(\mathbb{C})$$

by

• The presheaf of *n*-simplices of Spec(A) is given by

 $(\operatorname{Spec} B) \mapsto \underline{Hom}(A^n, B).$

• The functor Spec has a left adjoint functor O.

• We define the geometric spectrum of a co-simplicial algebra

$$\operatorname{Spec}:(\operatorname{Alg}^{\Delta}_{\mathbb{C}})^{\textit{op}}\to\operatorname{sPr}_*(\mathbb{C})$$

by

• The presheaf of *n*-simplices of Spec(A) is given by

 $(\operatorname{Spec} B) \mapsto \underline{Hom}(A^n, B).$

• The functor Spec has a left adjoint functor O.

Theorem (Toën)

The functors Spec and O form a Quillen adjoint pair, i.e.

 $\mathbb{R}Spec: Ho(Alg^{\Delta}) \rightleftharpoons Ho(sPr_*): \mathbb{L}O$

is well defined.

• An affine stack is an object F in $Ho(sPr_*(\mathbb{C}))$ isomorphic to $\mathbb{R}Spec(A)$

- An affine stack is an object F in Ho(sPr_{*}(C)) isomorphic to $\mathbb{R}Spec(A)$
- Let F be a pointed simplicial presheaf.
- The morphism F → ℝSpecLO(F) is universal among morphisms from F to (equivariant) affine stacks. The stack ℝSpecLO(F) is then called an affinization (schematization) over C of the stack F and is denoted by (F ⊗ C)^{uni} ((F ⊗ C)^{sch}).

Theorem (Toën)

Any pointed, connected simplicial set (X, x) possesses a schematization over \mathbb{C} .

An operad is a graded object P = {P(n)}_{n≥0} together with a (highly) non-commutative multiplication

$$P(n) \circ P(m) \longrightarrow P(n+m-1).$$

An operad is a graded object P = {P(n)}_{n≥0} together with a (highly) non-commutative multiplication

$$P(n) \circ P(m) \longrightarrow P(n+m-1).$$

 A co-operad is a graded object P = {P(n)}_{n≥0} together with a non-commutative co-multiplication

$$P(n+m-1) \longrightarrow P(n) \circ P(m).$$

• That $Op_{01}(sPr_*)$ and $HopfOp_{01}^{\Delta}$ admit a good notion of homotopy theory.

- That $Op_{01}(sPr_*)$ and $HopfOp_{01}^{\Delta}$ admit a good notion of homotopy theory.
- Part an adjunction

 $Spec : HopfOp_{01}^{\Delta} \leftrightarrows Op_{01} : O$

- Solution That Op₀₁(sPr_{*}) and HopfOp[∆]₀₁ admit a good notion of homotopy theory.
- Part an adjunction

$$Spec : HopfOp_{01}^{\Delta} \leftrightarrows Op_{01} : O$$

③ That the above adjunction is a Quillen adjunction.

- That Op₀₁(sPr_{*}) and HopfOp^Δ₀₁ admit a good notion of homotopy theory.
- Part an adjunction

$$Spec : HopfOp_{01}^{\Delta} \leftrightarrows Op_{01} : O$$

③ That the above adjunction is a Quillen adjunction.

Definition (R)

Given a $P = \{P(n)\}_{n \ge 0} \in Op_{01}(\operatorname{sPr}_*)$, then $\mathbb{R}Spec\mathbb{L}O(P) = \{\mathbb{R}Spec\mathbb{L}O(P(n))\}_{n \ge 0}$ is a schematization of P.

Schematization of Operads-The Main Difficulty

The functor

$$O: \mathrm{sPr}_*(\mathbb{C}) \to \mathrm{Alg}^\Delta$$

is adjoint to Spec

• We have a natural product

$$\mu: O(X)\otimes O(Y) \longrightarrow O(X\times Y)$$

which induces the Künneth morphism at the (reduced, sheaf) cohomology level.

• This map is a weak equivalence if X and Y satisfy some conditions but is **not** an isomorphism in general.

• So given (co)operad *P* in sPr_{*} we have a chain of cosimplical algebra morphisms

$$O(P(m+n-1)) \stackrel{\circ_k^*}{\to} O(P(m) \times P(n)) \leftarrow O(P(m)) \otimes O(P(n))$$

associated to the cooperad $P(m+n-1) \to P(m) \circ P(n)$.

- This assembles into $O(P) = \{O(P(n))\}$ with a weak homotopy comultiplication.
- So we must rigidify to get a cooperad structure on O(P).

For the operad of little 2-discs, we get a zig-zag of operad homomorphisms:

$$\mathbb{R}SpecH^*(\mathbb{L}O(D_2)) o ullet \leftarrow ullet \in E_2.$$

For the operad of little 2-discs, we get a zig-zag of operad homomorphisms:

$$\mathbb{R}SpecH^*(\mathbb{L}O(D_2)) o ullet \leftarrow ullet \in E_2.$$

• The map $E_2 \to \mathbb{R} \text{Spec} H^*(\mathbb{L} O(E_2))$ is induced by • $\leftarrow E_2$.

For the operad of little 2-discs, we get a zig-zag of operad homomorphisms:

$\mathbb{R}SpecH^*(\mathbb{L}O(D_2)) \to \bullet \leftarrow \bullet \leftarrow E_2.$

- The map $E_2 \to \mathbb{R} \mathrm{Spec} H^*(\mathbb{L} O(E_2))$ is induced by $\leftarrow E_2$.

