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K-theory and spherical fibrations

Recall: KO(X ) := {R-vector bundles over X , �}gp. Similarly,

Definition
Sph(X ) := {sectioned spherical fibrations over X , ^X}gp. These are fibrations

Sn //E
p
✏✏

X

�

XX n 2 N.

Examples:
1 Trivial: Sn ⇥ X .
2 Hopf: ⌘ : S3 ! S2 is not sectioned.
3 Unit sphere bundles: If W ! X is a vector bundle, then S(W ) ! X is a

spherical fibration. If W admits a nowhere-vanishing section (i.e.,
W ⇠= V � R), then S(W ) is sectioned.

Note: if V is a vector bundle, then S(V � R) ! X is the fibrewise 1-point
compactification of V .
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J-homomorphism and representing spaces

Definition
The J-homomorphism

J : KO(X ) ! Sph(X )

sends V to S(V � R).

Recall: KO is represented by BO ⇥ Z, since O = limn O(n) is the (stable)
structure group for R-vector bundles. That is, if X is compact,

KO(X ) ⇠= [X ,BO ⇥ Z].

Similarly: Sph is represented by BF ⇥ Z for F = limn F (n), where

F (n) = hAut⇤(Sn) = {f : Sn ! Sn, f is a based homotopy equivalence}

This is an associative monoid under composition of functions; ⇡0F (n) ⇠= {±1}.

Then J is represented by J : BO ⇥ Z ! BF ⇥ Z, induced by O(n) ! F (n):

(M : Rn ! Rn) 7! (M [ {1} : Sn ! Sn).
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Unit spectra

Definition
If R is an E1 ring spectrum, define the unit space GL1 R as the union of
components of ⌦1R associated to (⇡0R)⇥ ✓ ⇡0R.

GL1 R is an E1-space with multiplication coming from the product on R. The
unit spectrum gl1 R is the connective spectrum with ⌦1 gl1 R = GL1 R.

Note: For n � 1, ⇡n gl1 R = ⇡n GL1 R ⇠= ⇡n⌦1R = ⇡nR.

Example

R = S0. Then ⇡0S0 = Z ◆ {±1} = (⇡0S0)⇥. The zeroth space of the
spectrum is QS0 = limn ⌦nSn.

GL1 S0 = Q±1S0 = lim
n!1

⌦n
±1Sn = lim

n!1
F (n) = F .

The products on GL1 S0 and F are not the same (smash product vs.
composition), but do commute, so B GL1 S0 ' BF :

Sph>0(X ) = [X ,BF ] = [X ,B GL1 S0] = [⌃1X ,⌃ gl1 S0].
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Picard spectra
Let R be an E1-ring spectrum, and (ModR ,^R) be the associated symmetric
monoidal 1-category of its (right) module spectra.

Definition (Ando-Blumberg-Gepner)
The Picard space Pic(R) ✓ ModR is the full subgroupoid spanned by the
modules M which invertible with respect to ^R . This is a grouplike E1 space;
the Picard spectrum pic(R) is the associated connective spectrum.

Note: R is the unit of ⌦R , so take R 2 Pic(R) as a basepoint. Then

⌦Pic(R) = AutR(R) = GL1(R)

In fact, this gives a connected cover ⌃ gl1(R) ! pic(R).

The J-homomorphism: in this language is

bo
J
//

✏✏

⌃ gl1(S0)

✏✏

(Here: bo = ko>0 is the connected cover)

ko J //pic(S0) induced by R-Vect ! Pic(S0), where V 7! V [ {1}.

Remark: Dustin Clausen has formulated an analogous (KQp)>1 ! pic(S0).
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Image in homotopy

Theorem (Bott periodicity)

k mod 8 1 2 3 4 5 6 7 8
⇡k ko Z/2 Z/2 0 Z 0 0 0 Z

The induced map ⇡⇤J : ⇡⇤ko ! ⇡⇤ pic(S0) ⇠= ⇡⇤�1(S0) for ⇤ > 0 is known:

Theorem (Adams, Quillen)
⇡⇤J is an injection if ⇤ = 1, 2 mod 8. Further, in dimension ⇤ = 4n, im(⇡⇤J) is
Z/m where m is the denominator of B2n/4n.

Here, the Bernoulli numbers satisfy

t
et � 1

=
1X

m=0

Bm
tm

m!

Summary of p-torsion: (p > 2): If ⇤ = 2(p � 1)pk m, where m is coprime to p,

p im(⇡⇤J) = Z/pk+1

Otherwise, p im(⇡⇤J) = 0. If ⇤ = 2k m with m odd, then 2 im(⇡⇤J) = Z/2k+1.
6



Adams conjecture
For k 2 N, the k th Adams operation is a natural transformation

 k : KO(X ) ! KO(X ).

Properties:
1 For line bundles L,  k (L) = L⌦k .
2 Each  k is a ring homomorphism.
3  k �  ` =  k`.

These are represented by maps  k : BO ! BO.

Theorem (Quillen, Sullivan, Friedlander)
For a finite CW complex X and V 2 KO(X ), there exists e = e(k ,V ) so that
keJ(V ) = keJ( k (V )) 2 Sph(X ).

Equivalently, on finite skeleta, the composite map

BO
 k�1 //BO J //BF loc //BF [ 1

k ]

is null-homotopic. There exists a complex analogue (for BU), too.
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Image of J space/spectra

Definition
For p = 2: Let J(2) be the homotopy fibre of the map

 3 � 1 : BO(2) ! BSpin(2).

For p > 2: choose k 2 N so that k mod p2 is a generator of (Z/p2)⇥, and
define J(p) to be the homotopy fibre of the map

 k � 1 : BU(p) ! BU(p)

Write j(2) (respectively j(p)) for the associated (ring) spectra. The unit of ko or
ku lifts to e : S0 ! j(p). This gives

e : SF ' Q0S0 ! J(p).

