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1. Introduction

Consider a commutative ring R, with sum and product operations. The category of representations
of R inherits a commutative rig structure, given by direct sum and tensor product. In other words,
the category Mod(R) of R-modules inherits a bipermutative structure. Continuing, one can consider
the categorical representations of Mod(R), and these in turn form a 2-category Mod(Mod(R)), with a
ring-like structure. Iterating, one can consider an n-category of higher representations, for each n � 1.

All of these constructions can take place within the limiting context of structured ring spectra, or
commutative S-algebras. From the category of (finite cell) modules over a commutative S-algebra B we
can distill a new commutative S-algebra, the algebraic K-theory spectrum K(B). Continuing, one can
form K(K(B)), etc. When B = HR is the Eilenberg–Mac Lane spectrum of an ordinary ring, the n-fold
algebraic K-theory K(n)(B) is extracted from the n-category of higher representations, as above. In this
sense, n-fold iterated algebraic K-theory has something to do with n-categories.

From this point of view it is surprising that n-fold iterated algebraic K-theory also has something
to do with formal group laws of height n, i.e., one-dimensional commutative formal group laws F in
characteristic p where the series expansion [p]F (x) for the multiplication-by-p map starts with a unit
times xpn

. This is essentially a statement about the formal coproduct on K(n)(B)⇤(CP1) that comes
from the product on CP1. Hesselholt–Madsen asked about the chromatic filtration of iterated topological
cyclic homology in [HM97, p. 61], but could almost as well have asked about the chromatic filtration of
iterated algebraic K-theory.

In a strong form, this connection implies that the algebraic K-theory of a structured ring spectrum
related to formal group laws of height n will be related to formal group laws of height n+1. In terms of the
periodic families of stable homotopy theory, if the homotopy of B is vn-periodic but not vn+1

-periodic,
then frequently K(B) is vn+1

-periodic but not vn+2

-periodic.
Since the (fundamental) period |vn+1

| = 2pn+1

�2 of vn+1

-periodicity is longer than the period |vn| =
2pn

� 2 of vn-periodicity, we think of this phenomenon as an increase, or lengthening, of wavelengths.
This is what we informally call a “redshift”. In a related fashion, the vn+1

-periodic phenomena are
usually hidden or nested behind the vn-periodic ones, hence more subtle and di�cult to detect. Again
this corresponds informally to less energetic light, propagating at lower frequencies.

The height filtration is also related to the sequence of Hopf subalgebras

0 ⇢ · · · ⇢ E (n) = E(Q
0

, . . . , Qn) ⇢ . . .

of the Steenrod algebra A , and their annihilating subalgebras

A⇤ � · · · � (A //E (n))⇤ = P (⇠̄k | k � 1)⌦ E(⌧̄k | k � n + 1) � . . . .

The latter nested sequence of A⇤-comodule subalgebras are invariant under the Dyer–Lashof operations
that arise from thinking of the dual Steenrod algebra A⇤ as H⇤(H), where H = HFp is a commutative
structured ring spectrum.

2. Redshift in the K-theory of rings

We start with examples of chromatic redshift in the algebraic K-theory of discrete rings.
Let k be a finite field of characteristic p, with algebraic closure k̄. Quillen proved [Qui72, §11] that

Hi(BGL(k̄); Fp) = 0 for i > 0, so that K(k̄)p ' HZp. Furthermore, he deduced that ⇡⇤K(k)p
⇠=

⇡⇤K(k̄)hGk
p for ⇤ � 0, where the absolute Galois group Gk acts continuously on K(k̄), so K(k)p ' HZp.
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Multiplication by p acts injectively on ⇡⇤K(k̄)p, hence also on ⇡⇤K(k)p. Think of p as a lift of p = v
0

2

⇡⇤BP , where BP is the Brown–Peterson ring spectrum with ⇡⇤BP = Z
(p)

[vn | n � 1].
For a separably closed field F̄ of characteristic 6= p (including 0), Lichtenbaum conjectured that

⇡tK(F̄ )p is Zp for t � 0 even and 0 for t odd. This was proved by Suslin [Sus84, Cor. 3.13], and implies
that K(F̄ )p ' kup and L̂

1

K(F̄ ) ' KUp. Here ku is the connective cover of the complex topological
K-theory ring spectrum KU , and L̂n = LK(n)

denotes Bousfield localization [Bou79] with respect to the
Morava K-theory ring spectrum K(n). Multiplication by the Bott element u 2 ⇡

2

kup acts bijectively on
⇡⇤K(F̄ )p, for ⇤ � 0.

Let F be a number field, with a ring of S-integers A.

A // F

Z //

OO

Z[1/p] // Q

OO

Quillen conjectured [Qui75, §9] that there is a spectral sequence

E2

s,t = H�s
ét

(SpecA; Zp(t/2)) =) ⇡s+tK(A)p

converging in total degrees � 1. Here H⇤
ét

(�) denotes étale cohomology, which is only well-behaved if
1/p 2 A, and Zp(t/2) ⇠= ⇡tK(F̄ )p. For A = F this means that ⇡⇤K(F )p

⇠= ⇡⇤K(F̄ )hGF
p for ⇤ � 1,

where GF is the absolute Galois group. The general case requires the more elaborate framework of étale
homotopy types. Passing to mod p homotopy, a lift � 2 ⇡

2p�2

(S/p) of up�1

2 ⇡
2p�2

(ku; Z/p) would act
bijectively on ⇡⇤(K(A); Z/p), for ⇤ � 1. Think of � = v

1

as a lift of v
1

2 ⇡⇤(BP ; Z/p).
Thomason [Tho85, Thm. 4.1] proved Quillen’s conjecture, up to the localization given by invert-

ing �. In particular, ⇡⇤(K(F ); Z/p)[1/�] ⇠= ⇡⇤(K(F̄ )hGF ; Z/p) for ⇤ � 2. It remained to show that
⇡⇤(K(A); Z/p) ! ⇡⇤(K(A); Z/p)[1/�] is an isomorphism for ⇤ � 2. Waldhausen [Wal84, p. 193] noted
that this amounts to asking that K(A) ! L

1

K(A) is a p-adic equivalence, in su�ciently high degrees.
Here Ln = LE(n)

denotes Bousfield localization with respect to the Johnson–Wilson ring spectrum E(n),
or equivalently with respect to BP [1/vn].

