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The name of the game

Realizability problems: Given an algebraic structure A and given an
homotopy invariant /(—), find a space X such that /(X) = A.
Example 1 (Moore spaces)

® G abstract group

e H.(—,Z) homology concentrated on a degree k > 2.
Is there X such that Hy(X,Z) = G?

Example 2 (Steenrod’'60, G-Moore spaces problem)

® G group acting on a finitely generated Z-module M.
e H.(—,Z) homology concentrated on a degree k > 2

Is there a G-space X such that H,(X,Z) = M as ZG-modules?
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Our Problem

Let £(X)= group of homotopy classes of self homotopy-equivalences of X

abstract group G J

|l Realization

G = E(X) for some X? J
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> Appears recurrently in surveys and lists of open problems.
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- M. Arkowitz, The group of self~homotopy equivalences-a survey, in: Groups of
self-equivalences and related topics, LNM., Springer, 1425 (1990)

- M. Arkowitz, Problems on self-homotopy equivalences, in: Groups of homotopy

self-equivalences and related topics, Contemp. Math., 274 (2001)
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Overview

> Appears recurrently in surveys and lists of open problems.

> The only general known procedure to tackle it is when G = Aut(n), 7 a
group. Then X = K(m, n) since £(X) = Aut(r).

> Zp = E(X) for some 1-connected rational space X (Arkowitz-Lupton’00).

Which finite groups are realizable by simply connected rational spaces?
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New perspective

Idea. Introduce graphs on the picture:
groups — graphs
graphs — CDGA's
CDGA's — rational homotopy types

Theorem (Frucht'39, Realizability in Graphs)

Every finite group G is realizable by a finite, connected and simple graph G.
That is G = Aut(9).

Example (G = Zs3 ; Cayley graph — simple graph)
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New perspective

Idea. Introduce graphs on the picture:
groups — graphs
graphs — CDGA's
CDGA's — rational homotopy types

Theorem (Frucht'39, Realizability in Graphs)

Every finite group G is realizable by a finite, connected and simple graph G.
That is G = Aut(9).

Our problem (revisited)

Let G = (V, E) be a finite, simple, connected graph (with more than one
vertex). Does there exist a space X such that Aut(G) = £(X)?
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Techniques

> First, restrict ourselves Graphs, C Graph.
e G=(V,E), |V|>1
e f:G; — Gy such that [v,w] edge of G iff [f(v), f(w)] edge of G,
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> First, restrict ourselves Graphs, C Graph.
> Then, construct

A : Graphg, — CDGA
(based on an example of Arkowitz-Lupton)
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> First, restrict ourselves Graphs, C Graph.
> Then, construct
A : Graphg, — CDGA

(A97 d) = (/\(X17X27Y17)’2a)’3a2) ®A(XV7ZV|V S V)7 d)

e generators in dimensions: |x1| = 8, |x2| = 10, |y1]| = 33, |y2| = 35,
|y3| =37, |Z| =119, |Xv| =40, |Zv| =119,
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> First, restrict ourselves Graphs, C Graph.
> Then, construct
A : Graphg, — CDGA

(A97 d) = (/\(X17X27}/17)’2a)’3a2) ®A(XV7ZV|V S V)7 d)

e generators in dimensions: |x1| = 8, |x2| = 10, |y1]| = 33, |y2| = 35,
|y3| =37, |Z| =119, |Xv| =40, |Zv| =119,

o differentials:

dxa)= 0 dys) = x

dx)= 0 dix,)= 0

dy1) = X13X2 d(z) = )/1)/2XfX22 - Y1Y3Xf’X2 + )/2)/3X16 + X115 + X§2
dy2) = x¢x3  d(z)= X+ 2 wjee XXwXs
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Techniques

> First, restrict ourselves Graphs, C Graph.
> Then, construct
A : Graphg, — CDGA