For the operad of little 2-discs, we get a zig-zag of operad homomorphisms:

$\mathbb{R}SpecH^*(\mathbb{L}O(D_2)) \to \bullet \leftarrow \bullet \leftarrow E_2.$

- The map $E_2 \to \mathbb{R} \mathrm{Spec} H^*(\mathbb{L} O(E_2))$ is induced by $\leftarrow E_2$.
- The existence of the map ← E₂ is equivalent to the existence of an associator over C.
- Drinfeld shows that $Ass_{\mathbb{C}} \neq \emptyset$.

SCHEMATIC HOMOTOPY TYPES OF OPERADS

MARCY ROBERTSON

INTRODUCTION

The goal of this talk is to define the words in the title. Let *C* be a category whose objects are (finite type) geometric objects over a field k. An example is the category of finite type schemes over k. For $X \in C$ then there is a geometric fundamental group $\pi_1^{\text{geom}}(X)$ which is $\pi_1(X \otimes \Bbbk)$. This π_1^{geom} defines a functor from *C* to the category of finitely generated profintie groups. The outer automorphisms form a group $\text{Out}(\pi_1^{\text{geom}}(C))$. Under nice properties we have a homomorphism

$$\phi \colon \operatorname{Gal}(\Bbbk/\Bbbk) \to \operatorname{Out}(\pi_1^{\operatorname{geom}}(C))$$

which is injective in the interesting cases. This group of outer automorphisms is called the *Grothendieck-Teichmuller group*.

I want to generalize a result of Fresse, which shows that over \mathbb{Q} , a profinite version of this $\operatorname{Out}(\pi_1^{\text{geom}}(C))$ is isomorphic to the homotopy automorphisms of the little 2-disks operad D_2 . A key component is the development of the *rationalization of an operad*.

Theorem (Fresse). There exists a rationalization of the little 2-disks operad.

SCHEMATIZATION

For any pointed connected space *X* and field \Bbbk the *schematization* of *X* is $(X \otimes \Bbbk)^{\text{sch}}$ is the "closest affine stack to *X*." The sheaf of groups $\pi_1((X \otimes \Bbbk)^{\text{sch}})$ is represented by the pro algebraic completion of the discrete group $\pi_1 X$. For *X* connected nilpotent and $\Bbbk = \mathbb{Q}$ (or \mathbb{F}_p), then $(X \otimes \Bbbk)^{\text{sch}}$ is a model for the rational (or *p*-adic) homotopy type of *X*.

For the rest of the talk fix $\Bbbk = \mathbb{C}$ and let **Alg** denote commutative, unital \mathbb{C} -algebras, and **Sch**_C the category of affine schemes.

The geometric spectrum of a commutative algebra is a scheme. There is a functor

Spec:
$$Alg^{op} \rightarrow Sch_{\mathbb{C}}$$
.

There is a left adjoint O (global sections). I'm going to derive this adjunction using model categories.

We have $\operatorname{Alg}^{\mathbb{A}}$, cosimplicial algebras, a simplicial monoidal model category. Let $\operatorname{sPr}_{*}(\mathbb{C})$ denote the category of pointed simplicial presheaves on $\operatorname{Sch}_{\mathbb{C}}^{ffqc}$. The category $\operatorname{Sch}_{\mathbb{C}}$ sits inside this via the Yoneda embedding. Again $\operatorname{sPr}_{*}(\mathbb{C})$ is a simplicial monoidal model category.

We define the geometric spectrum of a cosimplicial algebra

Spec:
$$(\operatorname{Alg}_{\mathbb{C}}^{\mathbb{A}})^{\operatorname{op}} \to \operatorname{sPr}_{*}(\mathbb{C}).$$

Again this has a left adjoint O.

Theorem (Toën). *The functors* Spec and O form a Quillen adjoint pair. This gives an adjunction (taking derived functors) between their homotopy categories.

Date: Connections for Women: Algebraic Topology - MSRI - 24 January, 2014.

MARCY ROBERTSON

An *affine stack* is an object F in Ho(**sPr**_{*}(\mathbb{C})) in the image of the derived functor of Spec. For any pointed simplicial presheaf F, the counit of the derived adjunction is universal among morphisms of F to (equivariant) affine stacks. The stack \mathbb{R} Spec $\mathbb{L}O(F)$ is then called the *affineatization*.

Theorem (Toën). Any pointed connected simplicial set possesses a schematization over \mathbb{C} .

An *operad* is a graded object $\{P(n)\}_{n\geq 0}$ with a multiplication $P(n) \circ P(m) \rightarrow P(n+m-1)$. A *co-operad* is a graded object with co-multiplication $P(n+m-1) \rightarrow P(n) \circ P(m)$.

Write \mathbf{Op}_{01} for connected co-operads. We show that $\mathbf{Op}_{01}(\mathbf{sPr}_*)$ and $\mathbf{HopfOp}_{01}^{\mathbb{A}}$ admit a good notion of homotopy theory and there is a $O \dashv$ Spec Quillen adjunction on these categories of comonoids.

Definition (R). Given $P \in \mathbf{Op}_{01}(\mathbf{sPr}_*)$ then $\mathbb{R}Spec\mathbb{L}OP$ is a schematization of the operad *P*.

The problem is that the left adjoint O is not strong monoidal. The map induced by Künneth is a weak equivalence under some conditions but not an isomorphism. So we have to rigidify to get a co-operad structure

Theorem (R). *For the operad of little 2-disks, we get a zig-zag of operad homomorphisms:*

 $\mathbb{R}\text{Spec}H^*(\mathbb{L}O(D_2)) \to \bullet \leftarrow \bullet \leftarrow D_2$

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, 1 OXFORD STREET, CAMBRIDGE, MA 02138 *E-mail address*: eriehl@math.harvard.edu

2