Using topological cyclic homology, Hesselholt–Madsen [HM03, Thm. A] confirmed Quillen’s conjecture
for valuation rings in local number fields, after special cases were treated by Bökstedt–Madsen [BM94],
[BM95] and Rognes [Rog99a], [Rog99b].

Finally, Voevodsky’s proof [Voe03], [Voe11] of the Milnor and Bloch–Kato conjectures confirmed
Quillen’s conjecture for rings of integers in global number fields.

3. Redshift in the K-theory of ring spectra

We continue with examples of chromatic redshift in the context of algebraic K-theory of structured
ring spectra.

Let L = E(1) be the Adams summand of KU
(p)

, and ` = BP h1i its connective cover. Using topological
cyclic homology, Ausoni–Rognes [AR02, Thm. 0.4] computed V (1)⇤K(`p), and Ausoni [Aus10, Thm. 1.1]
computed V (1)⇤K(kup), where p � 5 and V (1) = S/(p, v

1

) is the Smith-Toda spectrum of chro-
matic type 2. Using a localization sequence of Blumberg–Mandell [BM08, p. 157], this also calculates
V (1)⇤K(Lp) and V (1)⇤K(KUp). In each case, a lift v

2

2 ⇡
2p2�2

V (1) of v
2

2 V (1)⇤BP acts bijectively
on the answer V (1)⇤K(B), for ⇤ � 2p� 2.

The results are compatible with the existence of a spectral sequence

E2

s,t = H�s
mot

(SpecB; Fp2(t/2)) =) V (1)s+tK(B)

for suitable “`p-algebras of S-integers” B, converging in su�ciently high total degrees. Here H⇤
mot

(�)
refers to a hypothetical form of motivic cohomology for commutative structured ring spectra, and
Fp2(t/2) ⇠= V (1)tE2

where E
2

is the K(2)-local Lubin–Tate ring spectrum with ⇡⇤E2

= WFp2 [[u
1

]][u].
The appearance of the field Fp2 is needed to account for the sign in Ausoni’s relation bp�1 = �v

2

in V (1)⇤K(kup), since if b is represented by ↵up+1 and v
2

by up2�1 then ↵p�1 = �1, which cannot be
satisfied for ↵ 2 Fp.

4. An analogue of the Lichtenbaum–Quillen conjectures

Consider a Galois extension Lp[1/p] ! M , like in [Rog08, §4]. By an `p-algebra of integers in M we
mean a connected (only trivial idempotents) commutative `p-algebra B, with a structure map to M ,
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such that B is semi-finite (retract of a finite cell module), or perhaps dualizable, as an `p-module:

⌦
1

B //

OO

M

`p

OO

// Lp // Lp[1/p]

G

OO

Jp

OO

For S-integers we may allow localizations that invert p or v
1

. Let ⌦
1

be the p-completed homotopy
colimit of all such B, i.e., the `p-algebraic integers. ((Does this exist?))

By analogy with Quillen’s conjecture/Voevodsky’s theorem we predict that v
2

acts bijectively on
V (1)⇤K(B), for ⇤ � 0. By analogy with Lichtenbaum’s conjecture/Suslin’s theorem, we predict that
V (1)⇤K(⌦

1

) ⇠= V (1)⇤E2

, in all su�ciently high degrees, and that L̂
2

K(⌦
1

) ' E
2

.
In the case when B ! ⌦

1

is an unramified G-Galois extension, the hypothetical motivic cohomology
would reduce to group cohomology, and V (1)⇤K(B) ⇠= V (1)⇤K(⌦

1

)hG for ⇤ � 0. The general case would
require a more elaborate construction than the familiar homotopy fixed points. Even establishing the
existence of a ring spectrum map K(ku)! E

2

seems to be an open problem.
Similarly, for n � 1 let En be the K(n)-local Lubin–Tate ring spectrum, and let en be its connective

cover, so that En = en[1/u]. Consider Galois extensions En[1/p] ! M and connected commutative
en-algebras B, with a structure map to M , such that B is semi-finite as an en-module:

⌦n

B //

OO

M

en

OO

// En
// En[1/p]

OO

L̂nS

OO

Let ⌦n be the p-completed homotopy colimit of all such B, i.e., the en-algebraic integers.
Let F be a finite p-local spectrum admitting a vn+1

self map v : ⌃dF ! F , cf. Hopkins–Smith
[HS98, Def. 8]. The finite localization functor Lf

n+1

, which annihilates all finite E(n + 1)-acyclic spectra
[Mil92, Thm. 4], is a smashing localization such that F⇤L

f
n+1

X ⇠= F⇤X[1/v] for all spectra X.
I stated something like the following at Schloß Ringberg in January 1999 and in Oberwolfach in

September 2000:

Conjecture 4.1. Let B ! ⌦n and (F, v) be as above.

(a) Multiplication by v acts bijectively on F⇤K(B) for ⇤ � 0, and K(B) ! Lf
n+1

K(B) is a p-adic
equivalence in su�ciently high degrees.