(Ag7 d) = (/\(X17X27}/17)’2a)’3a2) ® /\(XV,ZV|V S V)7 d)

e generators in dimensions: |x1| = 8, |x2| = 10, |y1]| = 33, |y2| = 35,
|y3| =37, |Z| =119, |Xv| =40, |Zv| =119,

o differentials:

d(x)= 0 d(ys) = xx3
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e A s contravariant (morphisms are as expected).
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Techniques

> First, restrict ourselves Graphs, C Graph.
> Then, construct
A : Graphg — CDGA
(Ag7 d) = (A(X17 X2, Y1, Y2, Y3, Z) ® /\(XV7 ZV|V € V)7 d)
Homotopically Rigid Encodes G

e generators in dimensions: |x1| = 8, |x2| = 10, |y1| = 33, |y2| = 35,
|y3| = 37a |Z| = 1197 |Xv| - 407 |Zv| = 1197

o differentials:

d(x)= 0 d(ys) = xx3

dx)= 0 dix,)= 0

dy1) = X13X2 d(z) = )/1)/2XfX22 — y1y3xixe + )/2)/3X16 + X115 + X212
dly2) = xpx3  d(z) = X} + 20 e XXwXs

e A is contravariant (morphisms are as expected).
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Techniques

> First, restrict ourselves Graphs, C Graph.
> Then, construct
A : Graphg — CDGA
(Ag7 d) = (A(X17 X2, Y1, Y2, Y3, Z) ® /\(XV7 ZV|V € V)7 d)
Homotopically Rigid Encodes G

e generators in dimensions: |x1| = 8, |x2| = 10, |y1| = 33, |y2| = 35,
|y3| = 37a |Z| = 1197 |Xv| - 407 |Zv| = 1197

o differentials:

d(x)= 0 d(ys) = xx3

dx)= 0 dix,)= 0

dy)) = xix  d(z) = yexix3 — yiysxixe + yaysxt + xi° + x3°
dly2) = xix3  d(z) = X+ 20 wee Xoxw(Ud + u2x3), ur, up € QF

e A is contravariant (morphisms are as expected).
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Let G, Ag defined as previously.
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Results

Theorem (C.-Viruel)
Let G, Ag defined as previously. Then:

e Ag is an elliptic algebra (hence Poincaré duality) of formal dimension
d =208 + 80| V.

® |et Xg the rational elliptic 1-connected space whose Sullivan minimal
model is Ag. Then [Xg, Xg] = {fo. fi} UAut(G).

Theorem (C.-Viruel)

Every finite group G is realized by infinitely many (non homotopically
equivalent) rational elliptic spaces X. That is, G = £(X). Moreover, X can
be chosen to be the rationalization of an inflexible manifold.

What happens if G acts on a Z-module M?
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e Algebraic structure (G, M)

G is a group, M is a finitely generated ZG-module
* Homotopy invariant (£(—), mx(—))

k(=) is a ZE(—)-module
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How to play
e Algebraic structure (G, M)
G is a group, M is a finitely generated ZG-module

* Homotopy invariant (£(—), mx(—))
k(=) is a ZE(—)-module

Our extended problem (realizability of actions)

Is there a finite Postnikov piece X such that the ZG-module M is
isomorphic to the ZE(X)-module m,(X), for some k > 27
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- require X to be a Postnikov piece. If X = K(M, k) then G = £(X) = Aut(M) (1)
- ask &(X) to act trivially on m;(X) for i # k
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How to play

e Algebraic structure (G, V)
G is a group, V is a finitely generated QG-module

* Homotopy invariant (£(—), mx(—))
k(=) is a Q€(—)-module

Our extended problem (realizability of actions)
Is there a finite Postnikov piece X such that the QG-module V is

isomorphic to the Q&(X)-module 74 (X), for some k > 2?7

> It is a "dual” of the Steenrod problem:

- do not ask for a G-space X but G = £(X)

- require X to be a Postnikov piece. If X = K(M, k) then G = £(X) = Aut(M) (1)
- ask &(X) to act trivially on m;(X) for i # k

> It implies realizability of groups.
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e The field of fractions Q(V) is a Galois extension of Q(V)¢ with Galois
group G.
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Realizability of actions: techniques

Idea. Introduce Invariant theory on the picture.

e G actson V = G acts on Q[V] (ring of polynomial functions)
for g € G, pcQ[V], (gp)(v) = p(g™'v).
G-invariant function: p € Q[V] such that for all g € G, gp = p.

