




















ALGEBRAIC K-THEORY AND HIGHER CATEGORIES

ANDREW J. BLUMBERG

Abstract. The outline of the talk.

1. Setup

• Goal: Explain algebraic K-theory as a functor from the homo-
topical category of homotopical categories to spectra.

• Start with a “classical” model of a homotopical category.

Definition 1.1. A pointed category C equipped with subcategories cof(C)
of cofibrations and wC of weak equivalences is a Waldhausen category if:
(1) Every isomorphism is a cofibration.
(2) The unique map ⇤ ! X is a cofibration for every X.
(3) If X ! Y is a cofibration and X ! Z is any map, the pushout

X //

✏✏

Y

✏✏

Z // Y
`

X Z

exists and Z ! Y
`

X Z is a cofibration.
(4) Every isomorphism is a weak equivalence.
(5) Given a diagram

Y

✏✏

X //oo

✏✏

Z

✏✏

Y 0 X 0
//oo Z 0

where X ! Y and X 0 ! Y 0 are cofibrations and the vertical maps are
weak equivalences, the induced map Y

`
X Z ! Y 0 `

X0 Z 0 is a weak
equivalence.

• What is this data? This is a category with weak equivalences and certain
specified homotopy pushouts. In particular, we are stipulating which maps
have homotopy cofibers:

X //

✏✏

Y

✏✏

⇤ // Y/X.

(This is an exact sequence.)
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• Also, we have coproducts (and this becomes a symmetric monoidal category
under coproduct).

• Out of this data, we can define the Waldhausen K-theory space:

Definition 1.2. For each n, the simplicial space S•C is specified as functors

Ar([n]) �! C

(i.e., where Ar([n]) has objects (i, j) with 0  i, j  n, and maps if i  i0

and j  j0) with certain properties:
Specifically, a collection of objects Aij such that

(1) Aii = ⇤ for all i.
(2) Aij ! Aik is a cofibration for all i, j, and k.
(3) Each square

Aij
//

✏✏

Aik

✏✏

⇤ // Ajk.

(This is itself a Waldhausen category, of course.)
• Now, we can relax the hypotheses a bit, as follows. We define a homotopy
pushout square to be a square that is equivalent via a zig-zag to a pushout
along a cofibration. (Notion of a weak cofibration is useful here.)

Under mild hypotheses, these behave the way we expect them to.

• Now can redo the S• construction; call it the S0
• construction. (Joint with

Mandell.)
• Functorial in “weakly exact” functors (preserve the point (up to homotopy),
weak equivalences and weak cofibrations).

• This sure makes it look like algebraic K-theory reflects the homotopical
data encoded by the Waldhausen category structure (i.e., weak equivalences
and homotopy pushouts).

• First guess: F : C ! D induces an equivalence of homotopy categories, then
F induces an equivalence of algebraic K-theory.

• Thomason-Trobaugh proved this is true, under stability hypotheses (DG-
Waldhausen categories).

• More sophisticated: F : LHC ! LHD is a DK-equivalence of simplicial cate-
gories, then F induces an equivalence on algebraic K-theory. Toen-Vezzosi,
Cisinski, Blumberg-Mandell. (Equivalent to approximation theorem.)

• In fact, we (Blumberg-Mandell) explain how K-theory is assembled from
the mapping spaces in the Dwyer-Kan simplicial localization (total space
of fibration with base homotopy automorphism spaces and fiber mapping
spaces).

• Interlude about 1-categories: What this says is that algebraic K-theory
is an invariant of the underlying 1-category. (One way to extract it is
from a fibrant replacement of the Dwyer-Kan simplicial localizations; also,
Barwick-Kan relative category.)

• More precisely, algebraic K-theory is a functor from 1-categories with
certain homotopy pushouts to the 1-category of spectra.
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• A fruitful question to ask: What kind of functor is it? (And can we build
it directly?)

2. Universal characterizations of higher algebraic K-theory

• Slogan: Algebraic K-theory splits exact sequences.
• In K0, this is the definition:

Definition 2.1. For a Waldhausen category C, K0 is the free abelian group
on weak equivalence classes [M ] subject to the relation

[Y ] = [X] + [Y/X].