(b) There are isomorphisms F⇤K(⌦n) ⇠= F⇤En+1

for ⇤ � 0, and L̂n+1

K(⌦n) ' En+1

.

The cases n = �1 and n = 0 correspond to Quillen’s results and the proven Lichtenbaum–Quillen
conjectures, respectively.

5. The cyclotomic trace map

We can detect chromatic redshift in algebraic K-theory using the cyclotomic trace map to topological
cyclic homology, or one of its variants.

The topological Hochschild homology THH(B) of a commutative S-algebra B is an S1-equivariant
spectrum whose underlying spectrum with S1-action can be constructed as B ⌦ S1, where ⌦ refers to
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the tensored structure of commutative S-algebras over spaces. Let

THH(B)hS1
= F (ES1

+

,THH(B))S1

be the S1-homotopy fixed points of THH(B), and let

THH(B)tS1
= [ gES1

^ F (ES1

+

,THH(B))]S
1

be the associated S1-Tate construction, previously denoted tS1 THH(B)S1
or Ĥ(S1,THH(B)). Here ES1

is a free contractible S1-space, and gES1 is the mapping cone of the collapse map ES1

+

! S0. Homotopy
fixed point spectra model group cohomology, and the Tate construction models Tate cohomology.

Think of B as a ring spectrum of functions on a brave new scheme X. Then B ^ · · · ^ B is the ring
of functions on X ⇥ · · · ⇥ X, so THH(B) plays the role of the ring of functions on the free loop space
Map(S1, X) = ⇤X, and THH(B)hS1

is like the ring of functions on the Borel construction ES1

+

^S1 ⇤X.
The Tate construction is a periodicized version of the Borel construction.

There is a natural trace map
K(B) �! THH(B)

that factors through the fixed point spectra THH(B)Cr for all finite subgroups Cr ⇢ S1. In particular,
there is a limiting map

K(B) �! TF (B; p) = holim
n

THH(B)Cpn .

Continuing with the canonical map from fixed points to homotopy fixed points, the target of

holim
n

THH(B)Cpn
�! holim

n
THH(B)hCpn

is p-adically equivalent to THH(B)hS1
. The cyclotomic structure of THH(B) gives a similar map

holim
n

THH(B)Cpn
�! holim

n
THH(B)tCpn+1

whose target is p-adically equivalent to THH(B)tS1
.

The topological Hochschild construction itself does not introduce a redshift, since THH(B) is a com-
mutative B-algebra. However, in all the computations made so far, any vn+1

-periodicity that is seen in
the algebraic K-theory K(B) has already been visible in the S1-Tate construction THH(B)tS1

.
Furthermore, it is possible to see in homological terms where the redshift arises, in terms of these

S1-equivariant constructions.

6. Circle-equivariant redshift

The algebra H⇤(en) appears to be unwieldy for n � 2, but there is a map BP hni ! en of (not neces-
sarily commutative) S-algebras, covering the usual map E(n) ! En, and the augmentation BP hni ! H
induces an identification

H⇤(BP hni) ⇠= P (⇠̄k | k � 1)⌦ E(⌧̄k | k � n + 1)

of subalgebras of the dual Steenrod algebra

A⇤ = P (⇠̄k | k � 1)⌦ E(⌧̄k | k � 0) .

Forgetting some structure, we can therefore think of the homology H⇤(B) of a commutative en-algebra B
as a commutative H⇤(BP hni)-algebra. This makes the Adams spectral sequence

Es,t
2

(B) = Exts,t
A⇤

(Fp, H⇤(B)) =) ⇡t�s(B^
p )

an algebra over the Adams spectral sequence

Es,t
2

= Exts,t
A⇤

(Fp, H⇤(BP hni)) =) ⇡t�s(BP hni^p )

which collapses at the E
2

-term
E⇤,⇤

2

= P (v
0

, . . . , vn)
and converges to the homotopy

⇡⇤BP hni^p ⇠= Zp[v1

, . . . , vn] .
The Bökstedt spectral sequence

E2

s,t(B) = HHs(H⇤(B))t =) Hs+t(THH(B))

is then an algebra spectral sequence over

E2

⇤,⇤ = HH⇤(H⇤(BP hni)) ⇠= H⇤(BP hni)⌦ E(�⇠̄k | k � 1)⌦ �(�⌧̄k | k � n + 1)
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converging to H⇤(THH(BP hni)). Here � denotes the suspension operator, coming from the S1-action
on THH, and �(x) = Fp{�jx | j � 0} denotes the divided power algebra on x.

The Dyer–Lashof operations Qpk
(⌧̄k) = ⌧̄k+1

in A⇤ (coming from the commutative S-algebra structure
on H), imply multiplicative extensions (�⌧̄k)p = �⌧̄k+1

, for k � n+1, which in turn imply that the Bock-
stein images �(�⌧̄k+1

) = �⇠̄k+1

vanish in the abutment. This argument, see Ausoni [Aus05, Lem. 5.3],
implies di↵erentials

dp�1(�j�⌧̄k) .= �⇠̄k+1

· �j�p�⌧̄k

for all j � p, which leave

Ep
⇤,⇤ = E1

⇤,⇤
⇠= H⇤(BP hni)⌦ E(�⇠̄

1

, . . . ,�⇠̄n+1

)⌦ Pp(�⌧̄k | k � n + 1)

converging to
H⇤(THH(BP hni)) ⇠= H⇤(BP hni)⌦ E(�⇠̄

1

, . . . ,�⇠̄n+1

)⌦ P (�⌧̄n+1

) .