Invariant ring Q[V]€: all the G- invariant functions in Q[V]

(Hilbert, Noether, ...) If G is finite and V is a faithful Q G-module, then

e The field of fractions Q(V) is a Galois extension of Q(V)¢ with Galois
group G.

e Q[V]€ is finitely generated.
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Realizability of actions: techniques

Corollary (Characterization of finite G < GL(V))
There exists py, ..., pr € Q[V] such that, for f € GL(V)

feG ifandonlyif fp=p;, i=1,...,r.
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Corollary (Characterization of finite G < GL(V))
There exists py, ..., pr € Q[V] such that, for f € GL(V)

feG ifandonlyif fp=p;, i=1,...,r.

we modify those algebraic forms

Lemma
There exist algebraic forms qo, g1, . .. g, € Q[V]¢ such that:
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Corollary (Characterization of finite G < GL(V))
There exists py, ..., pr € Q[V] such that, for f € GL(V)

feG ifandonlyif fp=p;, i=1,...,r.

we modify those algebraic forms
Lemma
There exist algebraic forms qo, g1, . .. g, € Q[V]¢ such that:

N
° qo = Z)\jvf, for a good choice of basis of V* (N = dimgV/, A; # 0,V)).
1
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Corollary (Characterization of finite G < GL(V))
There exists py, ..., pr € Q[V] such that, for f € GL(V)

feG ifandonlyif fp=p;, i=1,...,r.

we modify those algebraic forms

Lemma
There exist algebraic forms qo, g1, . .. g, € Q[V]¢ such that:

N
° qo = Z)\jvf, for a good choice of basis of V* (N = dimgV/, A; # 0,V)).
1

e deg(q;) < deg(qit1) for all i.
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Realizability of actions: techniques

Corollary (Characterization of finite G < GL(V))
There exists py, ..., pr € Q[V] such that, for f € GL(V)

feG ifandonlyif fp=p;, i=1,...,r.

we modify those algebraic forms

Lemma
There exist algebraic forms qo, g1, . .. g, € Q[V]¢ such that:

N
° qo = Z)\jvf, for a good choice of basis of V* (N = dimgV/, A; # 0,V)).
1

e deg(q;) < deg(qit1) for all i.
e For f € GL(V), f € G if and only if fg; = q;, for all i. Therefore

G = O(qO, qi,-- -, qr)

Realizability of G-modules 13 /20
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Proof:
> For an arbitrary basis of V*, consider the form: py = Zszl Wj2, and
transform it on a G-invariant (and definite positive) form by:

go = ngo G finite
geG
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> Therefore, for a basis that we fix {vi,..., vy} C V*

qo = Z)\jvf
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Proof:
> For an arbitrary basis of V*, consider the form: py = Zszl Wj2, and
transform it on a G-invariant (and definite positive) form by:

go = ngo G finite
geG

> Therefore, for a basis that we fix {vi,..., vy} C V*

Go = Z)\jvf
J

o> Define recursively, using previous forms {p;}'_;: {qi = gi_1pi}i_;.
It is clear that deg(q;) < deg(gi+1) and g; € Q[V]°.

> {qo, ..., q,} also characterize G (by recursivity and using that Q[V] is an

integral domain).
O
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Proof:
> For an arbitrary basis of V*, consider the form: py = Zszl Wj2, and
transform it on a G-invariant (and definite positive) form by:

go = ngo G finite
geG

> Therefore, for a basis that we fix {vi,..., vy} C V*

do =D AV}
J

o> Define recursively, using previous forms {p;}'_;: {qi = gi_1pi}i_;.
It is clear that deg(q;) < deg(gi+1) and g; € Q[V]°.

