Realizability of *G*-modules: on a dual of a Steenrod Problem

Cristina Costoya (joint with Antonio Viruel)

Connections for Women: Algebraic Topology, January 24, 2014

The name of the game

Realizability problems: Given an algebraic structure A and given an homotopy invariant I(-), find a space X such that $I(X) \cong A$.

The name of the game

Realizability problems: Given an algebraic structure A and given an homotopy invariant I(-), find a space X such that $I(X) \cong A$.

Example 1 (Moore spaces)

- G abstract group
- *H*_{*}(−, ℤ) homology concentrated on a degree k ≥ 2.
 Is there X such that *H*_k(X, ℤ) ≅ *G*?

The name of the game

Realizability problems: Given an algebraic structure A and given an homotopy invariant I(-), find a space X such that $I(X) \cong A$.

Example 1 (Moore spaces)

- G abstract group
- *H*_{*}(−, ℤ) homology concentrated on a degree *k* ≥ 2.
 Is there X such that *H_k*(X, ℤ) ≅ *G*?

Example 2 (Steenrod'60, G-Moore spaces problem)

- G group acting on a finitely generated \mathbb{Z} -module M.
- H_{*}(-, Z) homology concentrated on a degree k ≥ 2
 Is there a G-space X such that H_k(X, Z) ≃ M as ZG-modules?

Let $\mathcal{E}(X)$ = group of homotopy classes of self homotopy-equivalences of X

Let $\mathcal{E}(X)$ = group of homotopy classes of self homotopy-equivalences of X

abstract group G

Let $\mathcal{E}(X)$ = group of homotopy classes of self homotopy-equivalences of X

abstract group G

 \Downarrow Realization

Let $\mathcal{E}(X)$ = group of homotopy classes of self homotopy-equivalences of X

abstract group G

 \Downarrow Realization

 $G \cong \mathcal{E}(X)$ for some X?

> Appears recurrently in surveys and lists of open problems.

- > Appears recurrently in surveys and lists of open problems.
 - D. Kahn, Realization problems for the group of homotopy classes of self-equivalences, Math. Annal., 220 (1976)
 - D. Kahn Some Research Problems on homotopy-self-equivalences, in: Groups of Self-Equivalences and Related Topics, LNM., 1425, (1990)
 - J. Rutter, Spaces of homotopy self-equivalences. A Survey, LNM., 1662, (1997).
 - M. Arkowitz, The group of self-homotopy equivalences-a survey, in: Groups of self-equivalences and related topics, LNM., Springer, 1425 (1990)
 - M. Arkowitz, Problems on self-homotopy equivalences, in: Groups of homotopy self-equivalences and related topics, Contemp. Math., 274 (2001)
 - Y. Félix, Problems on mapping spaces and related subjects, in: Homotopy theory of function spaces and related topics, Contemp. Math., 519 (2010)

> Appears recurrently in surveys and lists of open problems.

▷ The only general known procedure to tackle it is when $G \cong Aut(\pi), \pi$ a group. Then $X = K(\pi, n)$ since $\mathcal{E}(X) \cong Aut(\pi)$.

> Appears recurrently in surveys and lists of open problems.

▷ The only general known procedure to tackle it is when $G \cong Aut(\pi), \pi$ a group. Then $X = K(\pi, n)$ since $\mathcal{E}(X) \cong Aut(\pi)$.

 $\triangleright \mathbb{Z}_2$

> Appears recurrently in surveys and lists of open problems.

▷ The only general known procedure to tackle it is when $G \cong Aut(\pi), \pi$ a group. Then $X = K(\pi, n)$ since $\mathcal{E}(X) \cong Aut(\pi)$.

 $\triangleright \mathbb{Z}_2 \cong \mathcal{E}(X)$ for some 1-connected rational space X (Arkowitz-Lupton'00).

> Appears recurrently in surveys and lists of open problems.

▷ The only general known procedure to tackle it is when $G \cong Aut(\pi), \pi$ a group. Then $X = K(\pi, n)$ since $\mathcal{E}(X) \cong Aut(\pi)$.

 $\triangleright \mathbb{Z}_2 \cong \mathcal{E}(X)$ for some 1-connected rational space X (Arkowitz-Lupton'00).

Which finite groups are realizable by simply connected rational spaces?

Idea. Introduce graphs on the picture:

 $\begin{array}{rcl} {\sf groups} & \longrightarrow & {\sf graphs} \\ {\sf graphs} & \longrightarrow & {\sf CDGA's} \\ {\sf CDGA's} & \longrightarrow & {\sf rational \ homotopy \ types} \end{array}$

Idea. Introduce graphs on the picture:

 $\begin{array}{rcl} {\sf groups} & \longrightarrow & {\sf graphs} \\ {\sf graphs} & \longrightarrow & {\sf CDGA's} \\ {\sf CDGA's} & \longrightarrow & {\sf rational \ homotopy \ types} \end{array}$

Theorem (Frucht'39, Realizability in *Graphs*) Every finite group *G* is realizable by a finite, connected and simple graph \mathcal{G} . That is $G \cong \operatorname{Aut}(\mathcal{G})$.

