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@ Heights in number theory




Classically, the HEIGHT of a rational number is defined as
H(x) = max(|al, |b|), x=a/b, a,beZ, gecd(a,b)=1.

It is some measure of its arithmetic complexity.
More generally, one defines the Height of a point x € P"(@) by
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Classically, the HEIGHT of a rational number is defined as
H(x) = max(|al, |b|), x=a/b, a,beZ, gecd(a,b)=1.

It is some measure of its arithmetic complexity.
More generally, one defines the Height of a point x € P"(@) by

H(x) = max(|xp|,....|xal), x=[x0: - :xul, X0,...,Xn €Z, coprime.
NORTHCOTT’S FINITENESS THEOREM:
For every B > O, there are only finitely many x € P"(@) with Height < B.

SCHANUEL’S THEOREM: When B — oo, one has

Card ({x € P"(@); H(x) < B}) ~ ﬁZ“B”H.

HEIGHT ZETA FUNCTION: Generating series

Z(s) = Z H(x)"S.
xePT(Q)




(GENERALIZATIONS:

@ One can replace @ by an arbitrary number field F, or by a function
field in one variable over a finite field;

@ One can replace P" by an arbitrary projective variety;

@ One can vary the embedding and consider polarized varieties
(X,L) — L is an ample line bundle on the projective variety X.




(GENERALIZATIONS:

@ One can replace @ by an arbitrary number field F, or by a function
field in one variable over a finite field;

@ One can replace P" by an arbitrary projective variety;

@ One can vary the embedding and consider polarized varieties
(X,L) — L is an ample line bundle on the projective variety X.

MANIN’S QUESTION: What can be said of the corresponding counting
function Nx(B)? Does it have an asymptotic expansion:

Nx(B) ~ cB°log(B)".

What are the analytic properties of the associated generating
series Zx(s)? Abscissa of convergence? meromorphic continuation?
poles?




Manin proposed a GEOMETRIC INTERPRETATION which involves the
geometry of the effective cone of the Néron-Severi group of X, and of
the classes of L and Ky '. For example, when L = K; ', he suggest that
one has

s=1 and t=rank(NS(X))- 1.

Peyre refined this interpretation by interpreting the constant c as the
volume of the adelic space X(Ar) for some “Tamagawa measure”.




Manin proposed a GEOMETRIC INTERPRETATION which involves the
geometry of the effective cone of the Néron-Severi group of X, and of
the classes of L and Ky '. For example, when L = K; ', he suggest that
one has

s=1 and t=rank(NS(X))- 1.

Peyre refined this interpretation by interpreting the constant c as the
volume of the adelic space X(Ar) for some “Tamagawa measure”.

Necessary precautions:

@ One assumes that the rational points of X are Zariski dense — the
most important case is the one where X is a Fano variety and
L= K;(l is its anticanonical line bundle.

o It may be necessary to replace the ground field by a finite
extension;

o It may be necessary to restrict the counting problem to a dense
open subset.




Manin-Peyre’s expectation has been verified in a number of situations:

@ HYPERSURFACES of small degree compared to the dimension (circle
method);

@ FLAG VARIETIES and their generalizations (Franke-Manin-Tschinkel,
using Langlands’s theorems on Eisenstein series);

@ EQUIVARIANT COMPACTIFICATIONS OF SOME ALGEBRAIC GROUPS: tori
(Batyrev-Tschinkel), vector spaces (Chambert-Loir-Tschinkel),
simply connected semi-simple groups
(Shalika-Takloo-Bighash-Tschinkel, Gorodnik-Maucourant-Oh),
Heisenberg groups (Shalika-Tschinkel)...

@ DEL PEzzO SURFACES (de la Bretéche, Browning, Derenthal, Le
Boudec...).

The list is still growing.




There are also COUNTEREXAMPLES which show that it is sometimes
necessary to avoid a thin subset.

o Total space of the universal family of diagonal cubic surfaces
(Batyrev-Tschinkel);

o The Hilbert space of two points on P? or P! x P! (Schmidt, Le
Rudulier).

