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Heights

Classically, the Height of a rational number is defined as

H(x) = max(|a| , |b|), x = a/b, a, b 2 Z, gcd(a, b) = 1.

It is some measure of its arithmetic complexity.
More generally, one defines the Height of a point x 2 Pn(Q) by

H(x) = max(|x0| , . . . , |xn |), x = [x0 : · · · : xn], x0, . . . , xn 2 Z, coprime.

Northcott’s finiteness theorem:
For every B > 0, there are only finitely many x 2 Pn(Q) with Height 6 B.

Schanuel’s theorem: When B ! 1, one has

Card
��

x 2 Pn(Q) ; H(x) 6 B
 � ⇠ 1

� (n + 1)
2nBn+1.

Height zeta function: Generating series

Z (s) =
X

x2Pn(Q)

H(x)�s.
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Heights — Manin’s question

Generalizations:

One can replace Q by an arbitrary number field F , or by a function
field in one variable over a finite field;
One can replace Pn by an arbitrary projective variety;
One can vary the embedding and consider polarized varieties
(X , L) — L is an ample line bundle on the projective variety X .

Manin’s question: What can be said of the corresponding counting
function NX (B)? Does it have an asymptotic expansion:

NX (B) ⇠ cBs log(B)t .

What are the analytic properties of the associated generating
series ZX (s)? Abscissa of convergence? meromorphic continuation?
poles?
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Manin’s proposal

Manin proposed a geometric interpretation which involves the
geometry of the e�ective cone of the Néron-Severi group of X , and of
the classes of L and K�1

X . For example, when L = K�1
X , he suggest that

one has

s = 1 and t = rank(NS(X )) � 1.

Peyre refined this interpretation by interpreting the constant c as the
volume of the adelic space X (AF ) for some “Tamagawa measure”.

Necessary precautions:
One assumes that the rational points of X are Zariski dense — the
most important case is the one where X is a Fano variety and
L = K�1

X is its anticanonical line bundle.
It may be necessary to replace the ground field by a finite
extension;
It may be necessary to restrict the counting problem to a dense
open subset.
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Theorems...

Manin–Peyre’s expectation has been verified in a number of situations:
Hypersurfaces of small degree compared to the dimension (circle
method);
Flag varieties and their generalizations (Franke–Manin–Tschinkel,
using Langlands’s theorems on Eisenstein series);
Equivariant compactifications of some algebraic groups: tori
(Batyrev–Tschinkel), vector spaces (Chambert-Loir–Tschinkel),
simply connected semi-simple groups
(Shalika–Takloo-Bighash–Tschinkel, Gorodnik–Maucourant–Oh),
Heisenberg groups (Shalika–Tschinkel)...
Del Pezzo surfaces (de la Bretèche, Browning, Derenthal, Le
Boudec...).

The list is still growing.
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... and counterexamples

There are also counterexamples which show that it is sometimes
necessary to avoid a thin subset.

Total space of the universal family of diagonal cubic surfaces
(Batyrev–Tschinkel);
The Hilbert space of two points on P2 or P1 ⇥ P1 (Schmidt, Le
Rudulier).

These counterexamples a�ect the finer aspects of the conjectural
asymptotic expansion N(B) ⇠ cBs log(B)t , namely the parameter t and
the constant c, but not (not yet?) the parameter s.

Introduction. Heights in number theory p. 8
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Geometric heights

Let C be a projective curve over a field k and let F = k(C).
Then there is a correspondence:
arithmetic over F geometry over C

projective space Pn
F (trivial) fibration Pn

k ⇥ C ! C
point x 2 Pn(F ) morphism �x : C ! Pn

k
height h(x) = log(H(x)) degree deg(�⇤xO(1))

polarized variety (X , L)/F polarized fibration (X! C,L)
point x 2 X (F ) section �x : C ! X
height h(x) degree deg(�⇤xL)

In the geometric context, Northcott’s theorem becomes the statement
that sections � of given degree d form a algebraic variety Md over k.
It is then natural to follow Peyre’s suggestion (around 2000) to
investigate how these varieties Md vary with d.

Introduction. Geometric height zeta functions p. 10



Geometric height zeta functions

Let C be a projective curve over a field k and let F = k(C). Let X! C
be a proper flat morphism, let L be a line bundle on X. One lets
X = XF , L = L|X and assumes that L is big.