Idea. Introduce graphs on the picture:

 $\begin{array}{rcl} {\sf groups} & \longrightarrow & {\sf graphs} \\ {\sf graphs} & \longrightarrow & {\sf CDGA's} \\ {\sf CDGA's} & \longrightarrow & {\sf rational \ homotopy \ types} \end{array}$

Theorem (Frucht'39, Realizability in *Graphs*) Every finite group *G* is realizable by a finite, connected and simple graph \mathcal{G} . That is $G \cong \operatorname{Aut}(\mathcal{G})$.

Example ($G = \mathbb{Z}_3$; Cayley graph \rightarrow simple graph)

Idea. Introduce graphs on the picture:

 $\begin{array}{rcl} {\sf groups} & \longrightarrow & {\sf graphs} \\ {\sf graphs} & \longrightarrow & {\sf CDGA's} \\ {\sf CDGA's} & \longrightarrow & {\sf rational \ homotopy \ types} \end{array}$

Theorem (Frucht'39, Realizability in *Graphs*) Every finite group *G* is realizable by a finite, connected and simple graph *G*. That is $G \cong \operatorname{Aut}(G)$.

Our problem (revisited)

Let $\mathcal{G} = (V, E)$ be a finite, simple, connected graph (with more than one vertex). Does there exist a space X such that $\operatorname{Aut}(\mathcal{G}) \cong \mathcal{E}(X)$?

 \triangleright First, restrict ourselves $Graph_{fm} \subset Graph$.

 \triangleright First, restrict ourselves $Graph_{fm} \subset Graph$.

- G = (V, E), |V| > 1
- $f: \mathcal{G}_1 \hookrightarrow \mathcal{G}_2$ such that [v, w] edge of \mathcal{G}_1 iff [f(v), f(w)] edge of \mathcal{G}_2

 \triangleright First, restrict ourselves $Graph_{fm} \subset Graph$.

▷ Then, construct

 $A: Graph_{fm} \longrightarrow CDGA$

 \triangleright First, restrict ourselves $Graph_{fm} \subset Graph$.

Then, construct

 $\begin{array}{c} A: \operatorname{\mathit{Graph}_{fm}} \longrightarrow \operatorname{\mathit{CDGA}}\\ \text{(based on an example of Arkowitz-Lupton)} \end{array}$

▷ First, restrict ourselves $Graph_{fm} \subset Graph$. ▷ Then, construct

$$A: Graph_{fm} \longrightarrow CDGA$$
$$(A_{\mathcal{G}}, d) = \left(\Lambda(x_1, x_2, y_1, y_2, y_3, z) \otimes \Lambda(x_v, z_v | v \in V), d \right)$$

▷ First, restrict ourselves $Graph_{fm} \subset Graph$. ▷ Then, construct

$$A: Graph_{fm} \longrightarrow CDGA$$
$$(A_{\mathcal{G}}, d) = (\Lambda(x_1, x_2, y_1, y_2, y_3, z) \otimes \Lambda(x_v, z_v | v \in V), d)$$

• generators in dimensions: $|x_1| = 8$, $|x_2| = 10$, $|y_1| = 33$, $|y_2| = 35$, $|y_3| = 37$, |z| = 119, $|x_v| = 40$, $|z_v| = 119$,

▷ First, restrict ourselves $Graph_{fm} \subset Graph$. ▷ Then, construct

$$A: Graph_{fm} \longrightarrow CDGA$$
$$(A_{\mathcal{G}}, d) = (\Lambda(x_1, x_2, y_1, y_2, y_3, z) \otimes \Lambda(x_v, z_v | v \in V), d)$$

• generators in dimensions: $|x_1| = 8$, $|x_2| = 10$, $|y_1| = 33$, $|y_2| = 35$, $|y_3| = 37$, |z| = 119, $|x_v| = 40$, $|z_v| = 119$,

• differentials:

▷ First, restrict ourselves $Graph_{fm} \subset Graph$. ▷ Then, construct

$$A: Graph_{fm} \longrightarrow CDGA$$
$$(A_{\mathcal{G}}, d) = (\Lambda(x_1, x_2, y_1, y_2, y_3, z) \otimes \Lambda(x_v, z_v | v \in V), d)$$

• generators in dimensions: $|x_1| = 8$, $|x_2| = 10$, $|y_1| = 33$, $|y_2| = 35$, $|y_3| = 37$, |z| = 119, $|x_\nu| = 40$, $|z_\nu| = 119$,

• differentials:

• A is contravariant (morphisms are as expected).

C. Costoya (UDC

▷ First, restrict ourselves $Graph_{fm} \subset Graph$. ▷ Then, construct

$$A: Graph_{fm} \longrightarrow CDGA$$
$$(A_{\mathcal{G}}, d) = (\bigwedge(x_1, x_2, y_1, y_2, y_3, z) \otimes \bigwedge(x_v, z_v | v \in V), d)$$
Homotopically Rigid Encodes \mathcal{G}

- generators in dimensions: $|x_1| = 8$, $|x_2| = 10$, $|y_1| = 33$, $|y_2| = 35$, $|y_3| = 37$, |z| = 119, $|x_\nu| = 40$, $|z_\nu| = 119$,
- differentials:

• A is contravariant (morphisms are as expected).