These counterexamples affect the finer aspects of the conjectural
asymptotic expansion N(B) ~ cB®log(B)!, namely the parameter t and
the constant ¢, but not (not yet?) the parameter s.
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Let C be a projective curve over a field k and let F = k(C).
Then there is a correspondence:

arithmetic over F geometry over C
projective space PJ (trivial) fibration P;: X C — C
point x € P"(F) morphism oy : C — P

height h(x) = log(H(x)) degree deg(o;0(1))

polarized variety (X, L)/F polarized fibration (X — C, L)

point x € X(F) section o,: C > X

height h(x) degree deg(o,L)
In the geometric context, Northcott’s theorem becomes the statement
that sections o of given degree d form a algebraic variety Mg over k.
It is then natural to follow Peyre’s suggestion (around 2000) to
investigate how these varieties My vary with d.




Let C be a projective curve over a field k and let F = k(C). Let X — C
be a proper flat morphism, let £ be a line bundle on X. One lets
X = X, L = L]x and assumes that L is big.

One adds a natural condition on points x € X(F)/sections o, such as:
“x belongs to an appropriate subset U of X”,

which insures that for every d € Z, sections o: C — X such that

deg(o* L) = d form a constructible set My, empty for d < 0.




Let C be a projective curve over a field k and let F = k(C). Let X — C
be a proper flat morphism, let £ be a line bundle on X. One lets
X = X, L = L]x and assumes that L is big.

One adds a natural condition on points x € X(F)/sections o, such as:
“x belongs to an appropriate subset U of X”,

which insures that for every d € Z, sections o: C — X such that

deg(o* L) = d form a constructible set My, empty for d < 0.

GEOMETRIC HEIGHT ZETA FUNCTION:

Z(T) = Z[Md]Td.

deZ

This is a formal Laurent series with coefficients in the Grothendieck
ring of varieties KVarj,.
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As a group, the Grothendieck ring KVary is defined by its generators:
isomorphism classes [X] of algebraic varieties X over k

subject to the scissor relations:
[X] =1[Y]+[X\ Y], whenever Y is a closed subscheme of X.

Its ring structure is given by:
[X]-[Y] = [X X Y]

This is a huge, complicated ring (non-noetherian, non-reduced,...)
whose structure is not yet well understood.

Unit element: class of the point, 1 = [Spec(k)]
Lefschetz element: class of the affine line, L = [A}]

ExampLE: [P] =1+L+---+L"




One grasps properties of the Grothendieck ring KVar; thanks to
MOTIVIC MEASURES which are functions u from Vary to a ring A such that

u(X) = uw(y) if X and Y are isomorphic;
wX) =wY)+uX\Y) if Y is a closed subset of X;
UWX X Y) = i(XHu(y).

Indeed these are exactly the ring morphisms from KVar to A.

One knows many interesting motivic measures:
o If k is finite, counting measure X — X(k);
o If k = C, Hodge-Deligne polynomial X +— Ex(u, v);

@ Cohomological realizations into various other Grothendieck
groups (Hodge structures, f-adic representations, crystals...),

¢ and many other...




Let us consider the case of X = P" X C, polarized with £ = O(1). For
simplicity, we assume that C has a k-rational point a.

Let My be the space of morphisms o: C — P} such that
deg(0*O(1)) = d. The height zeta function for P" is the generating series

Z(T) = Z[Md]Td.

d>0
Using results of Kapranov, Peyre has shown the MOTIVIC ANALOGUE of
Schanuel’s theorem:
@ Z(T) is a rational power series;
o The power series (1 - L™1T)Z(T) converges at T = L™! in a suitable
completion M of the localized Grothendieck ring KVar) [L71];
@ When d — oo, dim(My;) — (n + 1)d has a finite limit, and
log(x(My))/log(d) converges to O.
Here, x(Mg) is the number of irreducible components of My of maximal
dimension.
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The situation is as follows:

Let C be an irreducible smooth projective curve over an algebraically
closed field k of characteristic zero, let F = k(C).

Let Cp be a non-empty open subset of C.

Let X be a proper smooth variety endowed with a non-constant

morphism to C, let £ be a line bundle on X, and let U be a Zariski
open subset of X.




The situation is as follows:
Let C be an irreducible smooth projective curve over an algebraically
closed field k of characteristic zero, let F = k(C).

Let Cp be a non-empty open subset of C.

