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ALGEBRAIC K-THEORY AND HIGHER CATEGORIES

ANDREW J. BLUMBERG

ABSTRACT. The outline of the talk.

1. SETUP

e Goal: Explain algebraic K-theory as a functor from the homo-
topical category of homotopical categories to spectra.

e Start with a “classical” model of a homotopical category.

Definition 1.1. A pointed category C equipped with subcategories cof(C)
of cofibrations and wC of weak equivalences is a Waldhausen category if:
(1) Every isomorphism is a cofibration.
(2) The unique map * — X is a cofibration for every X.
(3) If X - Y is a cofibration and X — Z is any map, the pushout

X —Y

|

—g ) W/

exists and Z — Y [[ Z is a cofibration.
(4) Every isomorphism is a weak equivalence.
(5) Given a diagram

Y+——X— 7
Y+ —X — 7

where X — Y and X’ — Y are cofibrations and the vertical maps are
weak equivalences, the induced map Y [[ Z — Y'[[, Z' is a weak
equivalence.

e What is this data? This is a category with weak equivalences and certain
specified homotopy pushouts. In particular, we are stipulating which maps

have homotopy cofibers:
X Y
*

—Y/X.
(This is an exact sequence.)

—
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Also, we have coproducts (and this becomes a symmetric monoidal category
under coproduct).

Out of this data, we can define the Waldhausen K-theory space:
Definition 1.2. For each n, the simplicial space S,C is specified as functors
Ar([n])) — C

(i.e., where Ar([n]) has objects (i,7) with 0 < 4,7 < n, and maps if i <4’
and j < j') with certain properties:
Specifically, a collection of objects A;; such that
(1) Ay =« for all 4.
(2) A;; — Aix is a cofibration for all 4, j, and k.
(3) Each square

Aij — Aik

| |

*— A

(This is itself a Waldhausen category, of course.)
Now, we can relax the hypotheses a bit, as follows. We define a homotopy
pushout square to be a square that is equivalent via a zig-zag to a pushout
along a cofibration. (Notion of a weak cofibration is useful here.)

Under mild hypotheses, these behave the way we expect them to.

Now can redo the S, construction; call it the S, construction. (Joint with
Mandell.)

Functorial in “weakly exact” functors (preserve the point (up to homotopy),
weak equivalences and weak cofibrations).

This sure makes it look like algebraic K-theory reflects the homotopical
data encoded by the Waldhausen category structure (i.e., weak equivalences
and homotopy pushouts).

First guess: F': C — D induces an equivalence of homotopy categories, then
F induces an equivalence of algebraic K-theory.

Thomason-Trobaugh proved this is true, under stability hypotheses (DG-
Waldhausen categories).

More sophisticated: F': L¥C — LH D is a DK-equivalence of simplicial cate-
gories, then F' induces an equivalence on algebraic K-theory. Toen-Vezzosi,
Cisinski, Blumberg-Mandell. (Equivalent to approximation theorem.)

In fact, we (Blumberg-Mandell) explain how K-theory is assembled from
the mapping spaces in the Dwyer-Kan simplicial localization (total space
of fibration with base homotopy automorphism spaces and fiber mapping
spaces).

Interlude about oco-categories: What this says is that algebraic K-theory
is an invariant of the underlying oo-category. (One way to extract it is
from a fibrant replacement of the Dwyer-Kan simplicial localizations; also,
Barwick-Kan relative category.)

More precisely, algebraic K-theory is a functor from oo-categories with
certain homotopy pushouts to the co-category of spectra.
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e A fruitful question to ask: What kind of functor is it? (And can we build

it directly?)

UNIVERSAL CHARACTERIZATIONS OF HIGHER ALGEBRAIC K-THEORY

e Slogan: Algebraic K-theory splits exact sequences.
e In K, this is the definition:

Definition 2.1. For a Waldhausen category C, K is the free abelian group
on weak equivalence classes [M] subject to the relation

V] = [X] + [V/X].