This will still have trivial vn+1

-periodic homotopy, but note how building in a circle action gives rise to
the class �⌧̄n+1

.
The homological Tate spectral sequence

E2

s,t(B) = Ĥ�s(S1;Ht(THH(B))) =) Hc
s+t(THH(B)tS1

)

converges to a limit that we call the continuous homology of THH(B)tS1
. It is an algebra spectral

sequence over
E2

⇤,⇤ = Ĥ�⇤(S1;H⇤(THH(BP hni))) ⇠= P (t±1)⌦H⇤(THH(BP hni))

converging to Hc
⇤(THH(BP hni)tS1

). Here

d2(ti · x) = ti+1

· �x

for all x, which leaves

E3

⇤,⇤ = P (t±1)⌦ P (⇠̄p
1

, . . . , ⇠̄p
n+1

, ⇠̄k | k � n + 2)⌦ E(⌧ 0k | k � n + 2)⌦ E(⇠̄p�1

1

�⇠̄
1

, . . . , ⇠̄p�1

n+1

�⇠̄n+1

)

where ⌧ 0k = ⌧̄k � ⌧̄k�1

(�⌧̄k�1

)p�1 for each k � n + 2. Note that ⌧̄n+1

supports a nontrivial d2-di↵erential
to t · �⌧̄n+1

, and does not survive to the E1-term, while the ⌧ 0k for k � n + 2 are d2-cycles, due to the
known multiplicative extension.

This spectral sequence often collapses at this stage [BR05, Prop. 6.1], and there can be A⇤-comodule
extensions that combine pn+1 shifted copies of P (⇠̄p

1

, . . . , ⇠̄p
n+1

, ⇠̄k | k � n+2)⌦E(⌧ 0k | k � n+2) to a copy
of P (⇠̄k | k � 1)⌦E(⌧ 0k | k � n+2) ⇠= H⇤(BP hn+1i). The PhD theses of Sverre Lunøe–Nielsen [LNR12],
[LNR11] and Knut Berg (to appear) address these questions. Note the transition from H⇤(BP hni) to
H⇤(BP hn + 1i), with non-trivial vn+1

-periodic homotopy groups.
The typical result is that Hc

⇤(THH(B)tS1
) is an algebra over Hc

⇤(THH(BP hni)tS1
), which has an

associated graded of the form

P (t±pn+1
)⌦H⇤(BP hn + 1i)⌦ E(⌫

1

, . . . , ⌫n+1

)

where ⌫k is a t-power multiple of ⇠̄p�1

k �⇠̄k, but that there is room for further A⇤-comodule extensions.
This implies that the inverse limit Adams spectral sequence

Es,t
2

(B) = Exts,t
A⇤

(Fp, H
c
⇤(THH(B)tS1

)) =) ⇡t�s THH(B)tS1

p

is an algebra over the Adams spectral sequence

Es,t
2

= Exts,t
A⇤

(Fp, H
c
⇤(THH(BP hni)tS1

)) =) ⇡t�s THH(BP hni)tS1

p

which contains factors like

Ext⇤,⇤A⇤
(Fp, H⇤(BP hn + 1i)) ⇠= P (v

0

, . . . , vn, vn+1

) .

Due to the exterior factors E(⌫
1

, . . . , ⌫n+1

) there is room for di↵erentials that might truncate the periodic
vn+1

-action visible above, but empirically this does not happen. A theory that explains the general
picture is, however, currently lacking.

7. Beyond elliptic cohomology

Do K(tmf) and THH(tmf)tS1
detect v

3

-periodic families? Work in progress for p = 2 with Bruner
(2008).
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8. Waldhausen’s localization tower

The chromatic localization functors (Ln and) L̂n and the finite localizations functors Lf
n fit in a

diagram of commutative structured ring spectra

En KUp

L̂nS

Gn

OO

Jp

Z⇥p

OO

HQ

S
(p)

// . . . // Lf
nS //

OO

Lf
n�1

S // . . . // Lf
1

S //

OO

Lf
0

S

'

OO

where Lf
nS ! LnS is an equivalence for n  1, but probably not for n � 2, according to the wisdom

concerning Ravenel’s telescope conjecture [MRS01]. Applying algebraic K-theory to the lower row one
gets a telescopic localization tower

K(S
(p)

) // . . . // K(Lf
nS) // K(Lf

n�1

S) // . . . // K(L
1

S) // K(Q)

similar to that of [Wal84, p. 174], interpolating between the geometrically significant algebraic K-theory
of spaces on the left hand side, and the arithmetically significant algebraic K-theory of number fields on
the right hand side. Waldhausen worked with Ln, and explicitly assumed that it is a finite localization
functor, but we can work with Lf

n instead. This ensures that each finite cell Lf
nS-module is Lf

n-equivalent
to a finite cell S-module, as can be proved by induction on the number of Lf

nS-cells.
Let C

0

be the category of finite p-local spectra, and let wnC
0

be the subcategory of E(n)⇤-equivalences,
or equivalently of Lf

n-equivalences, for n � 0. Let Cn = C wn�1
0

denote the full subcategory of E(n� 1)⇤-
acyclic spectra, i.e., the finite spectra of type � n, for n � 1. Then K(C

0

, wn) ' K(Lf
nS), and

Waldhausen’s localization theorem [Wal84, §3] recognizes the homotopy fiber of K(Lf
nS) ! K(Lf

n�1

S)
as K(Cn, wn), i.e., the algebraic K-theory of finite spectra of type � n, with respect to the E(n)⇤-
equivalences. We get a homotopy fiber sequence

K(Cn, wn) �! K(Lf
nS) �! K(Lf

n�1

S) .