Let X be a proper smooth variety endowed with a non-constant
morphism to C, let £ be a line bundle on X, and let U be a Zariski
open subset of X.

Let X = Xp, U = U and L = L|x be the corresponding objects on the
generic fiber. One makes the following geometric assumptions:

e U is isomorphic to the affine space G = A7, viewed as an algebraic
group over F;

@ X is a smooth equivariant compactification of G whose divisor at
infinity D = X \ G has strict normal crossings;

o L = —(Kx +D)




For every integer d € Z, we consider the “moduli space” My of sections
o: C — X satisfying the following properties:

o deg(o*L) = d — sections of geometric height d;
@ o(Cyp) CU.

The second condition means that we consider a variant for integral
points of the geometric Manin problem. For this reason, the relevant
line bundle is the log-anticanonical line bundle.




For every integer d € Z, we consider the “moduli space” My of sections
o: C — X satisfying the following properties:

o deg(o*L) = d — sections of geometric height d;

@ o(Cyp) CU.
The second condition means that we consider a variant for integral

points of the geometric Manin problem. For this reason, the relevant
line bundle is the log-anticanonical line bundle.

By general results on equivariant compactifications of affine spaces,
the line bundle L is big and (some power) has a global section
supported on D. This implies the following properties:

@ The space My exists as a constructible set, and even as an
algebraic variety over k if £ is effective. In particular, it has a
class [M;] € KVary..

@ My is empty for d < O.




Let M be the localization of KVar) by the multiplicative subset of
KVar generated by L and by the classes L% — 1, for a > O.
We consider the generating Laurent series

Z(T) = > [MalT" € MITIIT™']

dezZ

with coeflicients in this localization.




Let M be the localization of KVar) by the multiplicative subset of
KVar generated by L and by the classes L% — 1, for a > O.
We consider the generating Laurent series

Z(T) = ) [Ma]T¢ € MITIIT™']

dez
with coefficients in this localization.

We introduce subrings
MIT, T '] ¢ M{TY ¢ M{T} c MITIIT ],

where M{T)} is generated over M[T, T~!] the inverses of the
polynomials 1 — L*T?, for b > a > 0 (non both 0), and M{T) is
generated by the inverses of the polynomials 1 — L*T?, for b > a > 0.




Let M be the localization of KVar) by the multiplicative subset of
KVar generated by L and by the classes L% — 1, for a > O.
We consider the generating Laurent series

Z(T) = ) [Ma]T¢ € MITIIT™']

dez
with coefficients in this localization.

We introduce subrings
MIT, T '] ¢ M{TY ¢ M{T} c MITIIT ],

where M{T)} is generated over M[T, T~!] the inverses of the
polynomials 1 — L*T?, for b > a > 0 (non both 0), and M{T}T is
generated by the inverses of the polynomials 1 — L*T?, for b > a > 0.

An element P of M{T}" has a value P(L™') at T = L.




@ There exists an integer a > 1, an element P(T) € M{T}', and an
integer t > 1, such that

(1 — L*TH'Z(T) = P(T)

and such that P(L™!) is effective and non-zero.
@ In particular Z(T) belongs to M{T}.

@ For every integer p € {0, ..., a — 1}, one of the following cases
occurs when d tends to infinity in the congruence class of p
modulo a:

@ Either dim(My) = o(d),
@ Or dim(My) — d has a finite limit and log(xc(My))/ log(d)
converges to some integer in {O,...,t — 1}.

Moreover, the second case happens at least for one integer p.

Recall that x(My) is the number of irreducible components of Mg of
maximal dimension.
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POISSON SUMMATION FORMULA: For every smooth rapidly decreasing
function f on R, with Fourier transform f, one has
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POISSON SUMMATION FORMULA: For every smooth rapidly decreasing
function f on R, with Fourier transform f, one has

D fl@= > Jb).

acZ beZ

MORE GENERAL FORMULA: Let G be a locally compact abelian group, G*
its Pontryagin dual, I" a discrete cocompact subgroup of G. For
matching Haar measures dg on G and dy on G,

D fy) =volG/T) > Fx).
yel X€(G/T)*
for every suitable function f on G.
Here, f(x) = f of (g9)x(g) dg is the Fourier transform of f.