▷ First, restrict ourselves $Graph_{fm} \subset Graph$. ▷ Then, construct

$$\begin{array}{c} A: \operatorname{Graph}_{\operatorname{fm}} \longrightarrow \operatorname{CDGA}\\ (A_{\mathcal{G}}, d) = \begin{pmatrix} \Lambda(x_1, x_2, y_1, y_2, y_3, z) \otimes \Lambda(x_v, z_v | v \in V), d \end{pmatrix}\\ \xrightarrow{\operatorname{Homotopically Rigid}} \underset{\operatorname{Encodes} \mathcal{G}}{\overset{\operatorname{Encodes} \mathcal{G}}} \end{array}$$

- generators in dimensions: $|x_1| = 8$, $|x_2| = 10$, $|y_1| = 33$, $|y_2| = 35$, $|y_3| = 37$, |z| = 119, $|x_\nu| = 40$, $|z_\nu| = 119$,
- differentials:

• A is contravariant (morphisms are as expected).

Theorem (C.-Viruel)

Let \mathcal{G} , $A_{\mathcal{G}}$ defined as previously.

Theorem (C.-Viruel)

Let \mathcal{G} , $A_{\mathcal{G}}$ defined as previously. Then:

• A_G is an elliptic algebra (hence Poincaré duality) of formal dimension d = 208 + 80|V|.

Theorem (C.-Viruel)

Let \mathcal{G} , $A_{\mathcal{G}}$ defined as previously. Then:

- A_G is an elliptic algebra (hence Poincaré duality) of formal dimension d = 208 + 80|V|.
- Let X_G the rational elliptic 1-connected space whose Sullivan minimal model is A_G. Then [X_G, X_G] = {f₀, f₁} ∪ Aut(G).

Theorem (C.-Viruel)

Let \mathcal{G} , $A_{\mathcal{G}}$ defined as previously. Then:

- A_G is an elliptic algebra (hence Poincaré duality) of formal dimension d = 208 + 80|V|.
- Let X_G the rational elliptic 1-connected space whose Sullivan minimal model is A_G. Then [X_G, X_G] = {f₀, f₁} ∪ Aut(G).

Theorem (C.-Viruel)

Every finite group G is realized by infinitely many (non homotopically equivalent) rational elliptic spaces X. That is, $G \cong \mathcal{E}(X)$.

Theorem (C.-Viruel)

Let \mathcal{G} , $A_{\mathcal{G}}$ defined as previously. Then:

- A_G is an elliptic algebra (hence Poincaré duality) of formal dimension d = 208 + 80|V|.
- Let X_G the rational elliptic 1-connected space whose Sullivan minimal model is A_G. Then [X_G, X_G] = {f₀, f₁} ∪ Aut(G).

Theorem (C.-Viruel)

Every finite group G is realized by infinitely many (non homotopically equivalent) rational elliptic spaces X. That is, $G \cong \mathcal{E}(X)$. Moreover, X can be chosen to be the rationalization of an inflexible manifold.

Theorem (C.-Viruel)

Let \mathcal{G} , $A_{\mathcal{G}}$ defined as previously. Then:

- A_G is an elliptic algebra (hence Poincaré duality) of formal dimension d = 208 + 80|V|.
- Let X_G the rational elliptic 1-connected space whose Sullivan minimal model is A_G. Then [X_G, X_G] = {f₀, f₁} ∪ Aut(G).

Theorem (C.-Viruel)

Every finite group G is realized by infinitely many (non homotopically equivalent) rational elliptic spaces X. That is, $G \cong \mathcal{E}(X)$. Moreover, X can be chosen to be the rationalization of an inflexible manifold.

What happens if G acts on a \mathbb{Z} -module M?

How to play

• Algebraic structure

• Algebraic structure (G, M)

G is a group, M is a finitely generated $\mathbb{Z}G$ -module

• Algebraic structure (G, M)

G is a group, M is a finitely generated $\mathbb{Z}G$ -module

• Homotopy invariant

• Algebraic structure (G, M)

G is a group, M is a finitely generated $\mathbb{Z}G$ -module

• Homotopy invariant $(\mathcal{E}(-), \pi_k(-))$

 $\pi_k(-)$ is a $\mathbb{Z}\mathcal{E}(-)$ -module

• Algebraic structure (G, M)

G is a group, M is a finitely generated $\mathbb{Z}G$ -module

• Homotopy invariant $(\mathcal{E}(-), \pi_k(-))$

 $\pi_k(-)$ is a $\mathbb{Z}\mathcal{E}(-)$ -module

Our extended problem (realizability of actions)

• Algebraic structure (G, M)

G is a group, M is a finitely generated $\mathbb{Z}G$ -module

• Homotopy invariant $(\mathcal{E}(-), \pi_k(-))$

 $\pi_k(-)$ is a $\mathbb{Z}\mathcal{E}(-)$ -module

Our extended problem (realizability of actions)

Is there a finite Postnikov piece X such that the $\mathbb{Z}G$ -module M is isomorphic to the $\mathbb{Z}\mathcal{E}(X)$ -module $\pi_k(X)$, for some $k \ge 2$?