Let K sm
n be the category of small K(n)-local spectra, and let K 0

n be the full subcategory of K(n)-
localizations of finite spectra of type � n. Hovey–Strickland [HS99, Thm. 8.5] show that the inclusion
K 0

n ⇢ K sm
n is an idempotent completion, so the induced map K(K 0

n) ! K(K sm
n ) induces an isomor-

phism on ⇡i for each i � 1. The localization functors Ln and L̂n agree on Cn, hence induce an equivalence
K(Cn, wn) ' K(K 0

n). Thus we have a map

K(Cn, wn) �! K(K sm
n ) ,

which induces a ⇡i-isomorphism for each i � 1. We view K sm
n as a category of suitably small L̂nS-

modules. ((What happens at the level of ⇡
0

?))
Let E df

n be the category of En-module spectra that have degreewise finite homotopy groups. Base
change along the K(n)-local pro-Gn-Galois extension L̂nS ! En takes K sm

n to E df
n , and conversely

[HS99, Cor. 12.16], so it is plausible that a Galois descent comparison map

K(K sm
n ) �! K(E df

n )hGn

is close to an equivalence. Finally, K(E df
n ) is related to the algebraic K-theory of En and its various

localizations. For n = 1 we have E
1

= KUp, and K(E df
1

) is the algebraic K-theory of p-nilpotent finite
cell KUp-modules, which sits [Bar13, Prop. 11.15] in a homotopy fiber sequence

K(E df
1

) �! K(KUp) �! K(KUp[1/p]) .

In general, this fiber sequence is replaced by an n-dimensional cubical diagram. Note that the transfer
map K(KU/p) ! K(E df

1

) associated to KUp ! KU/p is far from an equivalence, by the calculations
of [AR12, Cor. 1.3], so there does not appear to be any easy way to describe the algebraic K-theory of
degreewise finite En-modules in terms of dévissage, cf. [Wal84, p. 188].
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K(E df
n ) // K(En)

K(Cn, wn)

&&MMMMMMMMMMM
// K(K sm

n )

Gn

OO

. . . // K(Lf
nS) // K(Lf

n�1

S) // . . .

Conjecture 4.1 about the structure of the algebraic K-theory of En (and various localizations) is therefore
also a statement about K(E df

n ), and conjecturally about K(K sm
n ), which rather precisely measures the

di↵erence between K(Lf
nS) and K(Lf

n�1

S).

9. The spherical case

Calculations of TC(S; p), K(Z) and TC(Z; p) were assembled to a calculation of K(S) at p = 2 in
[Rog02] and at odd regular primes in [Rog03]. These results describe the cohomology of K(S) as an
A -module in all degrees (up to an extension in the odd case), and lead to Adams spectral sequence
calculations in a finite range of degrees.

The algebraic K-groups of S are at least as complicated as those of its stable homotopy groups. The
complex cobordism spectrum MU has turned out to be a convenient halfway house

S �!MU �! H

between homology and homotopy. The Thom equivalence MU ^MU ' MU ^BU
+

makes S ! MU a
Hopf–Galois extension [Rog08, §12], and the cosimplicial Amitsur resolution

[q] 7�!MU ^MU^q

of S is equivalent to the cobar resolution [q] 7�! MU ^ BUq
+

for the S[BU ] = ⌃1(BU
+

)-comodule
algebra MU . Applying algebraic K-theory, an analogue of Quillen’s conjecture would predict that K(S)
is well approximated by the totalization of the cosimplicial spectrum

[q] 7�! K(MU ^MU^q)

rewriteable as [q] 7�! K(MU ^ BUq
+

). If, by analogy with the Galois case, there are compatible maps
K(MU ^ BUq

+

) ! K(MU) ^ BUq
+

, then this might in turn be approximated by the totalization of the
cobar resolution [q] 7�! K(MU) ^BUq

+

for an S[BU ]-comodule algebra structure on K(MU).
Conceivably, this leads to a more conceptual understanding of ⇡⇤K(S) in terms of ⇡⇤K(MU) and

Hopf–Galois descent, by analogy with the Adams–Novikov spectral sequence description of ⇡⇤S in terms
of ⇡⇤MU and its H⇤(BU)-coaction. This has been a motivating factor for the study of K(MU), adver-
tised in [BR05] and [Rog09], and pursued in [LNR11].

10. Higher redshift

For a Lie group G of rank k, consider (B ⌦ G)hG or something like (B ⌦ G)tG. If B is vn-periodic
but not vn+1

-periodic, then apparently (B ⌦G)tG is vn+k-periodic. Tested for B = H and G = T k for
small k, as well as for G = SO(3) and G = S3. Work in progress (Rognes, 2008–2011) and in Torleif
Veen’s PhD thesis (2013).
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Iterated Modulation

R,+,⇥ commutative ring

Mod(R),�,⌦ bipermutative category

Mod(Mod(R)) ring-like 2-category

. . .

Mod(n)(R) ring-like n-category

. . .
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Iterated K-Theory

B commutative S-algebra

K (B) algebraic K -theory spectrum

K (K (B)) double algebraic K -theory

. . .

K (n)(B) n-fold algebraic K -theory

. . .
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Height of Formal Group Laws

Hesselholt–Madsen ’97: Chromatic filtration of iterated topological
cyclic homology?
Chromatic filtration of iterated algebraic K -theory?
Formal coproduct on K (n)(B)⇤(CP1)?