ExaMpPLE: Let C be a connected projective smooth curve over a finite
field k, let g be its genus, let F = k(C).
Then F is a discrete cocompact subgroup of the adele group Ar.




Let C be a connected projective smooth curve over an algebraically
closed field k, let g be its genus and F = k(C).

The MoTIviC POISSON FORMULA OF HRUHOVSKI-KAZHDAN states formally

D60 =19 X Fe(y),

xeFn yeFn

in which
@ ¢ € S, the space of motivic Schwartz-Bruhat functions on A},
built from suitable relative Grothendieck ring of varieties;
@ ¥ ¢ € S is the Fourier transform of ¢;

@ For ¢ € §, the sum ), g ¢(x) is an element of a Grothendieck ring
of varieties.
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@ Grothendieck rings of varieties with exponentials




Let k be a field. As a group, the GROTHENDIECK RING OF k-VARIETIES WITH
EXPONENTIALS KExpVar,. is defined by its generators:

isomorphism classes pairs [X, f], where X is a k-scheme of finite
type and f: X — A! is a morphism,
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Let k be a field. As a group, the GROTHENDIECK RING OF k-VARIETIES WITH
EXPONENTIALS KExpVar,. is defined by its generators:

isomorphism classes pairs [X, f], where X is a k-scheme of finite
type and f: X — A! is a morphism,
subject to the scissor relations:

[X.f]=1Y.fly]l +[U,flu], whenever Y is a closed subscheme of X
and U=X\Y
and to the additional relation:

[X x Al, pr,] = 0, where pr, is the second projection.

The ring structure is defined by
[X.f1-[Y.g] = [X X, Y. pr} f + pr, gl.

Unit element: class 1 = [Spec(k), O].

Lefschetz element: class L of [Al, O].

Localizations: M., &xpM;..

The canonical ring morphism M;. — &pM., [X] — [X, 0] is injective.




Let S be a noetherian k-scheme. One defines analogously a
Grothendieck ring KExpVarg of S-varieties with exponentials,
generated by pairs [X, f]s where X is an S-scheme of finite type and
f: X — A! is a morphism.
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Let S be a noetherian k-scheme. One defines analogously a
Grothendieck ring KExpVarg of S-varieties with exponentials,

generated by pairs [X, f]s where X is an S-scheme of finite type and
f: X — A! is a morphism.

A morphism u: S — T gives rise to:

@ A ring morphism u*: KExpVar; — KExpVarg,
[X,flr = [X X1 S, fopr]s;
@ A group morphism u,: KExpVarg — KExpVary, [X, f]ls — [X.f]r.

FUNCTIONAL INTERPRETATION: An element ¢ € KExpVarg is thought of as
a “motivic function” on S, x - ¢(x) = x"¢ € KExpVar,,.

The morphism u* corresponds to the composition of functions.

The morphism u; corresponds to summation over the fibers.
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@ Local Schwartz-Bruhat functions




Let F = k(t) and let F° = Kk[[t]. For every integers N > M, t"F° /tNF° is
identified with the k-rational points of A}~ by the formula

X = inti (mod ) — (X, ..., xXN_1).

Define S(F, (M, N)) = &pMAﬁ—M, the ring of SCHWARTZ-BRUHAT
FUNCTIONS OF LEVEL (M, N) on F.




Let F = k(t) and let F° = Kk[[t]. For every integers N > M, t"F° /tNF° is
identified with the k-rational points of A}~ by the formula

X = inti (mod t") — (xy, ..., XN-1)-

Define S(F, (M, N)) = &CpMAIIX—M, the ring of SCHWARTZ-BRUHAT
FUNCTIONS OF LEVEL (M, N) on F.

For ¢ € S(F, (M, N)), one defines
f ¢ =L Vme e &pM,
F

where n: AY™™ — Spec(k) is the canonical morphism.




The closed immersion 1: Ay~ — A];’_(M_l),

s e xv—1) = (0, x5 - . ., Xy—1) gives rise to two maps:
@ restriction: *: S(F,(M — 1,N)) —» S(F, (M, N));
@ extension by zero: y: S(F, (N, M)) —» S(F,(M — 1, N)).