One adds a natural condition on points x 2 X (F )/sections �x such as:
“x belongs to an appropriate subset U of X”,

which insures that for every d 2 Z, sections � : C ! X such that
deg(�⇤L) = d form a constructible set Md, empty for d ⌧ 0.

Geometric height zeta function:

Z (T ) =
X

d2Z
[Md]Td.

This is a formal Laurent series with coe�cients in the Grothendieck
ring of varieties KVark.
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Grothendieck groups of varieties

As a group, the Grothendieck ring KVark is defined by its generators:
isomorphism classes [X] of algebraic varieties X over k

subject to the scissor relations:
[X ] = [Y ] + [X \ Y ], whenever Y is a closed subscheme of X .

Its ring structure is given by:
[X ] · [Y ] = [X ⇥k Y ]

This is a huge, complicated ring (non-noetherian, non-reduced,...)
whose structure is not yet well understood.

Unit element: class of the point, 1 = [Spec(k)]
Lefschetz element: class of the a�ne line, L = [A1

k]

Example: [Pn
k] = 1 + L + · · · + Ln.
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Motivic measures

One grasps properties of the Grothendieck ring KVark thanks to
motivic measures which are functions µ from Vark to a ring A such that

µ(X ) = µ(Y ) if X and Y are isomorphic;
µ(X ) = µ(Y ) + µ(X \ Y ) if Y is a closed subset of X ;
µ(X ⇥k Y ) = µ(X )µ(Y ).

Indeed these are exactly the ring morphisms from KVark to A.

One knows many interesting motivic measures:
If k is finite, counting measure X 7! X (k);
If k = C, Hodge-Deligne polynomial X 7! EX (u, v);
Cohomological realizations into various other Grothendieck
groups (Hodge structures, �-adic representations, crystals...),
and many other...

Introduction. Geometric height zeta functions p. 13



Example: The geometric Schanuel theorem

Let us consider the case of X = Pn ⇥ C, polarized with L = O(1). For
simplicity, we assume that C has a k-rational point a.

Let Md be the space of morphisms � : C ! Pn
k such that

deg(�⇤O(1)) = d. The height zeta function for Pn is the generating series

Z (T ) =
X

d>0
[Md]Td.

Using results of Kapranov, Peyre has shown the motivic analogue of
Schanuel’s theorem:

Z (T ) is a rational power series;
The power series (1�Ln+1T )Z (T ) converges at T = L�1 in a suitable
completion cM of the localized Grothendieck ring KVark[L�1];
When d ! 1, dim(Md) � (n + 1)d has a finite limit, and
log(�(Md))/ log(d) converges to 0.

Here, �(Md) is the number of irreducible components of Md of maximal
dimension.
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Objects: the context

The situation is as follows:
Let C be an irreducible smooth projective curve over an algebraically
closed field k of characteristic zero, let F = k(C).

Let C0 be a non-empty open subset of C.

Let X be a proper smooth variety endowed with a non-constant
morphism to C, let L be a line bundle on X, and let U be a Zariski
open subset of X.

Let X = XF , U = UF and L = L|X be the corresponding objects on the
generic fiber. One makes the following geometric assumptions:

U is isomorphic to the a�ne space G = An
F , viewed as an algebraic

group over F ;
X is a smooth equivariant compactification of G whose divisor at
infinity D = X \ G has strict normal crossings;
L = �(KX + D).
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Objects: the moduli spaces

For every integer d 2 Z, we consider the “moduli space” Md of sections
� : C ! X satisfying the following properties:

deg(�⇤L) = d — sections of geometric height d;
�(C0) ⇢ U.

The second condition means that we consider a variant for integral
points of the geometric Manin problem. For this reason, the relevant
line bundle is the log-anticanonical line bundle.

By general results on equivariant compactifications of a�ne spaces,
the line bundle L is big and (some power) has a global section
supported on D. This implies the following properties:

The space Md exists as a constructible set, and even as an
algebraic variety over k if L is e�ective. In particular, it has a
class [Md] 2 KVark.
Md is empty for d ⌧ 0.
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Objects: the height zeta function

LetM be the localization of KVark by the multiplicative subset of
KVark generated by L and by the classes La � 1, for a > 0.
We consider the generating Laurent series

Z (T ) =
X

d2Z
[Md]Td 2M[[T ]][T�1]

with coe�cients in this localization.

We introduce subrings

M[T , T�1] ⇢M{T }† ⇢M{T } ⇢M[[T ]][T�1],

whereM{T } is generated overM[T , T�1] the inverses of the
polynomials 1 � LaTb, for b > a > 0 (non both 0), andM{T }† is
generated by the inverses of the polynomials 1 � LaTb, for b > a > 0.