(Notice that this means that the exact sequence X — Y — Y/X and
X - X]]Y/X — Y/X become equivalent.)
In higher algebraic K-theory, this becomes Waldhausen’s additivity theo-
rem. Recall that SoC is the category of exact sequences. Additivity theorem
says that:

K(S2C) ~ K(C) x K(C)

via the obvious map.
Waldhausen deduces almost all of the rest of his theorems from the addivity
theorem. Staffeldt showed that all of Quillen’s foundational theorems follow
from it too.
McCarthy gave a marvellous proof of the addivitity theorem:

Theorem 2.2. If I is a functor from Waldhausen categories to spectra
such that

(1) F takes the trivial category to a point,

(2) F preserves products up to weak equivalence, and

(3) Realization property for geometric realization,

then F(Se—) has the additivity theorem.

Put another way, the S, construction is the universal thing that forces a
functor to be additive.

Following McCarthy, Hesselholt-Madsen explain how this basically implies
all the rest of Waldhausen’s theorems. (Analogue of the Staffeldt observa-
tion.)

So we want to express the idea that K-theory is somehow a distinguished
functor that “satisfies additivity”.

e Question: what is the domain category?
e We start with the homotopical category of Waldhausen categories.
e One choice: Observe that the additivity theorem implies that K-theory is

an invariant of stable categories: under reasonable hypotheses, there is a
cofiber sequence
d— CX — YX,

and then we conclude that Id VY ~ x.

So we can work with small stable categories; think of this as a Morita-
theoretic context. (Model this by taking spectral categories and forcing the
map C — Fun(C°P, S)* to be an equivalence.

OK, so we have functors out of some homotopical category of small homo-
topical categories with colimits (e.g., small stable categories), and we want
to identify those functors which have the additivity theorem.
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First, we want to observe that we can reflect the addivity theorem in terms
of properties of the the category of Waldhausen categories (or small stable
categories):

Thomason-Trobaugh tell us that given stable categories lifting triangulated
categories, if we have a Bousfield localization sequence

A— B— B/A,

then we have a cofiber sequence on K-theory. This is a bit stronger than
additivity (it’s the property we see on non-connective K-theory), but re-
lated.

Additivity can be seen as a property in the same way:

f g
P

where (f,h) and (g,7) are adjoint pairs such that ho f ~id and goi ~ id

(Split Bousfield localization sequences, basically.)
e Here’s our strategy: we’re going to modify the category of Waldhausen
categories so that colimit-preserving functors out of it are the same as
additive functors.
Additional property: preserve filtered colimits.
Easy as pie:

Take the compact objects, take simplicial presheaves, localize, stabilize.
(Work of Tabuada and Blumberg-Gepner-Tabuada.)

(In Barwick’s setting, take compact objects, take certain simplicial presheaves,
localize, take excisive functors.)
e Some interesting consequences:

(1) BGT: Get a “category of motives”; K-theory is co-representable (ini-
tial additive functor over the “moduli of objects”), can view this as
“applying K-theory to the hom objects”.

(2) Barwick: new proofs of the theorems of Waldhausen (also, Fiore).

(3) The S, construction becomes the suspension; Barwick observes this
means K-theory can be thought of as a derivative (in the Goodwillie
sense). (Waldhausen and McCarthy knew this, of course.)

(4) Yoneda lemma gives trace maps.

e Other consequences, future questions:

(1) Multiplicative structures: Many authors — (Cisinski-Tabuada, Blumberg-
Mandell, Blumberg-Gepner-Tabuada, Barwick, Glasman, Gepner-Groth-
Nikolaus, Elmendorf-Mandell).

(2) Trace methods (how to fit TC' and T'H H into this perspective; Blumberg-
Mandell work on cyclotomic spectra, Kaledin, etc.)

(3) Other kinds of K-theory (endomorphisms, homotopy invariant, etc.)

(4) Even higher categories. (Ayala-Blumberg.)
(5)
(6)

Relationship to field theories.
What can we do with this?
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