The Adams conjecture gives us a commuting diagram of fibre sequences:

U //

J
��

J(p)

f
✏✏

//BU(p)
 k�1 //

Adams
✏✏

BU(p)

J
✏✏

F(p) //EF(p) //BF(p) Note: k 2 Z⇥
(p).
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Computing the image of J in homotopy

Theorem (Mahowald; May-Tornehave)

The maps e and f split J(p) off of Q0S0
(p).

So: the p-torsion in im(⇡⇤J : ⇡⇤ko ! ⇡⇤�1S0) is isomorphic to ⇡⇤�1J(p):

· · · //⇡⇤J(p) //⇡⇤BU(p)
 k�1 //⇡⇤BU(p) //⇡⇤�1J(p) // · · ·

Now, ⇡⇤BU = Z[�], where � 2 ⇡2BU is the Bott periodicity class. Compute:
 k (�) = k�, so if ⇤ = 2n, this is

· · · //⇡2nJ(p) //Z(p)
kn�1 //Z(p) //⇡2n�1J(p) // · · ·

So for n > 0, ⇡2nJ(p) = 0, and

⇡2n�1J(p) = Z(p)/(kn � 1) =
⇢

0, n 6= (p � 1)psm
Z/ps+1, n = (p � 1)psm

Recall that k mod p2 generates (Z/p2)⇥. Then:
kn � 1 is a unit in Z(p) when kn 6= 1 mod p () (p � 1) - n.
Further, k (p�1) 2 1 + pZ(p), so k (p�1)psm 2 1 + ps+1Z(p).
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Algebraic K-theory of finite fields
Let q = pm, and define F q to be the homotopy fibre of  q � 1 : BU ! BU.
Quillen used Brauer theory to lift the defining representation of GLn(Fq) on Fn

q
to a virtual complex representation, yielding a map

B GLn(Fq) ! BU
Action of  q on B GLn(Fq) is the q-Frobenius so this lifts to F q . In the limit:

Theorem (Quillen)

The map ⌦1K (Fq) = B GL1(Fq)+ ! F q is an equivalence. Hence

Kn(Fq) =

⇢
0, n = 2i
Z/(qi � 1), n = 2i � 1

Interpretation: Let ` be prime, and pick q = pm so that q mod `2 is a
generator of (Z/`2)⇥. Then from Suslin’s theorem:

j^` //ku^
`  q�1

//ku^
`

K (Fq)^`

'

OO

//K (Fq)^`

'

OO

 q�1 //K (Fq)^`

'

OO

Note: This exhibits K (Fq)^` as the homotopy fixed points (K (Fq)^` )
h Gal(Fq/Fq).
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K (1)-local homotopy
Let K1 := KU/p = _p�2

i=0 ⌃2iK (1),
Pick k 2 Z which generates (Z/p2)⇥, and define Jp by the fibre sequence

Jp //KU^
p
 k�1 //KU^

p

Theorem

The unit map e : S0 ! Jp is an isomorphism in K (1)⇤, so Jp ' LK (1)S0.

Here LK (1)S0 is the Bousfield localization of S0 at K (1).

Idea: Compute K (1)⇤KUp = C(Z⇥
p ,Fp), and the action of  k is by translation

by k 2 Z⇥
p . Since hki  Z⇥

p is dense, fixed functions are constants = im(e⇤).

Conclusion: the localization map S0 ! LK (1)S0 carries

im(⇡⇤J) ⇠= ⇡⇤(Jp), ⇤ > 0

isomorphically onto ⇡⇤LK (1)S0 in positive degrees.

Note: This presents LK (1)S0 as the homotopy fixed point spectrum (KU^
p )

hZ⇥
p

for an action of Z⇥
p by a p-adic extension of the Adams operations.
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Morava K and E-theories

Definition
Let En denote the Morava E-theory associated to the Lubin-Tate
deformation space of the formal group �n over Fpn with [p](x) = xpn

.
The Morava stabilizer group is Gn = Gal(Fpn/Fp)n Aut(�n).

The Morava K-theories are Kn = En/m, and K (n) = K h Gal(Fpn/Fp)
n .

Theorem (Morava, Goerss-Hopkins-Miller, Devinatz-Hopkins, Behrens-Davis)

Gn acts on En in such a way that EhGn
n ' LK (n)S0.

There exists a reduced norm det± : Gn ! Z⇥
p coming from the determinant of

the action of Gn on End(�n). Define
SG±

n := ker(det±), and
Rn := EhSG±

n
n : determinantal K-theory, half the sphere, or the Iwasawa

extension of LK (n)S0.
Then, for a topological generator k 2 Z⇥

p , there is a fibre sequence

LK (n)S0 = (EhSG±
n

n )hZ⇥
p //Rn

 k�1 //Rn
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Higher chromatic analogues
Define Shdet±i = hofib( k � k). Then Shdet±i 2 Picn = Pic(LK (n)Spectra),
and

(En)⇤Shdet±i ⇠= (En)⇤[det±].
When n = 1, Shdet±i = LK (1)S2.

Theorem (W.)
There exists an essential ⇢n : Shdet±i ! Rn which is invertible in ⇡FRn.
Further, the action of Z⇥

p on the summand

Zp{⇢j
n} ✓ [Shdet±i⌦j ,Rn]

is by j th power of identity character.

Related work of Eric Peterson gives a more algebro-geometric perspective.
Consequently, the same computation for ⇡⇤LK (1)S0 gives us:

Corollary

There exists a subgroup Z/ps+1 ✓ [Shdet±i⌦(p�1)psm, LK (n)S1] for m coprime
to p.
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