▷ It is a "dual" of the Steenrod problem:

• Algebraic structure (G, M)

G is a group, M is a finitely generated $\mathbb{Z}G$ -module

• Homotopy invariant $(\mathcal{E}(-), \pi_k(-))$

 $\pi_k(-)$ is a $\mathbb{Z}\mathcal{E}(-)$ -module

Our extended problem (realizability of actions)

- ▷ It is a "dual" of the Steenrod problem:
- do not ask for a *G*-space X but $G \cong \mathcal{E}(X)$

• Algebraic structure (G, M)

G is a group, M is a finitely generated $\mathbb{Z}G$ -module

• Homotopy invariant $(\mathcal{E}(-), \pi_k(-))$

 $\pi_k(-)$ is a $\mathbb{Z}\mathcal{E}(-)$ -module

Our extended problem (realizability of actions)

- ▷ It is a "dual" of the Steenrod problem:
 - do not ask for a G-space X but $G \cong \mathcal{E}(X)$
 - require X to be a Postnikov piece. If X = K(M, k) then $G \cong \mathcal{E}(X) \cong Aut(M)$ (!)

• Algebraic structure (G, M)

G is a group, M is a finitely generated $\mathbb{Z}G$ -module

• Homotopy invariant $(\mathcal{E}(-), \pi_k(-))$

 $\pi_k(-)$ is a $\mathbb{Z}\mathcal{E}(-)$ -module

Our extended problem (realizability of actions)

- ▷ It is a "dual" of the Steenrod problem:
 - do not ask for a G-space X but $G \cong \mathcal{E}(X)$
 - require X to be a Postnikov piece. If X = K(M, k) then $G \cong \mathcal{E}(X) \cong Aut(M)$ (!)
 - ask $\mathcal{E}(X)$ to act trivially on $\pi_i(X)$ for $i \neq k$

• Algebraic structure (G, M)

G is a group, M is a finitely generated $\mathbb{Z}G$ -module

• Homotopy invariant $(\mathcal{E}(-), \pi_k(-))$

 $\pi_k(-)$ is a $\mathbb{Z}\mathcal{E}(-)$ -module

Our extended problem (realizability of actions)

- ▷ It is a "dual" of the Steenrod problem:
 - do not ask for a *G*-space X but $G \cong \mathcal{E}(X)$
 - require X to be a Postnikov piece. If X = K(M, k) then $G \cong \mathcal{E}(X) \cong Aut(M)$ (!)
 - ask $\mathcal{E}(X)$ to act trivially on $\pi_i(X)$ for $i \neq k$
- It implies realizability of groups.

• Algebraic structure (G, V)

G is a group, V is a finitely generated $\mathbb{Q}G$ -module

Homotopy invariant (ε(-), π_k(-))
 π_k(-) is a Qε(-)-module

Our extended problem (realizability of actions)

- ▷ It is a "dual" of the Steenrod problem:
 - do not ask for a G-space X but $G \cong \mathcal{E}(X)$
 - require X to be a Postnikov piece. If X = K(M, k) then $G \cong \mathcal{E}(X) \cong Aut(M)$ (!)
 - ask $\mathcal{E}(X)$ to act trivially on $\pi_i(X)$ for $i \neq k$
- It implies realizability of groups.

Idea. Introduce Invariant theory on the picture.

Idea. Introduce Invariant theory on the picture.

 G acts on V ⇒ G acts on Q[V] (ring of polynomial functions) for g ∈ G, p ∈ Q[V], (gp)(v) = p(g⁻¹v).

Idea. Introduce Invariant theory on the picture.

 G acts on V ⇒ G acts on Q[V] (ring of polynomial functions) for g ∈ G, p ∈ Q[V], (gp)(v) = p(g⁻¹v).

G-invariant function: $p \in \mathbb{Q}[V]$ such that for all $g \in G$, gp = p.

Idea. Introduce Invariant theory on the picture.

 G acts on V ⇒ G acts on Q[V] (ring of polynomial functions) for g ∈ G, p ∈ Q[V], (gp)(v) = p(g⁻¹v).

G-invariant function: $p \in \mathbb{Q}[V]$ such that for all $g \in G$, gp = p. Invariant ring $\mathbb{Q}[V]^G$: all the *G*- invariant functions in $\mathbb{Q}[V]$

Idea. Introduce Invariant theory on the picture.

 G acts on V ⇒ G acts on Q[V] (ring of polynomial functions) for g ∈ G, p ∈ Q[V], (gp)(v) = p(g⁻¹v).

G-invariant function: $p \in \mathbb{Q}[V]$ such that for all $g \in G$, gp = p. Invariant ring $\mathbb{Q}[V]^G$: all the *G*- invariant functions in $\mathbb{Q}[V]$

(Hilbert, Noether, ...) If G is finite and V is a faithful $\mathbb{Q}G$ -module, then

Idea. Introduce Invariant theory on the picture.