An element P ofM{T }† has a value P(L�1) at T = L�1.
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Statement of the theorem

1 There exists an integer a > 1, an element P(T ) 2M{T }†, and an
integer t > 1, such that

(1 � LaTa)tZ (T ) = P(T )

and such that P(L�1) is e�ective and non-zero.
2 In particular Z (T ) belongs toM{T }.
3 For every integer p 2 {0, . . . , a � 1}, one of the following cases

occurs when d tends to infinity in the congruence class of p
modulo a:

1 Either dim(Md) = o(d),
2 Or dim(Md) � d has a finite limit and log(�(Md))/ log(d)

converges to some integer in {0, . . . , t � 1}.
Moreover, the second case happens at least for one integer p.

Recall that �(Md) is the number of irreducible components of Md of
maximal dimension.
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The classical Poisson summation formulas

Poisson summation formula: For every smooth rapidly decreasing
function f on R, with Fourier transform f , one has

X

a2Z
f (a) =

X

b2Z
bf (b).

More general formula: Let G be a locally compact abelian group, G⇤
its Pontryagin dual, � a discrete cocompact subgroup of G. For
matching Haar measures dg on G and d� on G⇤,

X

�2�
f (�) = vol(G/�)

X

�2(G/�)⇤
bf (�),

for every suitable function f on G.

Here, f̂ (�) =
R
G

f (g)�(g) dg is the Fourier transform of f .

Example: Let C be a connected projective smooth curve over a finite
field k, let g be its genus, let F = k(C).
Then F is a discrete cocompact subgroup of the adele group AF .
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X

�2�
f (�) = vol(G/�)

X

�2(G/�)⇤
bf (�),

for every suitable function f on G.

Here, f̂ (�) =
R
G

f (g)�(g) dg is the Fourier transform of f .

Example: Let C be a connected projective smooth curve over a finite
field k, let g be its genus, let F = k(C).
Then F is a discrete cocompact subgroup of the adele group AF .
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Hrushovski-Kazhdan’s motivic Poisson formula

Let C be a connected projective smooth curve over an algebraically
closed field k, let g be its genus and F = k(C).

The motivic Poisson formula of Hruhovski-Kazhdan states formally
X

x2Fn

�(x) = L(1�g)n
X

y2Fn

F �(y),

in which
� 2 S, the space of motivic Schwartz–Bruhat functions on An

F ,
built from suitable relative Grothendieck ring of varieties;
F � 2 S is the Fourier transform of �;
For � 2 S, the sum

P
x2Fn �(x) is an element of a Grothendieck ring

of varieties.
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Varieties with exponentials

Let k be a field. As a group, the Grothendieck ring of k-varieties with
exponentials KExpVark is defined by its generators:

isomorphism classes pairs [X , f ], where X is a k-scheme of finite
type and f : X ! A1 is a morphism,
subject to the scissor relations:

[X , f ] = [Y , f |Y ] + [U , f |U ], whenever Y is a closed subscheme of X
and U = X \ Y
and to the additional relation:

[X ⇥ A1, pr2] = 0, where pr2 is the second projection.

The ring structure is defined by
[X , f ] · [Y , g] = [X ⇥k Y , pr⇤1 f + pr⇤2 g].

Unit element: class 1 = [Spec(k), 0].
Lefschetz element: class L of [A1, 0].
Localizations: Mk, ExpMk.
The canonical ring morphismMk ! ExpMk, [X ] 7! [X , 0] is injective.
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Relative Grothendieck rings with exponentials

Let S be a noetherian k-scheme. One defines analogously a
Grothendieck ring KExpVarS of S-varieties with exponentials,
generated by pairs [X , f ]S where X is an S-scheme of finite type and
f : X ! A1 is a morphism.

A morphism u : S ! T gives rise to:
A ring morphism u⇤ : KExpVarT ! KExpVarS,
[X , f ]T 7! [X ⇥T S, f � pr1]S;
A group morphism u! : KExpVarS ! KExpVarT , [X , f ]S ! [X , f ]T .

Functional interpretation: An element � 2 KExpVarS is thought of as
a “motivic function” on S, x 7! �(x) = x⇤� 2 KExpVark(x).

The morphism u⇤ corresponds to the composition of functions.

The morphism u! corresponds to summation over the fibers.