One has "y = Id.




N-(M-1)

g, oo xve1) > O, x5, ..o XN—1) gi’:res rise to two maps:
@ restriction: *: S(F,(M — 1,N)) —» S(F, (M, N));
@ extension by zero: y: S(F, (N, M)) —» S(F,(M — 1, N)).

One has "y = Id.

The closed immersion t: Ag M _, A

The projection : A;cNH)_M — AYM (g, .. oxn) o (.. Xv-1) gives
rise to two maps:

o t*: S(F,(M,N)) » S(F,(M,N + 1));
@ convolution: m: S(F,(M,N + 1)) —» S(F, (M, N)).
One has m*(¢) = Le.
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Writing
F = lim lim tMF° /tNF°,
ﬂ h
M N>M

one defines the ring of smooth functions:

D(F) = lim lim S(F, (M, ),
M,* N,t*
and its ideal of Schwartz-Bruhat functions:
S(F) = lim lim S(F, (M, N)).
M,u N,r*
“Unit”: 1p- € S(F) is induced by the unit element of S(F, (0, N)).

Every ¢ € S(F) has an integral fF e € Exp M.
For example, fF 1po = 1.
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Fix ® € Q., non-zero.

FOURIER KERNEL: e(xy) = res(xyw). It is defined as an element of D(F?)
defined by the class [Aﬁ M % Aﬁ M u], where u is the composition (for
suitable N/, M"’)

N-M N —M’ N”—-M" 1
Ak X Ak - Ak - Ak,

the first map being induced by the “product” at finite levels, and the
second by the residue.

FOURIER TRANSFORM of ¢ € S(F): F o(y) = f e(x)e(xy) dx.
F
It is an element of S(F).

FOURIER INVERSION: Let v be the order of the pole of w. Then

FF o(x) = L o(—x).

SELF-DUALITY: If v = 0O, then F 1 = 1po.
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For v € C(k), let F,, =~ k(t)) be the completion of F at v.

The preceding constructions generalize naturally and furnish to finite

products of fields isomorphic to k(t).




Let C be a connected projective smooth curve over an algebraically
closed field k. Let F = k(C); fix a non-zero form o € Q. I
For v € C(k), let F,, =~ k(t)) be the completion of F at v.

The preceding constructions generalize naturally and furnish to finite

products of fields isomorphic to k(t).

In particular: every finite set S of C(k), one has a space S([ ] es Fv),
Fourier transform, a Fourier inversion formula, etc.
For S’ O S, multiplications by “units” 1p. for v € S’ \ S gives rise to

maps S(HUES Fv) — S(HUGS' Fv)-




Let C be a connected projective smooth curve over an algebraically
closed field k. Let F = k(C); fix a non-zero form o € Q. I
For v € C(k), let F,, =~ k(t)) be the completion of F at v.

The preceding constructions generalize naturally and furnish to finite

products of fields isomorphic to k(t).

In particular: every finite set S of C(k), one has a space S([ ] es Fv),
Fourier transform, a Fourier inversion formula, etc.
For S’ O S, multiplications by “units” 1p. for v € S’ \ S gives rise to

maps S(HUES Fv) — S(HUGS' Fv)-

RNG OF GLOBAL SCHWARTZ-BRUHAT FUNCTIONS on Afr:

S@ar) = lim S| [F).

ScC(k) veS




Let C be a connected projective smooth curve over an algebraically
closed field k. Let F = k(C); fix a non-zero form o € Q. I
For v € C(k), let F,, =~ k(t)) be the completion of F at v.

The preceding constructions generalize naturally and furnish to finite

products of fields isomorphic to k(t).

In particular: every finite set S of C(k), one has a space S([ ] es Fv),
Fourier transform, a Fourier inversion formula, etc.
For S’ O S, multiplications by “units” 1p. for v € S’ \ S gives rise to

maps S(HUES Fv) — S(HUES' Fv)-

RNG OF GLOBAL SCHWARTZ-BRUHAT FUNCTIONS on Afr:
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It admits a Fourier transform.
FOURIER INVERSION: For ¢ € S(Ar), FF o(x) = L?9 2 ¢(—x).




Let ¢ € S(Ar). One wants to define
Z o(x) € E&xpM;..