 G acts on V ⇒ G acts on Q[V] (ring of polynomial functions) for g ∈ G, p ∈ Q[V], (gp)(v) = p(g⁻¹v).

G-invariant function: $p \in \mathbb{Q}[V]$ such that for all $g \in G$, gp = p. Invariant ring $\mathbb{Q}[V]^G$: all the *G*- invariant functions in $\mathbb{Q}[V]$

(Hilbert, Noether, ...) If G is finite and V is a faithful $\mathbb{Q}G$ -module, then

• The field of fractions $\mathbb{Q}(V)$ is a Galois extension of $\mathbb{Q}(V)^G$ with Galois group G.

Idea. Introduce Invariant theory on the picture.

 G acts on V ⇒ G acts on Q[V] (ring of polynomial functions) for g ∈ G, p ∈ Q[V], (gp)(v) = p(g⁻¹v).

G-invariant function: $p \in \mathbb{Q}[V]$ such that for all $g \in G$, gp = p. Invariant ring $\mathbb{Q}[V]^G$: all the *G*- invariant functions in $\mathbb{Q}[V]$

(Hilbert, Noether, ...) If G is finite and V is a faithful $\mathbb{Q}G$ -module, then

- The field of fractions $\mathbb{Q}(V)$ is a Galois extension of $\mathbb{Q}(V)^G$ with Galois group G.
- $\mathbb{Q}[V]^G$ is finitely generated.

Corollary (Characterization of finite G < GL(V)) There exists $p_1, \ldots, p_r \in \mathbb{Q}[V]$ such that, for $f \in GL(V)$

 $f \in G$ if and only if $fp_i = p_i, i = 1, \ldots, r$.

Corollary (Characterization of finite G < GL(V)) There exists $p_1, \ldots, p_r \in \mathbb{Q}[V]$ such that, for $f \in GL(V)$

$$f \in G$$
 if and only if $fp_i = p_i, i = 1, \ldots, r$.

we modify those algebraic forms

Lemma

There exist algebraic forms $q_0, q_1, \ldots, q_r \in \mathbb{Q}[V]^G$ such that:

Corollary (Characterization of finite G < GL(V)) There exists $p_1, \ldots, p_r \in \mathbb{Q}[V]$ such that, for $f \in GL(V)$

$$f \in G$$
 if and only if $fp_i = p_i, i = 1, \ldots, r$.

we modify those algebraic forms

Lemma

There exist algebraic forms $q_0, q_1, \ldots, q_r \in \mathbb{Q}[V]^G$ such that:

•
$$q_0 = \sum_{1}^{N} \lambda_j v_j^2$$
, for a good choice of basis of V^* $(N = dim_{\mathbb{Q}}V, \lambda_j \neq 0, \forall j)$.

Corollary (Characterization of finite G < GL(V)) There exists $p_1, \ldots, p_r \in \mathbb{Q}[V]$ such that, for $f \in GL(V)$

$$f \in G$$
 if and only if $fp_i = p_i, i = 1, \ldots, r$.

we modify those algebraic forms

Lemma

There exist algebraic forms $q_0, q_1, \ldots, q_r \in \mathbb{Q}[V]^G$ such that:

•
$$q_0 = \sum_{1}^{N} \lambda_j v_j^2$$
, for a good choice of basis of V^* $(N = dim_{\mathbb{Q}}V, \lambda_j \neq 0, \forall j)$.

•
$$deg(q_i) < deg(q_{i+1})$$
 for all i .

Corollary (Characterization of finite G < GL(V)) There exists $p_1, \ldots, p_r \in \mathbb{Q}[V]$ such that, for $f \in GL(V)$

$$f \in G$$
 if and only if $fp_i = p_i, i = 1, \ldots, r$.

we modify those algebraic forms

Lemma

There exist algebraic forms $q_0, q_1, \ldots q_r \in \mathbb{Q}[V]^G$ such that:

•
$$q_0 = \sum_{1}^{N} \lambda_j v_j^2$$
, for a good choice of basis of V^* $(N = dim_{\mathbb{Q}}V, \lambda_j \neq 0, \forall j)$.

•
$$deg(q_i) < deg(q_{i+1})$$
 for all i .

• For $f \in GL(V)$, $f \in G$ if and only if $fq_i = q_i$, for all *i*. Therefore

$$G = O(q_0, q_1, \ldots, q_r).$$

Proof:

Proof:

▷ For an arbitrary basis of V^* , consider the form: $p_0 = \sum_{j=1}^N w_j^2$, and transform it on a *G*-invariant (and definite positive) form by:

$$q_0 = \sum_{g \in G} gp_0$$
 G finite

Proof:

 \triangleright For an arbitrary basis of V^* , consider the form: $p_0 = \sum_{j=1}^N w_j^2$, and transform it on a *G*-invariant (and definite positive) form by:

$$q_0 = \sum_{g \in G} gp_0$$
 G finite

 \vartriangleright Therefore, for a basis that we fix $\{v_1,\ldots,v_N\}\subset V^*$

$$q_0 = \sum_j \lambda_j v_j^2$$

Proof:

 \triangleright For an arbitrary basis of V^* , consider the form: $p_0 = \sum_{j=1}^N w_j^2$, and transform it on a *G*-invariant (and definite positive) form by:

$$q_0 = \sum_{g \in G} gp_0$$
 G finite

 \vartriangleright Therefore, for a basis that we fix $\{v_1,\ldots,v_N\}\subset V^*$

$$q_0 = \sum_j \lambda_j v_j^2$$

▷ Define recursively, using previous forms $\{p_i\}_{i=1}^r$:

Proof:

 \triangleright For an arbitrary basis of V^* , consider the form: $p_0 = \sum_{j=1}^N w_j^2$, and transform it on a *G*-invariant (and definite positive) form by:

$$q_0 = \sum_{g \in G} gp_0$$
 G finite

 \vartriangleright Therefore, for a basis that we fix $\{v_1,\ldots,v_N\}\subset V^*$

$$q_0 = \sum_j \lambda_j v_j^2$$

▷ Define recursively, using previous forms $\{p_i\}_{i=1}^r$: $\{q_i = q_{i-1}p_i\}_{i=1}^r$.

Proof:

 \triangleright For an arbitrary basis of V^* , consider the form: $p_0 = \sum_{j=1}^N w_j^2$, and transform it on a *G*-invariant (and definite positive) form by:

$$q_0 = \sum_{g \in G} gp_0$$
 G finite

 \vartriangleright Therefore, for a basis that we fix $\{v_1,\ldots,v_N\}\subset V^*$

$$q_0 = \sum_j \lambda_j v_j^2$$

▷ Define recursively, using previous forms $\{p_i\}_{i=1}^r$: $\{q_i = q_{i-1}p_i\}_{i=1}^r$. It is clear that deg $(q_i) < \deg(q_{i+1})$ and $q_i \in \mathbb{Q}[V]^G$.

Proof:

 \triangleright For an arbitrary basis of V^* , consider the form: $p_0 = \sum_{j=1}^N w_j^2$, and transform it on a *G*-invariant (and definite positive) form by:

$$q_0 = \sum_{g \in G} gp_0$$
 G finite

 \vartriangleright Therefore, for a basis that we fix $\{v_1,\ldots,v_N\}\subset V^*$

$$q_0 = \sum_j \lambda_j v_j^2$$

 \triangleright Define recursively, using previous forms $\{p_i\}_{i=1}^r$: $\{q_i = q_{i-1}p_i\}_{i=1}^r$. It is clear that deg $(q_i) < \deg(q_{i+1})$ and $q_i \in \mathbb{Q}[V]^G$.

 $\triangleright \{q_0, \ldots, q_r\}$ also characterize G (by recursivity and using that $\mathbb{Q}[V]$ is an integral domain).

Proof:

 \triangleright For an arbitrary basis of V^* , consider the form: $p_0 = \sum_{j=1}^N w_j^2$, and transform it on a *G*-invariant (and definite positive) form by:

$$q_0 = \sum_{g \in G} gp_0$$
 G finite

 \vartriangleright Therefore, for a basis that we fix $\{v_1,\ldots,v_N\}\subset V^*$

$$q_0 = \sum_j \lambda_j v_j^2$$

 \triangleright Define recursively, using previous forms $\{p_i\}_{i=1}^r$: $\{q_i = q_{i-1}p_i\}_{i=1}^r$. It is clear that deg $(q_i) < \deg(q_{i+1})$ and $q_i \in \mathbb{Q}[V]^G$.

 $\triangleright \{q_0, \ldots, q_r\}$ also characterize G (by recursivity and using that $\mathbb{Q}[V]$ is an integral domain).

Fix an integer *n* such that $deg(q_r) < 2n + 1$ and define

C. Costoya (UDC

Realizability of actions: result

$$\mathcal{M}_n = \left(\Lambda(x_1, x_2, y_1, y_2, y_3, z, v_j \mid j = 1, ..., N), d \right)$$

$\deg x_1=8,$	$d(x_1)=0$
$\deg x_2 = 10,$	$d(x_2)=0$
$\deg y_1=33,$	$d(y_1) = x_1^3 x_2$
$\deg y_2=35,$	$d(y_2) = x_1^2 x_2^2$
$\deg y_3=37,$	$d(y_3) = x_1 x_2^3$
$\deg v_j = 40,$	$d(v_j)=0$
$\deg z = 80n + 39,$	$d(z) = \sum_{i=1}^{r} q_i x_1^{10n+5-5 \deg(q_i)} + q_0(x_1^{10n-5} + x_2^{8n-4})$
	$+ x_1^{10(n-1)}(y_1y_2x_1^4x_2^2 - y_1y_3x_1^5x_2 + y_2y_3x_1^6)$
	$+ x_1^{10n+5} + x_2^{8n+4}.$

Realizability of actions: result

$$\mathcal{M}_n = \left(\Lambda(x_1, x_2, y_1, y_2, y_3, z, v_j \mid j = 1, ..., N), d \right)$$

$\deg x_1=8,$	$d(x_1)=0$
$\deg x_2 = 10,$	$d(x_2)=0$
$\deg y_1=33,$	$d(y_1) = x_1^3 x_2$
$\deg y_2=35,$	$d(y_2) = x_1^2 x_2^2$
$\deg y_3=37,$	$d(y_3) = x_1 x_2^3$
$\deg v_j = 40,$	$d(v_j)=0$
$\deg z = 80n + 39,$	$d(z) = \sum_{i=1}^{r} q_i x_1^{10n+5-5 \deg(q_i)} + q_0(x_1^{10n-5} + x_2^{8n-4})$
	$+ x_1^{10(n-1)}(y_1y_2x_1^4x_2^2 - y_1y_3x_1^5x_2 + y_2y_3x_1^6)$
	$+ x_1^{10n+5} + x_2^{8n+4}.$

Codifies the G action.

