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The name of the game

Realizability problems: Given an algebraic structure A and given an
homotopy invariant I (�), find a space X such that I (X ) ⇠= A.

Example 1 (Moore spaces)

• G abstract group

• H⇤(�,Z) homology concentrated on a degree k � 2.

Is there X such that Hk(X ,Z) ⇠= G?

Example 2 (Steenrod’60, G -Moore spaces problem)

• G group acting on a finitely generated Z-module M.

• H⇤(�,Z) homology concentrated on a degree k � 2

Is there a G -space X such that Hk(X ,Z) ⇠= M as ZG -modules?
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Our Problem

Let E(X )= group of homotopy classes of self homotopy-equivalences of X

abstract group G

+ Realization

G ⇠= E(X ) for some X?
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Overview

B Appears recurrently in surveys and lists of open problems.

B Z
2

⇠= E(X ) for some 1-connected rational space X (Arkowitz-Lupton’00).

Which finite groups are realizable by simply connected rational spaces?
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New perspective

Idea. Introduce graphs on the picture:

groups �! graphs

graphs �! CDGA’s

CDGA’s �! rational homotopy types

Theorem (Frucht’39, Realizability in Graphs)
Every finite group G is realizable by a finite, connected and simple graph G.
That is G ⇠= Aut(G).
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Theorem (Frucht’39, Realizability in Graphs)
Every finite group G is realizable by a finite, connected and simple graph G.
That is G ⇠= Aut(G).

Example (G = Z
3

; Cayley graph ! simple graph)
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New perspective

Idea. Introduce graphs on the picture:

groups �! graphs

graphs �! CDGA’s

CDGA’s �! rational homotopy types

Theorem (Frucht’39, Realizability in Graphs)
Every finite group G is realizable by a finite, connected and simple graph G.
That is G ⇠= Aut(G).

Our problem (revisited)
Let G = (V ,E ) be a finite, simple, connected graph (with more than one
vertex). Does there exist a space X such that Aut(G) ⇠= E(X )?
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Techniques
B First, restrict ourselves Graphfm ⇢ Graph.

• generators in dimensions: |x
1

| = 8, |x
2

| = 10, |y
1

| = 33, |y
2

| = 35,
|y

3

| = 37, |z | = 119, |xv | = 40, |zv | = 119,

• di↵erentials:

d(x
1

) = 0
d(x

2

) = 0
d(y

1

) = x3
1

x
2

d(y
2

) = x2
1

x2
2

d(y
3

) = x
1

x3
2

d(xv ) = 0
d(z) = y

1

y
2

x4
1

x2
2

� y
1

y
3

x5
1

x
2

+ y
2

y
3

x6
1

+ x15
1

+ x12
2

d(zv ) = x3v +
P

[v ,w ]2E xvxwx4
2

• A is contravariant (morphisms are as expected).
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Results

Theorem (C.-Viruel)
Let G, AG defined as previously.

Then:

• AG is an elliptic algebra (hence Poincaré duality) of formal dimension
d = 208 + 80|V |.

• Let XG the rational elliptic 1-connected space whose Sullivan minimal
model is AG . Then [XG ,XG ] = {f

0

, f
1

} [ Aut(G).

Theorem (C.-Viruel)
Every finite group G is realized by infinitely many (non homotopically
equivalent) rational elliptic spaces X . That is, G ⇠= E(X ). Moreover, X can
be chosen to be the rationalization of an inflexible manifold.

What happens if G acts on a Z-module M?
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d = 208 + 80|V |.

• Let XG the rational elliptic 1-connected space whose Sullivan minimal
model is AG . Then [XG ,XG ] = {f

0

, f
1

} [ Aut(G).

Theorem (C.-Viruel)
Every finite group G is realized by infinitely many (non homotopically
equivalent) rational elliptic spaces X . That is, G ⇠= E(X ). Moreover, X can
be chosen to be the rationalization of an inflexible manifold.

What happens if G acts on a Z-module M?

C. Costoya (UDC) Realizability of G -modules 9 / 20



Results

Theorem (C.-Viruel)
Let G, AG defined as previously. Then:

• AG is an elliptic algebra (hence Poincaré duality) of formal dimension
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How to play

• Algebraic structure

(G ,M)

G is a group, M is a finitely generated ZG -module

• Homotopy invariant
�
E(�),⇡k(�)

�

⇡k(�) is a ZE(�)-module

Our extended problem (realizability of actions)

Is there a finite Postnikov piece X such that the ZG -module M is
isomorphic to the ZE(X )-module ⇡k(X ), for some k � 2?

B It is a “dual” of the Steenrod problem:

- do not ask for a G -space X but G ⇠
=

E(X )

- require X to be a Postnikov piece. If X = K(M, k) then G ⇠
=

E(X )

⇠
=

Aut(M) (!)

- ask E(X ) to act trivially on ⇡i (X ) for i 6= k

B It implies realizability of groups.