F (x1, x2) = x1 + x2 + . . . formal group law

[p]F (x)
.
= xpn

+ . . . height n
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Redshift

B K7�! K (B)

ring spectrum ring spectrum

FGL of height n FGL of height n + 1

vn-periodic vn+1-periodic

|vn| = 2pn � 2 < |vn+1| = 2pn+1 � 2

longer wavelength, less energy
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(Co-)Homological Incarnation

Nested Hopf subalgebras

0 ⇢ · · · ⇢ E (n) = E(Q0, . . . ,Qn) ⇢ · · ·

in Steenrod algebra A = H⇤(H).

Nested A⇤-comodule subalgebras

A⇤ � · · · � (A //E (n))⇤ = P(⇠̄k | k � 1)⌦ E(⌧̄k | k > n) � · · ·

invariant under Dyer–Lashof operations on A⇤ = H⇤(H).
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K of Finite Fields

Finite field k , characteristic p > 0

Theorem (Quillen ’72)
Hi(BGL(k̄);Fp) = 0 for i > 0.

K (k̄)p ' HZp

⇡⇤K (k)p = ⇡⇤K (k̄)hGk
p for ⇤ � 0

K (k)p ' HZp

Mult. by p injective on ⇡⇤K (k̄)p and ⇡⇤K (k)p

p 2 ⇡0S lifts v0 2 ⇡0BP.
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Lichtenbaum Conjecture

Separably closed field F̄ , characteristic 6= p

Conjecture (Lichtenbaum)
⇡tK (F̄ )p = Zp for t � 0 even, 0 for t odd.

Proved by Suslin ’84
K (F̄ )p ' kup

L̂1K (F̄ ) ' KUp where L̂n = LK (n)

Mult. by u 2 ⇡2kup bijective on ⇡⇤K (F̄ )p for ⇤ � 0.
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K of Number Rings

Number field F , ring of S-integers A

A // F

Z //

OO

Z[1/p] // Q

OO
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Quillen Conjecture

Conjecture (Quillen ’75)

E2
s,t = H�s

ét (Spec A;Zp(t/2)) =) ⇡s+tK (A)p

converging for s + t � 1.

Zp(t/2) = ⇡tK (F̄ )p

⇡⇤K (F )p = ⇡⇤K (F̄ )hGF
p for ⇤ � 1

Mult. by � 2 ⇡2p�2(S/p) bijective on ⇡⇤(K (A);Z/p), for ⇤ � 1
� lifts up�1 2 ⇡⇤(ku;Z/p) and v1 2 ⇡⇤BP.
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Partial and Full Verifications

Thomason ’85:

⇡⇤(K (F );Z/p)[1/�] = ⇡⇤(K (F̄ )hGF ;Z/p)

for ⇤ � 2.
Waldhausen ’84: Is K (A) ! L1K (A) a p-adic equivalence in high
degrees, where Ln = LE(n)?
Bökstedt–Madsen ’94, ’95, R. ’99, Hesselholt–Madsen ’03:
Confirmed for local number fields.
Voevodsky ’03, ’11: Confirmed for (global number) fields by proof
of Milnor and Bloch–Kato conjectures.
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K of Topological K-Theory

Adams summand L = E(1) of KU(p), conn. cover ` = BPh1i

Theorem (Ausoni-R. ’02)

V (1)⇤K (`p) = P(v2)⌦
h
E(�1,�2, @)

� E(�2)⌦ Fp{�1td | 0 < d < p}

� E(�1)⌦ Fp{�2tdp | 0 < d < p}
i

in degrees � 2p � 2, where (. . . ).
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K of Topological K-Theory, II

Adams summand L = E(1) of KU(p), conn. cover ` = BPh1i

Theorem (Ausoni-R. ’02, Ausoni ’10)
V (1)⇤K (`p) = (. . . ) and V (1)⇤K (kup) = (. . . ).

V (1) = S/(p, v1) = S [p e1 [↵1 e2p�1 [p e2p

Blumberg–Mandell ’08: Also V (1)⇤K (Lp) and V (1)⇤K (KUp)

Mult. by v2 2 ⇡2p2�2V (1) bijective on each answer, for ⇤ � 2p � 2
v2 lifts v2 2 ⇡⇤BP.
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Quillen Conjecture, II

`p-algebra of S-integers B

Conjecture (à la Quillen/Voevodsky)

E2
s,t = H�s

mot(Spec B;Fp2(t/2)) =) V (1)s+tK (B)

converging for s + t � 0.

H⇤
mot(�) motivic cohomology for commutative S-algebras?

Fp2(t/2) = V (1)tE2, where ⇡⇤E2 = WFp2 [[u1]][u±1]

Need Fp2 due to sign in Ausoni’s relation bp�1 = �v2.
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`p-Algebra of Integers

Definition (`p-algebra of integers B)
A connected commutative `p-algebra over a Galois extension of
Lp[1/p], semi-finite as `p-module.

B // M

`p

OO

// Lp // Lp[1/p]

G

OO

Examples!? For S-integers, allow localizations.
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`p-Algebraic Integers

Definition (`p-algebraic integers ⌦1)
p-completed homotopy colimit of all such B.

⌦1

B //

OO

M

`p

OO

// Lp // Lp[1/p]

G

OO

Jp

OO
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Schloß Ringberg ’99 Conjecture

Conjecture (à la Lichtenbaum/Suslin)
Mult. by v2 bijective on V (1)⇤K (B) for ⇤ � 0.
V (1)⇤K (⌦1) = V (1)⇤E2 for ⇤ � 0.
L̂2K (⌦1) ' E2.

For G-Galois B ! ⌦1, expect V (1)⇤K (B) = V (1)⇤K (⌦1)
hG for

⇤ � 0
Ring spectrum map K (ku) ! E2?
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en-Algebra of Integers

Lubin–Tate spectrum En, connective cover en

Definition (en-algebra of integers B)
A connected commutative en-algebra over a Galois extension of
En[1/p], semi-finite as en-module.