XEF
Assume that ¢ is represented by an element in S([] g AN),
For an effective divisor D on C, let £(D) be the corresponding
Riemann-Roch space £(D).
OBSERVATION: F is the inductive limit of the spaces L(D).
We view L(D) as a k-scheme and let np be the canonical projection to
Spec(k).
For finite sets S C C(k), the natural map L(D) — [],es Fy gives rise to a
morphisms of schemes

up,s- .[:(D) - nAgv_Mv.

VES

For large enough D, one can then set

D (%) = (mp)i(ups)’ e € EPM.

xeF
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@ The formula of Hrushovski-Kazhdan
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We now can state HRUSHOVSKI-KAZHDAN’S MOTIVIC POISSON FORMULA: For
every ¢ € S(Ar), one has

Z g(x) =L'9 Z F o(y).

XeF yeFr

Once one unwields all definitions, this formula boils down to a
combination of the Riemann-Roch formula and the Serre duality
theorem on the curve C.




e PROOF OF THE THEOREM
@ The arithmetic analogue
@ The motivic case




e PROOF OF THE THEOREM
@ The arithmetic analogue




Our theorem is a geometric analogue of a theorem over number fields

by Tschinkel and myself.
Let us explain the strategy of the proof, following the one already set
up by Batyrev-Tschinkel for toric varieties.




Our theorem is a geometric analogue of a theorem over number fields
by Tschinkel and myself.

Let us explain the strategy of the proof, following the one already set
up by Batyrev-Tschinkel for toric varieties.

So one has a polarized variety (X, L), X is an equivariant
compactification of G = G} C X.

We want to count points of G(F) of bounded height.




Our theorem is a geometric analogue of a theorem over number fields

by Tschinkel and mysellf.

Let us explain the strategy of the proof, following the one already set
up by Batyrev-Tschinkel for toric varieties.

So one has a polarized variety (X, L), X is an equivariant
compactification of G = G} C X.

We want to count points of G(F) of bounded height.

Q One extends the height, G(F) — R, to a function on the adelic
space G(Ar) — R.




Our theorem is a geometric analogue of a theorem over number fields
by Tschinkel and myself.

Let us explain the strategy of the proof, following the one already set
up by Batyrev-Tschinkel for toric varieties.

So one has a polarized variety (X, L), X is an equivariant
compactification of G = G} C X.

We want to count points of G(F) of bounded height.

Q One extends the height, G(F) — R, to a function on the adelic
space G(Ar) — R.

@ Recall that G(F) is a cocompact discrete subgroup of G(Ar). Fixing
a non-trivial additive character y of Ar, then (G(Ar)/G(F))* is
identified with G(F) by the pairing (x, y) = w(xy).




(...)

So one has a polarized variety (X, L), X is an equivariant
compactification of G = G} C X.
We want to count points of G(F) of bounded height.

Q One extends the height, G(F) — R, to a function on the adelic
space G(Ar) — R.

@ Recall that G(F) is a cocompact discrete subgroup of G(Ar). Fixing
a non-trivial additive character y of Ar, then (G(Ar)/G(F))* is
identified with G(F) by the pairing (x, y) = w(xy).

@ For Re(s) large enough, the function x — H(x)™°® on G(Ar) can be
applied the Poisson summation formula and we get a formula

Z(s)= Y H™ = ) FHO)N).

x€G(F) yeG(F)




One extends the height, G(F) — R, to a function on the adelic
space G(Ar) — R.

Recall that G(F) is a cocompact discrete subgroup of G(Ar). Fixing
a non-trivial additive character y of Ar, then (G(Ar)/G(F))" is
identified with G(F) by the pairing (x, y) = w(xy).

For Re(s) large enough, the function x — H(x)™® on G(Ar) can be
applied the Poisson summation formula and we get a formula

Z(s)= ) He)™= > FHO)Ny).

X€G(F) YyeG(F)

In this formula, the main term is for y = 0. The Fourier transform
is a product of variants of local Igusa zeta functions; on can
establish its meromorphic continuation and locate its main pole.
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Recall that G(F) is a cocompact discrete subgroup of G(Ar). Fixing
a non-trivial additive character y of Ar, then (G(Ar)/G(F))" is
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is a product of variants of local Igusa zeta functions; on can
establish its meromorphic continuation and locate its main pole.