C. Costoya (UDC) Realizability of G -modules 10 / 20
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How to play

• Algebraic structure (G ,V )

G is a group, V is a finitely generated QG -module

• Homotopy invariant
�
E(�),⇡k(�)

�

⇡k(�) is a QE(�)-module
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Realizability of actions: techniques

Idea. Introduce Invariant theory on the picture.

• G acts on V ) G acts on Q[V ] (ring of polynomial functions)

for g 2 G , p 2 Q[V ], (gp)(v) = p(g�1v).

G -invariant function: p 2 Q[V ] such that for all g 2 G , gp = p.

Invariant ring Q[V ]G : all the G - invariant functions in Q[V ]

(Hilbert, Noether, . . . ) If G is finite and V is a faithful QG -module, then

• The field of fractions Q(V ) is a Galois extension of Q(V )G with Galois
group G .

• Q[V ]G is finitely generated.
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Realizability of actions: techniques

Corollary (Characterization of finite G < GL(V ))

There exists p
1

, . . . , pr 2 Q[V ] such that, for f 2 GL(V )

f 2 G if and only if fpi = pi , i = 1, . . . , r .

we modify those algebraic forms

Lemma
There exist algebraic forms q

0

, q
1

, . . . qr 2 Q[V ]G such that:

• q
0

=
NX

1

�jv
2

j , for a good choice of basis of V ⇤ (N = dimQV , �j 6= 0, 8j).

• deg(qi ) < deg(qi+1

) for all i .

• For f 2 GL(V ), f 2 G if and only if fqi = qi , for all i . Therefore

G = O(q
0

, q
1

, . . . , qr ).
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Realizability of actions: techniques
Proof:

B For an arbitrary basis of V ⇤, consider the form: p
0

=
PN

j=1

w2

j , and
transform it on a G -invariant (and definite positive) form by:

q
0

=
X

g2G

gp
0

G finite

B Therefore, for a basis that we fix {v
1

, . . . , vN} ⇢ V ⇤

q
0

=
X

j

�jv
2

j

B Define recursively, using previous forms {pi}ri=1

: {qi = qi�1

pi}ri=1

.
It is clear that deg(qi ) < deg(qi+1

) and qi 2 Q[V ]G .

B {q
0

, . . . , qr} also characterize G (by recursivity and using that Q[V ] is an
integral domain).

⇤
Fix an integer n such that deg(qr ) < 2n + 1 and define
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, . . . , qr} also characterize G (by recursivity and using that Q[V ] is an
integral domain).

⇤
Fix an integer n such that deg(qr ) < 2n + 1 and define
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Realizability of actions: result
Mn =

⇣
⇤(x

1

, x
2

, y
1

, y
2

, y
3

, z , vj | j = 1, . . . ,N), d
⌘

deg x
1

= 8, d(x
1

) = 0

deg x
2

= 10, d(x
2

) = 0

deg y
1

= 33, d(y
1

) = x3
1

x
2

deg y
2

= 35, d(y
2

) = x2
1

x2
2

deg y
3

= 37, d(y
3

) = x
1

x3
2

deg vj = 40, d(vj) = 0

deg z = 80n + 39, d(z) =
rX

i=1

qix
10n+5�5 deg(qi )
1

+ q
0

(x10n�5

1

+ x8n�4

2

)

+ x10(n�1)

1

(y
1

y
2

x4
1

x2
2

� y
1

y
3

x5
1

x
2

+ y
2

y
3

x6
1

)

+ x10n+5

1

+ x8n+4

2

.
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Codifies the G action.
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Realizability of actions: result

Theorem (C.-Viruel)
Let G be a finite group, and V a finitely generated faithful QG -module.
Then, there exists infinitely many (non homotopically equivalent) Postnikov
pieces X such that, for some k � 2,

�
G ,V

� ⇠=
�
E(X ),⇡kX

�
.
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Question
Both “Graphs” and “Ring of Invariants” constructions are based on the
Arkowitz-Lupton homotopically rigid algebra:

M =
⇣
⇤(x

1

, x
2

, y
1

, y
2

, y
3

, z), d
⌘

deg x
1

= 8, d(x
1

) = 0

deg x
2

= 10, d(x
2

) = 0

deg y
1

= 33, d(y
1

) = x3
1

x
2

deg y
2

= 35, d(y
2

) = x2
1

x2
2

deg y
3

= 37, d(y
3

) = x
1

x3
2

deg z = 119, d(z) = y
1

y
2

x4
1

x2
2

� y
1

y
3

x5
1

x
2

+ y
2

y
3

x6
1

+ x15
1

+ x12
2

.

Are there other possible algebras that can be used?
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Answer
Fix an even integer k > 4, and define

Mk =
⇣
⇤(x

1

, x
2

, y
1

, y
2

, y
3

, z), d
⌘

deg x
1

= 5k � 2, d(x
1

) = 0

deg x
2

= 6k � 2, d(x
2

) = 0

deg y
1

= 21k � 9, d(y
1

) = x3
1

x
2

deg y
2

= 22k � 9, d(y
2

) = x2
1

x2
2

deg y
3

= 23k � 9, d(y
3

) = x
1

x3
2

deg z = 15k2 � 11k + 1, d(z) = x3k�12

1

(x2
1

y
2

y
3

� x
1

x
2

y
1

y
3

+ x2
2

y
1

y
2

)

+ x
6k�2

2

1

+ x
5k�2

2

2

.