Realizability of actions: result

Theorem (C.-Viruel)

Let G be a finite group, and V a finitely generated faithful $\mathbb{Q}G$ -module. Then, there exists infinitely many (non homotopically equivalent) Postnikov pieces X such that, for some $k \ge 2$,

 $(G, V) \cong (\mathcal{E}(X), \pi_k X).$

Question

Both "Graphs" and "Ring of Invariants" constructions are based on the Arkowitz-Lupton homotopically rigid algebra:

$$\mathcal{M} = \left(\Lambda(x_1, x_2, y_1, y_2, y_3, z), d\right)$$

$\deg x_1=8,$	$d(x_1)=0$
$\deg x_2=10,$	$d(x_2)=0$
$\deg y_1=33,$	$d(y_1) = x_1^3 x_2$
$\deg y_2=35,$	$d(y_2) = x_1^2 x_2^2$
deg $y_3 = 37$,	$d(y_3) = x_1 x_2^3$
$\deg z=119,$	$d(z) = y_1 y_2 x_1^4 x_2^2 - y_1 y_3 x_1^5 x_2 + y_2 y_3 x_1^6$
	$+ x_1^{15} + x_2^{12}.$

Are there other possible algebras that can be used?

C. Costoya (UDC

Answer

Fix an even integer k > 4, and define

$$\mathcal{M}_{k} = \begin{pmatrix} \Lambda(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, z), d \end{pmatrix}$$

$$deg x_{1} = 5k - 2, \qquad d(x_{1}) = 0$$

$$deg x_{2} = 6k - 2, \qquad d(x_{2}) = 0$$

$$deg y_{1} = 21k - 9, \qquad d(y_{1}) = x_{1}^{3}x_{2}$$

$$deg y_{2} = 22k - 9, \qquad d(y_{2}) = x_{1}^{2}x_{2}^{2}$$

$$deg y_{3} = 23k - 9, \qquad d(y_{3}) = x_{1}x_{2}^{3}$$

$$deg z = 15k^{2} - 11k + 1, \qquad d(z) = x_{1}^{3k - 12}(x_{1}^{2}y_{2}y_{3} - x_{1}x_{2}y_{1}y_{3} + x_{2}^{2}y_{1}y_{2})$$

$$+ x_{1}^{\frac{6k - 2}{2}} + x_{2}^{\frac{5k - 2}{2}}.$$

Answer

Fix an even integer k > 4, and define

$$\mathcal{M}_{k} = \begin{pmatrix} \Lambda(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, z), d \end{pmatrix}$$

deg $x_{1} = 5k - 2,$ $d(x_{1}) = 0$
deg $x_{2} = 6k - 2,$ $d(x_{2}) = 0$
deg $y_{1} = 21k - 9,$ $d(y_{1}) = x_{1}^{3}x_{2}$
deg $y_{2} = 22k - 9,$ $d(y_{2}) = x_{1}^{2}x_{2}^{2}$
deg $y_{3} = 23k - 9,$ $d(y_{3}) = x_{1}x_{2}^{3}$
deg $z = 15k^{2} - 11k + 1,$ $d(z) = x_{1}^{3k - 12}(x_{1}^{2}y_{2}y_{3} - x_{1}x_{2}y_{1}y_{3} + x_{2}^{2}y_{1}y_{2})$
 $+ x_{1}^{\frac{6k - 2}{2}} + x_{2}^{\frac{5k - 2}{2}}.$

(C.-Viruel) $[\mathcal{M}_k, \mathcal{M}_k] = \{0, 1\}.$

Yes, there are infinitely many highly connected homotopically rigid algebras.

Thank you!

- C.-Viruel, Every finite group is the group of self-homotopy equivalences of an elliptic space. *To appear in Acta Mathematica. (arXiv:1106.1087).*
- C.-Viruel, Faithful actions on Differential Graded Algebras and the Group Isomorphism Problem. *To appear in Q. J. Math. (DOI: 10.1093/qmath/hat052)*.
- C.-Viruel, Realizability of G-modules: on a dual of a Steenrod problem. Preprint.

REALIZABILITY OF G-MODULES: ON A DUAL OF A STEENROD PROBLEM

CRISTINA COSTOYA

Joint with Antonio Viruel.

Realizability problems: Given an algebra structure A and given a homotopy invariant I(-), find a space X such that $I(X) \cong A$.