> {qo, ..., q,} also characterize G (by recursivity and using that Q[V] is an

integral domain).
O

Fix an integer n such that deg(q,) < 2n+ 1 and define
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Realizability of actions: result
Mn = (/\(X17X2,}’17}’27}/372a‘/j |J: 1aaN)ad>

degx; = 8,

deg x; = 10,
degys = 33,
degy> = 35,
degys = 37,
degv; = 40,

deg z = 80n + 39,

d(x1)=0
d(x) =0
d(y1) = XfX2
d(y2) = x{3
d(ys) = x1x3
d(vj) =0

r
d(z) = Z q,.X110”+5_5deE(q:') + qO(XIIOn—S + X28n—4)
i=1

10(n—1
+ 32D (yxE — yiysxdxo + yaysx?)

+ X110n+5 + X28n+4-
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Realizability of actions: result
Mn = (/\(X17X2,}’17}’27}/37Za Vj |J = 1a R N)a d)

degx; =8, d(x1)=0
deg x, = 10, d(x) =0
degys = 33, d(y1) = xpx
degy> = 35, d(y2) = x5
degy; = 37, d(ys) = x5
deg v; = 40, d(v;)=0

degz =800 +30, d(z) =) quq" T I go(0 )
i=1
10(n—1
+x (n )(y1y2Xfx22 — y1y3xix2 + Yayaxy)

+ X110n+5 + X28n+4-

Codifies the G action.
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Realizability of actions: result

Theorem (C.-Viruel)

Let G be a finite group, and V a finitely generated faithful Q G-module.
Then, there exists infinitely many (non homotopically equivalent) Postnikov
pieces X such that, for some k > 2,

(G, V) = (E(X), mX).
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Question

Both “Graphs” and “Ring of Invariants” constructions are based on the
Arkowitz-Lupton homotopically rigid algebra:

degx; = 8,

deg x» = 10,
degyr = 33,
degy> = 35,
deg y; = 37,
deg z =119,

M= (/\(X17X2,)/17}/27}/3a2)’d>

d(x1) =0
d(x) =0
d(yn) = X1X2
d(y2) = 1X2
d(y3) =
d(z) = y1yoxi{xg — y1ysxixe + yaysxy

15 12
+ X717+ X",

Are there other possible algebras that can be used?
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Answer
Fix an even integer k > 4, and define

Mk - (A(XI,XZ,y17y27y3vz)a d)

degx; =5k — 2, d(x1) =0

deg x, = 6k — 2, d(x) =

degy; =21k — 9, d(y1) = X2 xo

degy, = 22k — 9, d(yo) = X x2

degys =23k — 9, d(ys) = x1x3

degz = 15k* — 11k +1, d(z)= x13k_12(x12y2y3 — X1X0Y1Y3 + X3 y1y2)

bk—2 5k—2

2 2
+Xx 0 X



Answer
Fix an even integer k > 4, and define

Mk - (A(XI,XZ,y17y27y3vz)a d)

degx; =5k — 2, d(x1) =0

degx; = 6k — 2, d(x) =

degy; =21k — 9, d(y1) = X2 xo

degy, = 22k — 9, d(yo) = X x2

degys =23k — 9, d(ys) = x1x3

degz = 15k* — 11k +1, d(z)= x13k_12(x12y2y3 — X1X0Y1Y3 + X3 y1y2)

bk—2 5k—2

+x7 Xt
(C.-Viruel) [My, M,] = {0,1}.

Yes, there are infinitely many highly connected homotopically rigid algebras.
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Thank you!

- C.—Viruel, Every finite group is the group of self-homotopy equivalences of an elliptic
space. To appear in Acta Mathematica. (arXiv:1106.1087).

- C.—Viruel, Faithful actions on Differential Graded Algebras and the Group Isomorphism
Problem.To appear in Q. J. Math. (DOI: 10.1093/qmath/hat052).

