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R
K-theory and spherical fibrations
Recall: KO(X) := {R-vector bundles over X, &}9. Similarly,

Definition
Sph(X) := {sectioned spherical fibrations over X, Ax}9. These are fibrations

S"——~F neN.

Examples:
@ Trivial: 8" x X.
@ Hopf: 1 : S® — S?is not sectioned.

@ Unit sphere bundles: If W — X is a vector bundle, then S(W) — Xis a
spherical fibration. If W admits a nowhere-vanishing section (i.e.,
W =~ V @ R), then S(W) is sectioned.
Note: if V is a vector bundle, then S(V & R) — X is the fibrewise 1-point
compactification of V.



.
J-homomorphism and representing spaces

Definition
The J-homomorphism
J : KO(X) — Sph(X)

sends Vto S(V & R).

Recall: KO is represented by BO x Z, since O = lim, O(n) is the (stable)
structure group for R-vector bundles. That is, if X is compact,

KO(X) = [X, BO x 7).
Similarly: Sph is represented by BF x Z for F = lim, F(n), where
F(n) =hAut,(S") = {f: S" — S", f is a based homotopy equivalence}

This is an associative monoid under composition of functions; moF(n) = {£1}.

Then J is represented by J : BO x Z — BF x Z, induced by O(n) — F(n):
(M:R" = R")— (MU {oc}: 8" — 8").
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Unit spectra

Definition
If Ris an E ring spectrum, define the unit space GL4 R as the union of
components of Q2°°R associated to (1o R)* C moR.

GL; Ris an E..-space with multiplication coming from the product on R. The
unit spectrum gl; R is the connective spectrum with Q> gl; R =GL1 R

Note: Forn>1, m,gl; R=7m,GL1 R = 1,Q>*°R = m,R.

Example

R = 8% Then 1yS° = Z D {+1} = (7o S%)*. The zeroth space of the
spectrum is QS° = lim, Q"S".

GL; S° = Q4 S° = lim Q1,8" = lm F(n) =
— 00
The products on GL; S° and F are not the same (smash product vs.
composition), but do commute, so BGLy S° ~ BF:
Sph.o(X) = [X, BF] = [X,BGL; 8 = [~ X, X gl, S°].
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Picard spectra

Let R be an E.,-ring spectrum, and (Modg, Ag) be the associated symmetric
monoidal co-category of its (right) module spectra.

Definition (Ando-Blumberg-Gepner)

The Picard space Pic(R) C Modg is the full subgroupoid spanned by the
modules M which invertible with respect to Ag. This is a grouplike E., space;
the Picard spectrum pic(R) is the associated connective spectrum.

Note: R is the unit of ®p, so take R € Pic(R) as a basepoint. Then
QPic(R) = Autg(R) = GL¢(R)
In fact, this gives a connected cover X gl,(R) — pic(R).
The J-homomorphism: in this language is
bo—J>Z al,(8% (Here: bo = ko is the connected cover)

ko——>pic(S°) induced by R-Vect — Pic(S°), where V i V U {oo}.

Remark: Dustin Clausen has formulated an analogous (KQp)~1 — pic(S°).



.
Image in homotopy

Theorem (Bott periodicity)

kmod8| 1 | 2 [3|4]5]6]7]8
ko |ZJ/2[ZJ/2|0|Z|0|0]|0]Z

The induced map 7.J : m.ko — . pic(S°) = 7, _1(SP) for * > 0 is known:

Theorem (Adams, Quillen)

m.dJ Is an injection if « = 1,2 mod 8. Further, in dimension « = 4n, im(r.J) is
Z/m where m is the denominator of By, /4n.

Here, the Bernoulli numbers satisfy
t S
1= 2 B
m=0
Summary of p-torsion: (p > 2): If x = 2(p — 1)pXm, where m is coprime to p,

pim(r.J) = Z/pk+
Otherwise, pim(m.J) = 0. If x = 2m with m odd, then »im(r.J) = Z/2k*1.

B
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Adams conjecture

For k € N, the k™ Adams operation is a natural transformation
Pk KO(X) — KO(X).

Properties:

@ For line bundles L, 9%(L) = L.

@ Each ¢¥ is a ring homomorphism.

e wk o w[ — wké_
These are represented by maps % : BO — BO.
Theorem (Quillen, Sullivan, Friedlander)

For a finite CW complex X and V € KO(X), there exists e = e(k, V) so that
keJ(V) = keJ(v¥(V)) € Sph(X).

Equivalently, on finite skeleta, the composite map

k7
Bo- !

BO—L~BF". BF[1]

is null-homotopic. There exists a complex analogue (for BU), too.
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Image of J space/spectra

Definition
For p = 2: Let J;») be the homotopy fibre of the map
’L/Js -1 BO(Q) — BSpin(z).

For p > 2: choose k ¢ N so that k mod p? is a generator of (Z/p?)*, and
define J,) to be the homotopy fibre of the map

wk -1 BU(p) — BU(p)

Write ji2) (respectively ji,)) for the associated (ring) spectra. The unit of ko or
ku lifts to e : S° — ji). This gives

e:SF~ OOSO — J(p).