B // M

en

OO

// En // En[1/p]

G

OO
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en-Algebraic Integers

Definition (en-algebraic integers ⌦n)
p-completed homotopy colimit of all such B.

⌦n

B //

OO

M

en

OO

// En // En[1/p]

G

OO

L̂nS

OO
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Finite Localizations

Hopkins–Smith ’98: Finite p-local spectrum F , with vn+1 self map
v : ⌃dF ! F .
Miller ’92: Finite localization Lf

n+1 annihilates finite E(n+1)-acyclic
spectra.
F⇤Lf

n+1X = F⇤X [1/v ] for any X .
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Schloß Ringberg ’99 Conjecture, II

en ! B ! ⌦n and (F , v) as above

Conjecture
Mult. by v bijective on F⇤K (B) for ⇤ � 0.
K (B) ! Lf

n+1K (B) a p-adic equivalence in high degrees.
F⇤K (⌦n) = F⇤En+1 for ⇤ � 0.
L̂n+1K (⌦n) ' En+1.
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Topological Hochschild Homology

B commutative S-algebra
⇠ functions on X
THH(B) = B ⌦ S1 topological Hochschild homology
⇠ functions on free loop space L X
THH(B)hS1

= F (ES1
+,THH(B))S1 homotopy fixed points

⇠ functions on Borel construction ES1
+ ^S1 L X

THH(B)tS1
= [fES

1
^ F (ES1

+,THH(B))]S
1 Tate construction

⇠ functions on periodicized Borel construction.
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Trace Maps

THH(B)hCpn

K (B) //

88

&&

THH(B)Cpn //

OO

✏✏

THH(B)

THH(B)tCpn+1
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Trace Maps, II

THH(B)hS1
p

K (B) //

99

%%

TF (B; p) //

OO

✏✏

THH(B)

THH(B)tS1
p
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Traces of Redshift

No redshift in THH(B).
All redshift yet seen in K (B) also visible in THH(B)tS1 .
Detectable in A⇤-coaction on homology.
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Homological Approach

en-algebra of integers B

E(n) // En

H BPhni //

OO

oo en //

OO

B

H⇤(en) awkward for n � 2
H⇤(BPhni) = P(⇠̄k | k � 1)⌦ E(⌧̄k | k > n)
Subalgebra of A⇤ = P(⇠̄k | k � 1)⌦ E(⌧̄k | k � 0)
H⇤(B) commutative H⇤(BPhni)-algebra
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vn-Periodic Input

Adams spectral sequence

Es,t
2 (B) = Exts,tA⇤

(Fp,H⇤(B)) =) ⇡t�s(B)

algebra over
E⇤,⇤

2 = P(v0, . . . , vn)

converging to
⇡⇤BPhnip = Zp[v1, . . . , vn]

generating vn-periodicity in ⇡⇤(B).
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Add Circle Action

Circle action gives suspension operator �.
Bökstedt spectral sequence

E2
s,t(B) = HHs(H⇤(B))t =) Hs+t(THH(B))

algebra over

E2
⇤,⇤ = H⇤(BPhni)⌦ E(�⇠̄k | k � 1)⌦ �(�⌧̄k | k > n)

converging to H⇤(THH(BPhni)).
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Differentials and Extensions

Dyer–Lashof operations

Qpk
(⌧̄k ) = ⌧̄k+1

imply multiplicative extensions (�⌧̄k )
p = �⌧̄k+1 and differentials

dp�1(�j�⌧̄k )
.
= �⇠̄k+1 · �j�p�⌧̄k

for k > n, j � p, leaving Ep
⇤,⇤ = E1

⇤,⇤ converging to

H⇤(THH(BPhni)) = H⇤(BPhni)⌦ E(�⇠̄1, . . . ,�⇠̄n+1)⌦ P(�⌧̄n+1) .
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Remove Circle Action

Homological Tate spectral sequence

E2
s,t(B) = Ĥ�s(S1;Ht(THH(B))) =) Hc

s+t(THH(B)tS1
)

algebra over
E2
⇤,⇤ = P(t±1)⌦ H⇤(THH(BPhni))

converging to Hc
⇤ (THH(BPhni)tS1

).
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Differentials, II

Circle invariance gives differentials

d2(t i · x) = t i+1 · �x

leaving

E3
⇤,⇤ = P(t±1)⌦ P(⇠̄p

1 , . . . , ⇠̄
p
n+1, ⇠̄k | k > n+1)

⌦ E(⌧ 0k | k > n+1)⌦ E(⇠̄p�1
1 �⇠̄1, . . . , ⇠̄

p�1
n+1�⇠̄n+1)

where ⌧ 0k = ⌧̄k � ⌧̄k�1(�⌧̄k�1)
p�1 for k > n+1.
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(E2, d2)-Charts

t · ⇠̄p�1
k �⇠̄k

⇠̄p
k

OO

t · �⇠̄k

⇠̄k
✏

gg

1

1  k  n + 1

t · (�⌧̄n+1)
p

⌧̄n+1(�⌧̄n+1)
p�1, ⌧̄n+2

✏✏
ck

OO

t · �⌧̄n+1

⌧̄n+1
✏

gg

1
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Extensions, II

Bruner–R. ’05: Often collapses at E3 = E1.
Lunøe-Nielsen–R. ’11, ’12, Knut Berg: Often A⇤-comodule
extensions combining copies of

P(⇠̄p
1 , . . . , ⇠̄

p
n+1, ⇠̄k | k > n+1)⌦ E(⌧ 0k | k > n+1)

to
P(⇠̄k | k � 1)⌦ E(⌧ 0k | k > n+1) ⇠= H⇤(BPhn+1i) .