(C.-Viruel) [Mk ,Mk ] = {0, 1}.

Yes, there are infinitely many highly connected homotopically rigid algebras.
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Thank you!

- C.–Viruel, Every finite group is the group of self-homotopy equivalences of an elliptic

space. To appear in Acta Mathematica. (arXiv:1106.1087).

- C.–Viruel, Faithful actions on Di↵erential Graded Algebras and the Group Isomorphism

Problem.To appear in Q. J. Math. (DOI: 10.1093/qmath/hat052).

- C.–Viruel, Realizability of G -modules: on a dual of a Steenrod problem. Preprint.
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REALIZABILITY OF G-MODULES: ON A DUAL OF A STEENROD
PROBLEM

CRISTINA COSTOYA

Joint with Antonio Viruel.
Realizability problems: Given an algebra structure A and given a homotopy invariant

I(�), find a space X such that I(X) � A.

Example (Moore spaces). G abstract group, H⇤(�,Z) homology concentrationed on a de-
gree k � 2, is there X such that Hk(X,Z) � G?

Example (Steenrod). G group acting on a finitely generated Z-module M. Is there a G-
space X such that Hk(X,Z) � M?

Our problem: let E(X) be the group of homotopy classes of self homotopy equivalences
of X. For an abstract group G, is there a space X so that E(X) � G? There is no known
general procedure to solve this problem. Only a few cases: G = Aut(⇡) for a group ⇡ (then
X = K(⇡, n)).

Q. Which finite groups are realizable by simply connected rational spaces?

Note there is a simply connected space X with E(X) = Z/2.

New perspective

We’ll introduce graphs into the picture and move from groups to graphs, graphs to
CDGAs, and CDGAs to rational homotopy types.

Theorem (Frucht ’39). Every finite group G is realizable by a finite, connected, simple
graph G with G � Aut(G).

Example. For G = Z/3, replace the Cayley graph by a simple (non-directed) graph.

The problem, revisited. Our problem is now for G a finite, connected, simple graph in
place of the group G above.

Techniques. First, restrict to the category Graph f m[Graph of graphs and full monomor-
phisms. Then construct a functor A : Graphop

f m ! CDGA with notation G 7! AG.

Results

Theorem (C-Viruel). For G a graph, AG is an elliptic algebra (hence Poincaré duality).
Let XG be the rational elliptic 1-connected space whose Sullivan minimal model is AG.
Then [XG, XG] = { f0, f1} [ Aut(G).

Theorem (C-Viruel). Every finite group G is realized by infinitely many (non homotopi-
cally equivalent) rational elliptic spaces X. That is G � E(X). Moreover, X can be chosen
to be the rationalization of an inflexible manifold.

Date: Connections for Women: Algebraic Topology — MSRI — 24 January, 2014.
1



2 CRISTINA COSTOYA

Realizing actions

Now what if the group is acting on a Z-module M? Can we realize actions?
The algebraic structure is now (G,M) where G is a group and M is a finitely generated

ZG-module. The homotopy invariant is (E(�), ⇡k(�)) where ⇡k is a ZE(�)-module.
Our extended problem: is there a finite Postnikov piece X such that the ZG-module M

is isomorphic to the ZE(X)-module ⇡k(X) for some k � 2.
This is a “dual” of the Steenrod problem. We do not ask for a G-space X but G � E(X).

We require X to be a Postnikov piece. If X = K(M, k), then G = E(X) � Aut(M). We ask
E(X) to act trivially on ⇡i for i , k.

This is a harder problem that implies the realizability of groups.

Techniques. The idea is to introduce invariant theory into the picture. If G acts on V then
G acts on Q[V], the ring of polynomial functions, by conjugation. A G-invariant function
is a fixed point for this action.

Some results of Hilbert-Noether: if G is finite and V is a faithful QG-module, then the
field of fractions Q(V) is a Galois extension of Q(V)G.

Corollary (characterization of finite G ⇢ GL(V)). There exists p1, . . . , pr 2 Q[V] such
that for f 2 GL(V), f 2 G if and only if f pi = pi for all i.

We modify these algebraic forms:

Lemma. There exists algebraic forms q0, . . . , qr 2 Q[V]G satisfying conditions.

Fix an integer n such that deg(qr) < 2n + 1 and define a Sullivan minimal modelMn.

Theorem (C-Viruel). Let G be a finite group, V a finitely generated faithful QG-module.
Then there exist infinitely many (non homotopically equivalent) Postnikov pieces X that
realize the action.

Note: there are three joint papers C-Viruel, a preprint and two in press, that have more
details.
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