The motivic Poisson formula of Hrushovski–Kazhdan. Grothendieck rings of varieties with exponentials p. 26
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Local Schwartz–Bruhat functions of given level

Let F = k((t)) and let F � = k[[t]]. For every integers N > M, tMF �/tNF � is
identified with the k-rational points of AN�M

k by the formula

x =
X

xit
i (mod tN ) 7! (xM , . . . , xN�1).

Define S(F , (M , N)) = ExpMAN�M
k

, the ring of Schwartz–Bruhat
functions of level (M , N) on F .

For � 2 S(F , (M , N)), one defines
Z

F
� = L�N�!� 2 ExpMk ,

where � : AN�M
k ! Spec(k) is the canonical morphism.
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Compatibilities

The closed immersion � : AN�M
k ! AN�(M�1)

k ,
(xM , . . . , xN�1) 7! (0, xM , . . . , xN�1) gives rise to two maps:

restriction: �⇤ : S(F , (M � 1, N))! S(F , (M , N));
extension by zero: �! : S(F , (N , M))! S(F , (M � 1, N)).

One has �⇤�! = Id.

The projection � : A(N+1)�M
k ! AN�M

k , (xM , . . . , xN ) 7! (xM , . . . , xN�1) gives
rise to two maps:

�⇤ : S(F , (M , N))! S(F , (M , N + 1));
convolution: �! : S(F , (M , N + 1))! S(F , (M , N)).

One has �!�⇤(�) = L�.
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Local Schwartz–Bruhat functions

Writing

F = lim��!
M

lim ��
N>M

tMF �/tNF �,

one defines the ring of smooth functions:

D(F ) = lim ��
M ,�⇤

lim��!
N ,�⇤
S(F , (M , N)),

and its ideal of Schwartz–Bruhat functions:

S(F ) = lim��!
M ,�!

lim��!
N ,�⇤
S(F , (M , N)).

“Unit”: 1F� 2 S(F ) is induced by the unit element of S(F , (0, N)).

Every � 2 S(F ) has an integral
R
F

� 2 ExpMk.
For example,

R
F

1F� = 1.
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Fourier transform of local Schwartz–Bruhat
functions

Fix � 2 ⌦1
F , non-zero.

Fourier kernel: e(xy) = res(xy�). It is defined as an element of D(F2)
defined by the class [AN�M

k ⇥ AN 0�M 0
k , u], where u is the composition (for

suitable N 00, M 00)

AN�M
k ⇥ AN 0�M 0

k ! AN 00�M 00
k ! A1

k ,

the first map being induced by the “product” at finite levels, and the
second by the residue.

Fourier transform of � 2 S(F ): F �(y) =
Z

F
�(x)e(xy) dx.

It is an element of S(F ).

Fourier inversion: Let � be the order of the pole of �. Then

FF �(x) = L���(�x).

Self-duality: If � = 0, then F 1F� = 1F� .
The motivic Poisson formula of Hrushovski–Kazhdan. Local Schwartz–Bruhat functions p. 31
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Global Schwartz–Bruhat functions

Let C be a connected projective smooth curve over an algebraically
closed field k. Let F = k(C); fix a non-zero form � 2 ⌦1

F/k
.

For v 2 C(k), let Fv ' k((t)) be the completion of F at v.
The preceding constructions generalize naturally and furnish to finite
products of fields isomorphic to k((t)).

In particular: every finite set S of C(k), one has a space S(
Q

v2S Fv), a
Fourier transform, a Fourier inversion formula, etc.
For S0 � S, multiplications by “units” 1F�v for v 2 S0 \ S gives rise to
maps S(

Q
v2S Fv)! S(

Q
v2S0 Fv).

Rng of global Schwartz–Bruhat functions on AF :

S(AF ) = lim��!
S⇢C(k)

S(
Y

v2S
Fv).

It admits a Fourier transform.
Fourier inversion: For � 2 S(AF ), FF �(x) = L2g�2�(�x).
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Summation over rational points

Let � 2 S(AF ). One wants to define
X

x2F
�(x) 2 ExpMk.

Assume that � is represented by an element in S(
Q

v2S ANv�Mv ).
For an e�ective divisor D on C, let L(D) be the corresponding
Riemann-Roch space L(D).
Observation: F is the inductive limit of the spaces L(D).
We view L(D) as a k-scheme and let �D be the canonical projection to
Spec(k).
For finite sets S ⇢ C(k), the natural map L(D)!Q

v2S Fv gives rise to a
morphisms of schemes

uD,S : L(D)!
Y

v2S
ANv�Mv

k .