- C.—Viruel, Realizability of G-modules: on a dual of a Steenrod problem. Preprint.
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REALIZABILITY OF G-MODULES: ON A DUAL OF A STEENROD
PROBLEM

CRISTINA COSTOYA

Joint with Antonio Viruel.
Realizability problems: Given an algebra structure A and given a homotopy invariant
I(—), find a space X such that I(X) = A.

Example (Moore spaces). G abstract group, H.(—, Z) homology concentrationed on a de-
gree k > 2, is there X such that Hy(X,Z) = G?

Example (Steenrod). G group acting on a finitely generated Z-module M. Is there a G-
space X such that Hy(X,Z) = M?

Our problem: let £(X) be the group of homotopy classes of self homotopy equivalences
of X. For an abstract group G, is there a space X so that &(X) = G? There is no known
general procedure to solve this problem. Only a few cases: G = Aut(xr) for a group 7 (then
X = K(m, n)).

Q. Which finite groups are realizable by simply connected rational spaces?

Note there is a simply connected space X with &(X) = Z/2.

NEW PERSPECTIVE

We’ll introduce graphs into the picture and move from groups to graphs, graphs to
CDGAs, and CDGAs to rational homotopy types.

Theorem (Frucht °39). Every finite group G is realizable by a finite, connected, simple
graph G with G = Aut(G).

Example. For G = Z/3, replace the Cayley graph by a simple (non-directed) graph.

The problem, revisited. Our problem is now for G a finite, connected, simple graph in
place of the group G above.

Techniques. First, restrict to the category Graph ,,UGraph of graphs and full monomor-
phisms. Then construct a functor A: Graph) — CDGA with notation G — Ag.

REsurrs

Theorem (C-Viruel). For G a graph, Ag is an elliptic algebra (hence Poincaré duality).
Let Xg be the rational elliptic 1-connected space whose Sullivan minimal model is Ag.

Then [Xg, Xg] = {fo, f]} U Aut(g)

Theorem (C-Viruel). Every finite group G is realized by infinitely many (non homotopi-
cally equivalent) rational elliptic spaces X. That is G = &X). Moreover, X can be chosen
to be the rationalization of an inflexible manifold.
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2 CRISTINA COSTOYA

REALIZING ACTIONS

Now what if the group is acting on a Z-module M? Can we realize actions?

The algebraic structure is now (G, M) where G is a group and M is a finitely generated
ZG-module. The homotopy invariant is (&(—), mx(—)) where 7, is a ZE(—)-module.

Our extended problem: is there a finite Postnikov piece X such that the ZG-module M
is isomorphic to the Z&E(X)-module 7 (X) for some k > 2.

This is a “dual” of the Steenrod problem. We do not ask for a G-space X but G = &(X).
We require X to be a Postnikov piece. If X = K(M, k), then G = E(X) = Aut(M). We ask
&E(X) to act trivially on m; for i # k.

This is a harder problem that implies the realizability of groups.

Techniques. The idea is to introduce invariant theory into the picture. If G acts on V then
G acts on Q[ V], the ring of polynomial functions, by conjugation. A G-invariant function
is a fixed point for this action.

Some results of Hilbert-Noether: if G is finite and V is a faithful QG-module, then the
field of fractions Q(V) is a Galois extension of Q(V)°.

Corollary (characterization of finite G € GL(V)). There exists py,...,p, € Q[V] such
that for f € GL(V), f € G if and only if fp; = p; for all i.

We modify these algebraic forms:
Lemma. There exists algebraic forms qq, .. .,q, € Q[V1° satisfying conditions.
Fix an integer n such that deg(g,) < 2n + 1 and define a Sullivan minimal model M,,.

Theorem (C-Viruel). Let G be a finite group, V a finitely generated faithful QG-module.
Then there exist infinitely many (non homotopically equivalent) Postnikov pieces X that
realize the action.

Note: there are three joint papers C-Viruel, a preprint and two in press, that have more
details.
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