The Adams conjecture gives us a commuting diagram of fibre sequences:

1/1k —1
U—=dp) BUp) BUp)

f Adams J

Y
Fio) EFp) BF ) Note: k € Z

-3
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Computing the image of J in homotopy

Theorem (Mahowald; May-Tornehave)
The maps e and f split Jip) off of Qo S

So: the p-torsion in im(m,.J : m.ko — 7,1 8%) is isomorphic to m._1J(p):

k1
W*J(p) T BU(p) L>7T* BU(p) —> Ty J(p)H ..

Now, m.BU = Z[f], where 8 € m2BU is the Bott periodicity class. Compute:
YK (B) = kB, so if x = 2n, this is

K"—
e Tenpy Ly L) —— Tz 1p)——>
So for n > 0, m2nJ(p) = 0, and
0, n#(p—1)p°m
mon-1J(p) = ZL(p)/ (K" = 1) = { Z/pst', n= Ep - 1;psm

Recall that k mod p? generates (Z/p?)*. Then:
@ k" —1isaunitin Zy when k" #1mod p < (p—1)1n.
o Further, kP~ € 1 + pZ,, so kP=DP'M ¢ 1 4 pst17, .

Q9



N
Algebraic K-theory of finite fields

Let g = p™, and define F? to be the homotopy fibre of 9 — 1 : BU — BU.

Quillen used Brauer theory to lift the defining representation of GL,(IFq) on Fg
to a virtual complex representation, yielding a map

BGL,(Fq) — BU
Action of 19 on BGLu(Fy) is the g-Frobenius so this lifts to F9. In the limit:
Theorem (Quillen)
The map Q*K(F,) = BGL(Fq)" — Fy9 is an equivalence. Hence

0, n=2j
Kn(Fa) = { Z/(q 1), n=2i-1

Interpretation: Let / be prime, and pick g = p™ so that g mod ¢? is a
generator of (Z/¢?)*. Then from Suslin’s theorem:

It kug

kup

Y91

~ ~ ~

,\w

K(Fq); —=K(Fq); K( q)?¢ B
Note: This exhibits K(F,); as the homotopy fixed points (K (Fg); )" G2 a/Fa),



EE—S—S—S—S—S————.———S—————
K(1)-local homotopy

Let Ki = KU/p = VP 252 K(1),

Pick k € Z which generates (Z/p?)*, and define J,, by the fibre sequence
Tp—KU} KUy

Theorem

The unit map e : S° — I, is an isomorphism in K(1)., 50 Jp ~ Ly(1)S°.

Here Ly(1)S? is the Bousfield localization of S° at K(1).

Idea: Compute K(1).KU, = C(Z, ,F,), and the action of ¢ is by translation
by k € Z . Since (k) < Z, is dense, fixed functions are constants = im(e,.).

Conclusion: the localization map S° — L1,S° carries
im(m,J) 2 m.(Jp), *>0
isomorphically onto 7. Lx(1)S in positive degrees.

Note: This presents Lx(1)S° as the homotopy fixed point spectrum (KUIQ)”ZPX

for an action of Z; by a p-adic extension of the Adams operations.
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Morava K and E-theories

Definition
@ Let E, denote the Morava E-theory associated to the Lubin-Tate
deformation space of the formal group ', over Fp» with [p](x) = xP".

@ The Morava stabilizer group is G, = Gal(Fyn /Fp) x Aut(lp).

@ The Morava K-theories are K, = E,/m, and K(n) = K,',’Ga'(F""/F").

Theorem (Morava, Goerss-Hopkins-Miller, Devinatz-Hopkins, Behrens-Davis)

Gn acts on E, in such a way that Ej®" ~ Ly, S°.

y

There exists a reduced norm det. : G, — Zg coming from the determinant of
the action of G, on End(T',). Define
@ SGi := ker(det.), and
@ R,:= E,';SG"i: determinantal K-theory, half the sphere, or the Iwasawa
extension of Ly S°.
Then, for a topological generator k € Z;, there is a fibre sequence
¥ -1

+ X
LinS® = (EP5ST Y™ — >R, >R,



N
Higher chromatic analogues

Define S(det..) = hofib(y* — k). Then S(det..) € Pic, = Pic(Lk,Spectra),
and
(En)*s<det:|:> = (En)*[det:t]'

When n =1, S(dets) = Lx1)S?.

Theorem (W.)

There exists an essential p, : S(dety) — Ry, which is invertible in 4 Ry.
Further, the action of Z,§ on the summand

Zp{ph} < [S(dets)™, Ry

is by j power of identity character.

Related work of Eric Peterson gives a more algebro-geometric perspective.
Consequently, the same computation for 7, Lx1)S° gives us:

Corollary

There exists a subgroup Z/pst! C [S(det,)&(P~DP'M [, S'] for m coprime
to p.
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