(Notice that this means that the exact sequence X ! Y ! Y/X and
X ! X

`
Y/X ! Y/X become equivalent.)

• In higher algebraic K-theory, this becomes Waldhausen’s additivity theo-
rem. Recall that S2C is the category of exact sequences. Additivity theorem
says that:

K(S2C) ' K(C)⇥K(C)
via the obvious map.

• Waldhausen deduces almost all of the rest of his theorems from the addivity
theorem. Sta↵eldt showed that all of Quillen’s foundational theorems follow
from it too.

• McCarthy gave a marvellous proof of the addivitity theorem:

Theorem 2.2. If F is a functor from Waldhausen categories to spectra

such that

(1) F takes the trivial category to a point,

(2) F preserves products up to weak equivalence, and

(3) Realization property for geometric realization,

then F (S•�) has the additivity theorem.

• Put another way, the S• construction is the universal thing that forces a
functor to be additive.

• Following McCarthy, Hesselholt-Madsen explain how this basically implies
all the rest of Waldhausen’s theorems. (Analogue of the Sta↵eldt observa-
tion.)

• So we want to express the idea that K-theory is somehow a distinguished
functor that “satisfies additivity”.

• Question: what is the domain category?
• We start with the homotopical category of Waldhausen categories.
• One choice: Observe that the additivity theorem implies that K-theory is
an invariant of stable categories: under reasonable hypotheses, there is a
cofiber sequence

Id �! CX �! ⌃X,

and then we conclude that Id_⌃ ' ⇤.
• So we can work with small stable categories; think of this as a Morita-
theoretic context. (Model this by taking spectral categories and forcing the
map C ! Fun(Cop, S)! to be an equivalence.

• OK, so we have functors out of some homotopical category of small homo-
topical categories with colimits (e.g., small stable categories), and we want
to identify those functors which have the additivity theorem.
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• First, we want to observe that we can reflect the addivity theorem in terms
of properties of the the category of Waldhausen categories (or small stable
categories):

• Thomason-Trobaugh tell us that given stable categories lifting triangulated
categories, if we have a Bousfield localization sequence

A �! B �! B/A,

then we have a cofiber sequence on K-theory. This is a bit stronger than
additivity (it’s the property we see on non-connective K-theory), but re-
lated.

• Additivity can be seen as a property in the same way:

A
f
//

B
h
oo

g
//

C
i

oo

where (f, h) and (g, i) are adjoint pairs such that h � f ' id and g � i ' id
(Split Bousfield localization sequences, basically.)

• Here’s our strategy: we’re going to modify the category of Waldhausen
categories so that colimit-preserving functors out of it are the same as
additive functors.

• Additional property: preserve filtered colimits.
• Easy as pie:

Take the compact objects, take simplicial presheaves, localize, stabilize.
(Work of Tabuada and Blumberg-Gepner-Tabuada.)

(In Barwick’s setting, take compact objects, take certain simplicial presheaves,
localize, take excisive functors.)

• Some interesting consequences:
(1) BGT: Get a “category of motives”; K-theory is co-representable (ini-

tial additive functor over the “moduli of objects”), can view this as
“applying K-theory to the hom objects”.

(2) Barwick: new proofs of the theorems of Waldhausen (also, Fiore).
(3) The S• construction becomes the suspension; Barwick observes this

means K-theory can be thought of as a derivative (in the Goodwillie
sense). (Waldhausen and McCarthy knew this, of course.)

(4) Yoneda lemma gives trace maps.
• Other consequences, future questions:

(1) Multiplicative structures: Many authors — (Cisinski-Tabuada, Blumberg-
Mandell, Blumberg-Gepner-Tabuada, Barwick, Glasman, Gepner-Groth-
Nikolaus, Elmendorf-Mandell).

(2) Trace methods (how to fit TC and THH into this perspective; Blumberg-
Mandell work on cyclotomic spectra, Kaledin, etc.)

(3) Other kinds of K-theory (endomorphisms, homotopy invariant, etc.)
(4) Even higher categories. (Ayala-Blumberg.)
(5) Relationship to field theories.
(6) What can we do with this?
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