Lose ⌧̄n+1 to kill �⌧̄n+1.
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vn+1-Periodic Output

Hc
⇤ (THH(B)tS1

) algebra over Hc
⇤ (THH(BPhni)tS1

), typically with
associated graded

P(t±pn+1
)⌦ H⇤(BPhn+1i)⌦ E(⌫1, . . . , ⌫n+1) .

Limit of Adams spectral sequences

Es,t
2 (B) = Exts,tA⇤

(Fp,Hc
⇤ (THH(B)tS1

)) =) ⇡t�sTHH(B)tS1

algebra over E⇤,⇤
2 (BPhni), containing factors like

Ext⇤,⇤A⇤
(Fp,H⇤(BPhn+1i)) = P(v0, . . . , vn, vn+1) .
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State of Affairs

Room for differentials due to exterior factor E(⌫1, . . . , ⌫n+1).
Might truncate the periodic vn+1-action.
Empirically this does not happen.
A general explanation is currently lacking.
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Hyperelliptic Cohomology

Topological modular forms tmf .
⇡⇤(tmf ) is v2-periodic.
Do ⇡⇤K (tmf ) and ⇡⇤THH(tmf )tS1 detect v3-periodic families in
⇡⇤S?
Work in progress for p = 2 with Bruner ’08.
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Chromatic and Telescopic Localizations

En KUp

L̂nS

Gn

OO

Jp

Z⇥
p

OO

HQ

S(p)
// . . . // Lf

nS //

OO

Lf
n�1S // . . . // Lf

1S //

OO

Lf
0S

'

OO

Ravenel’s Telescope Conjecture ’84: Lf
nS '�! LnS ?

True for n  1.
Mahowald–Ravenel–Shick ’01: Probably false for n � 2.
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K-Theory Localization Tower

Theorem (Waldhausen ’84, trading Ln for Lf
n)

Tower of fiber sequences for n � 1

K (Cn,wn)

✏✏

. . .

K (S(p)) // . . . // K (Lf
nS) // K (Lf

n�1S) // . . . // K (Q)

Cn category of finite spectra of type � n
wn subcategory of E(n)-equivalences
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Monochromatic K-Theory

K sm
n category of small K (n)-local spectra

E df
n category of En-module spectra with each ⇡i finite

Proposition (Hovey–Strickland ’99)
(Cn,wn) ! (K sm

n , h) is an idempotent completion.

⇡iK (Cn,wn) ⇠= ⇡iK (K sm
n ) for i > 0.

Base change along L̂nS ! En takes K sm
n to E df

n .

Conjecture (à la wishful thinking)

K (K sm
n ) �! K (E df

n )hGn

close to an equivalence.
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Broken Dévissage

Express K (E df
n ) using K of En and localizations.

n = 1 for simplicity.
Barwick: Fiber sequence

K (E df
1 ) �! K (KUp) �! K (KUp[1/p]) .

Ausoni–R. ’12: Transfer map

K (KU/p) �! K (E df
1 )

is far from an equivalence.
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Congregation

K (E df
n ) // K (En)

K (Cn,wn)

&&

// K (K sm
n )

Gn

OO

. . . // K (Lf
nS) // K (Lf

n�1S) // . . .

K (En) governs change in K -theory along Lf
nS ! Lf

n�1S.
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Outline

1 K-Theoretical Redshift
Iteration, Height and Nesting
Redshift in Algebraic K-Theory
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2 Topological Cyclic Redshift
The Cyclotomic Trace Map
Circle-Equivariant Redshift
Beyond Elliptic Cohomology

3 Variations
Waldhausen’s Localization Tower
Infinite Complexity
Higher Redshift
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K of the Sphere Spectrum

Waldhausen et al.: K (S) geometrically important.
R. ’02: Compute A -module H⇤(K (S)) for p = 2.
R. ’03: Compute A -module H⇤(K (S)) for p regular, up to an
extension.
Gives ⇡⇤K (S)p in a range.
As complicated as ⇡⇤S.
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K of Complex Bordism

S ! MU ! H halfway house.
S is totalization of cosimplicial spectrum

[q] 7! MU ^ MU^q .

Is K (S) close to totalization of

[q] 7! K (MU ^ MU^q) ?

Seek conceptual understanding of K (S) by Hopf–Galois descent
from K (MU).
Pursued by Bruner–R. ’05, R. ’08, R. ’09 and
Lunøe-Nielsen–R. ’11.
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Higher Redshift

B commutative S-algebra, G Lie group of rank k .
Study

B 7�! (B ⌦ G)hG

or Tate-like construction.
Expect shift from vn- to vn+k -periodicity.
Carlsson–Dundas et al. ’10, ’11: G = T k .
R. ’11: General G.
R. ’08, Torleif Veen ’13: Partial verifications.
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437–552.
[Voe03] Vladimir Voevodsky, Motivic cohomology with Z/2-coe�cients, Publ. Math. Inst. Hautes Études Sci. 98 (2003),

59–104, DOI 10.1007/s10240-003-0010-6. MR2031199 (2005b:14038b)
[Voe11] , On motivic cohomology with Z/l-coe�cients, Ann. of Math. (2) 174 (2011), no. 1, 401–438.
[Wal84] Friedhelm Waldhausen, Algebraic K-theory of spaces, localization, and the chromatic filtration of stable homo-

topy, Algebraic topology, Aarhus 1982 (Aarhus, 1982), Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984,
pp. 173–195.

Department of Mathematics, University of Oslo, Norway
E-mail address: rognes@math.uio.no

URL: http://folk.uio.no/rognes

8