For large enough D, one can then set
X

x2F
�(x) = (�D)!(uD,S)⇤� 2 ExpMk.
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The motivic Poisson formula

We now can state Hrushovski–Kazhdan’s motivic Poisson formula: For
every � 2 S(AF ), one has

X

x2F
�(x) = L1�g

X

y2F
F �(y).

Once one unwields all definitions, this formula boils down to a
combination of the Riemann-Roch formula and the Serre duality
theorem on the curve C.
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Sketch of the proof (arithmetic case)

Our theorem is a geometric analogue of a theorem over number fields
by Tschinkel and myself.
Let us explain the strategy of the proof, following the one already set
up by Batyrev–Tschinkel for toric varieties.
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establish its meromorphic continuation and locate its main pole.
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5 The other terms vanish for y outside of a lattice in G(F ); they also
have a meromorphic continuation, with less poles, and one can
show that the same hold for the sum over all y , 0.
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Sketch of the proof (arithmetic case)

(...)
3 For Re(s) large enough, the function x 7! H(x)�s on G(AF ) can be

applied the Poisson summation formula and we get a formula

Z (s) =
X

x2G(F )

H(x)�s =
X

y2G(F )

F (H(·)�s)(y).

4 In this formula, the main term is for y = 0. The Fourier transform
is a product of variants of local Igusa zeta functions; on can
establish its meromorphic continuation and locate its main pole.

5 The other terms vanish for y outside of a lattice in G(F ); they also
have a meromorphic continuation, with less poles, and one can
show that the same hold for the sum over all y , 0.

6 This gives meromorphic continuation for Z (s). A tauberian
theorem allows to conclude.
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Extending the height function

The first step consists in extending the height function to G(AF ).
We are given a model X! C of X . Moreover, L is linearly equivalent to
a divisor which does not meet G. Consequently, L is linearly
equivalent to a divisor � on X which does not meet G.

h(x) =
X

v2C
(�, �x (C))v,

a sum of local intersection numbers.

Since Schwartz–Bruhat functions need to be 1F�v at almost all places,
we are “forced” to consider an analogous problem of counting points
such that moreover (�, �x (C))v = 0 for all v 2 C0 — we do this by
imposing that �x (C0) ⇢ U.

Proof of the theorem. The motivic case p. 41
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Applying the Poisson summation formula

One finds a finite subset S � C(k), and for v 2 S, motivic
Schwartz–Bruhat functions (�v,m)m2Z with disjoint supports and zero
for m ⌧ 0 such that for each integer d, the condition

“h(x) = d and �x (C0) ⇢ U”
are equivalent to the condition

“�v,mv (x) = 1 for some m = (mv) 2 ZS with |m| = P
mv = d”

Then

Z (T ) =
X

x2G(F )

Y

v2S

0
BBBBB@
X

m2Z
�v,m(x)Tm

1
CCCCCA =

X

m

X

x2G(F )

�m(x)T |m|.

Applied to each �m, Hrushovski–Kazhdan’s formula gives

Z (T ) = L(1�g)n
X

y2G(F )

Ẑ (T ; y),

where

Ẑ (T ; y) =
Y

v2S
Ẑv(T ; y), Ẑv(T ; y) =

X

m

Fv�v,m(y)Tm .
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Analysis of Ẑv(T ; y)

For y = 0, each Ẑv(T ; 0) is a kind of motivic Igusa zeta function. Its
analysis is classical in motivic integration and furnishes rational
functions.

For general y, we obtain a motivic analogue of the oscillatory integrals
Z
|f (x)|s exp(2i�g(x)) dx.

One obtains rational functions again, with smaller poles than for y = 0.
The vanishing of the motivic integral

Z

ord(x)=d
e(1/x) = 0 for d � 0

is the analogue of the global holomorphy of

Z

|x |61
|x |s exp(2i� Re(1/x)) dx

Proof of the theorem. The motivic case p. 43



Analysis of Ẑv(T ; y)
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Summation over y 2 G(F )

In the formula

Z (T ) = L(1�g)n
X

y2G(F )

Ẑ (T ; y),

one shows:
The summation can be restricted to a fixed finite dimensional
subspace V of G(F );
When y varies in V , the rationality properties established for each
individual Ẑ (T ; y) can be preserved, up to a constructible partition
of V .
The term corresponding y = 0 gives the main contribution.

This concludes the proof of the theorem (and the talk).
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