Example (Moore spaces). *G* abstract group, $H_*(-, \mathbb{Z})$ homology concentrationed on a degree $k \ge 2$, is there *X* such that $H_k(X, \mathbb{Z}) \cong G$?

Example (Steenrod). *G* group acting on a finitely generated \mathbb{Z} -module *M*. Is there a *G*-space *X* such that $H_k(X,\mathbb{Z}) \cong M$?

Our problem: let $\mathcal{E}(X)$ be the group of homotopy classes of self homotopy equivalences of X. For an abstract group G, is there a space X so that $\mathcal{E}(X) \cong G$? There is no known general procedure to solve this problem. Only a few cases: $G = \operatorname{Aut}(\pi)$ for a group π (then $X = K(\pi, n)$).

Q. Which finite groups are realizable by simply connected rational spaces?

Note there is a simply connected space *X* with $\mathcal{E}(X) = \mathbb{Z}/2$.

NEW PERSPECTIVE

We'll introduce graphs into the picture and move from groups to graphs, graphs to CDGAs, and CDGAs to rational homotopy types.

Theorem (Frucht '39). Every finite group G is realizable by a finite, connected, simple graph G with $G \cong \operatorname{Aut}(G)$.

Example. For $G = \mathbb{Z}/3$, replace the Cayley graph by a simple (non-directed) graph.

The problem, revisited. Our problem is now for G a finite, connected, simple graph in place of the group G above.

Techniques. First, restrict to the category $\operatorname{Graph}_{fm} \cup \operatorname{Graph}$ of graphs and full monomorphisms. Then construct a functor $A: \operatorname{Graph}_{fm}^{\operatorname{op}} \to \operatorname{CDGA}$ with notation $\mathcal{G} \mapsto A_{\mathcal{G}}$.

RESULTS

Theorem (C-Viruel). For \mathcal{G} a graph, $A_{\mathcal{G}}$ is an elliptic algebra (hence Poincaré duality). Let $X_{\mathcal{G}}$ be the rational elliptic 1-connected space whose Sullivan minimal model is $A_{\mathcal{G}}$. Then $[X_{\mathcal{G}}, X_{\mathcal{G}}] = \{f_0, f_1\} \cup \operatorname{Aut}(\mathcal{G})$.

Theorem (C-Viruel). Every finite group G is realized by infinitely many (non homotopically equivalent) rational elliptic spaces X. That is $G \cong \mathcal{E}(X)$. Moreover, X can be chosen to be the rationalization of an inflexible manifold.

Date: Connections for Women: Algebraic Topology - MSRI - 24 January, 2014.

CRISTINA COSTOYA

REALIZING ACTIONS

Now what if the group is acting on a \mathbb{Z} -module *M*? Can we realize actions?

The algebraic structure is now (G, M) where *G* is a group and *M* is a finitely generated $\mathbb{Z}G$ -module. The homotopy invariant is $(\mathcal{E}(-), \pi_k(-))$ where π_k is a $\mathbb{Z}\mathcal{E}(-)$ -module.

Our extended problem: is there a finite Postnikov piece *X* such that the $\mathbb{Z}G$ -module *M* is isomorphic to the $\mathbb{Z}\mathcal{E}(X)$ -module $\pi_k(X)$ for some $k \ge 2$.

This is a "dual" of the Steenrod problem. We do not ask for a *G*-space *X* but $G \cong \mathcal{E}(X)$. We require *X* to be a Postnikov piece. If X = K(M, k), then $G = \mathcal{E}(X) \cong \operatorname{Aut}(M)$. We ask $\mathcal{E}(X)$ to act trivially on π_i for $i \neq k$.

This is a harder problem that implies the realizability of groups.

Techniques. The idea is to introduce invariant theory into the picture. If *G* acts on *V* then *G* acts on $\mathbb{Q}[V]$, the ring of polynomial functions, by conjugation. A *G*-invariant function is a fixed point for this action.

Some results of Hilbert-Noether: if *G* is finite and *V* is a faithful $\mathbb{Q}G$ -module, then the field of fractions $\mathbb{Q}(V)$ is a Galois extension of $\mathbb{Q}(V)^G$.

Corollary (characterization of finite $G \subset GL(V)$). There exists $p_1, \ldots, p_r \in \mathbb{Q}[V]$ such that for $f \in GL(V)$, $f \in G$ if and only if $fp_i = p_i$ for all *i*.

We modify these algebraic forms:

Lemma. There exists algebraic forms $q_0, \ldots, q_r \in \mathbb{Q}[V]^G$ satisfying conditions.

Fix an integer *n* such that $\deg(q_r) < 2n + 1$ and define a Sullivan minimal model \mathcal{M}_n .

Theorem (C-Viruel). Let G be a finite group, V a finitely generated faithful $\mathbb{Q}G$ -module. Then there exist infinitely many (non homotopically equivalent) Postnikov pieces X that realize the action.

Note: there are three joint papers C-Viruel, a preprint and two in press, that have more details.

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, 1 OXFORD STREET, CAMBRIDGE, MA 02138 *E-mail address*: eriehl@math.harvard.edu