@ The other terms vanish for y outside of a lattice in G(F); they also

have a meromorphic continuation, with less poles, and one can
show that the same hold for the sum over all y # O.
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@ For Re(s) large enough, the function x — H(x)™® on G(Ar) can be
applied the Poisson summation formula and we get a formula

Z(s)= ) HG)™= > FHO)N).

x€G(F) yeG(F)

@ In this formula, the main term is for y = 0. The Fourier transform
is a product of variants of local Igusa zeta functions; on can
establish its meromorphic continuation and locate its main pole.

@ The other terms vanish for y outside of a lattice in G(F); they also
have a meromorphic continuation, with less poles, and one can
show that the same hold for the sum over all y # O.

© This gives meromorphic continuation for Z(s). A tauberian
theorem allows to conclude.
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The first step consists in extending the height function to G(Ap).

We are given a model X — C of X. Moreover, L is linearly equivalent to
a divisor which does not meet G. Consequently, £ is linearly
equivalent to a divisor A on X which does not meet G.

A(x) = > (A, 0x(O),

veC

a sum of local intersection numbers.
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We are given a model X — C of X. Moreover, L is linearly equivalent to
a divisor which does not meet G. Consequently, £ is linearly
equivalent to a divisor A on X which does not meet G.

A(x) = > (A, 0x(O),

veC
a sum of local intersection numbers.

Since Schwartz-Bruhat functions need to be 1re at almost all places,
we are “forced” to consider an analogous problem of counting points
such that moreover (A, 0,(C)), = O for all v € Cy — we do this by
imposing that o,(Co) C U.




One finds a finite subset S D C(k), and for v € S, motivic
Schwartz-Bruhat functions (@, m)mez With disjoint supports and zero
for m < 0 such that for each integer d, the condition

“h(x) = d and 0,(Cp) C U”
are equivalent to the condition

“@v.m,(x) = 1 for some m = (m,) € Z° with lm| = Y m, = d”




One finds a finite subset S D C(k), and for v € S, motivic
Schwartz-Bruhat functions (@, m)mez With disjoint supports and zero
for m < 0 such that for each integer d, the condition

“h(x) = d and 0,(Cp) C U”
are equivalent to the condition

“@v.m,(x) = 1 for some m = (m,) € Z° with lm| = Y m, = d”

Then

2T = ) ]_[(Z qov,moc)Tm]:Z D em0T™.

x€G(F) veS \meZ m xeG(F)
Applied to each ¢, Hrushovski-Kazhdan’s formula gives
Z(T) =109 X" Z(T;y),
yeG(F)
where
2Ty = | |2(Tsy), Zu(Tiy) = ) FogumT™
m

VES




For y = 0, each Z,(T;0) is a kind of motivic Igusa zeta function. Its
analysis is classical in motivic integration and furnishes rational
functions.




For y = 0, each Z,(T;0) is a kind of motivic Igusa zeta function. Its
analysis is classical in motivic integration and furnishes rational
functions.

For general y, we obtain a motivic analogue of the oscillatory integrals

f F (I exp(2ing(x)) dx.

One obtains rational functions again, with smaller poles than for y = O.
The vanishing of the motivic integral

f e(l/x)=0 ford > 0
ord(x)=d

is the analogue of the global holomorphy of

f |x|° exp(2in Re(1/x)) dx
|x|<1




In the formula
Z(T)=L079" X" Z(T;y),
YeG(F)
one shows:

o The summation can be restricted to a fixed finite dimensional
subspace V of G(F);

@ When y varies in V, the rationality properties established for each

individual Z(T; y) can be preserved, up to a constructible partition
of V.

@ The term corresponding y = O gives the main contribution.




In the formula

Z(T)=L079" X" Z(T;y),
yeG(F)

one shows:

o The summation can be restricted to a fixed finite dimensional
subspace V of G(F);

@ When y varies in V, the rationality properties established for each

individual Z(T; y) can be preserved, up to a constructible partition
of V.

@ The term corresponding y = O gives the main contribution.

This concludes the proof of the theorem (and the talk).




