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Some notations

Let (K,v) be a valued field.
» We will denote by O = {x € K| v(x) > 0} the valuation ring;
It has a unique maximal ideal 9t = {x e K| v(x) > 0};
The residue field O / 9t will be denoted k;
The value group will be denoted by T
Let also RV := K*/(1+ 9%) 2 k*.

v

v

v

v
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Let Lgiy = {K;0,1,+,—,-, |} where x|y is interpreted by v(x) < v(y).

Theorem (A. Robinson, 19506)

The Lg4;,-theory ACVF of algebraically closed valued fields eliminates
quantifiers.

Let Lp = L4y U{P, | n € N5} where x € P, if and only if 3y, y" = x.

Theorem (Macintyre, 1970)
The Lp-theory of Q, eliminates quantifiers. J
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function f — a representation — such that

Vx,y, xBy <= f(x) = f(y).
» For all definable (with parameters) set X, is there a tuple ¢ — a code —
such that automorphisms fix ¢ if and only if they stabilize X set-wise?

Positive answers to these two questions are equivalent and is called
elimination of imaginaries.

Theorem (Poizat, 1983)

The theory ACF of algebraically closed fields in the language
L. = {K;0,1,+,—,-} eliminates imaginaries.
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Imaginaries

Let T be a theory

» For all definable equivalence relation E, does there exist a definable
function f — a representation — such that

Vx,y, xBy < f(x) = f().

» For all definable (with parameters) set X, is there a tuple ¢ — a code —
such that automorphisms fix ¢ if and only if they stabilize X set-wise?

Positive answers to these two questions are equivalent and is called
elimination of imaginaries.

Remark

To any L-structure M we can associate the £-structure Ml where we
add a point for each imaginary.
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Imaginaries in valued fields

Remark

In the language Lg;,, the quotient I' = K* / O™ is not representable in
algebraically closed valued field nor in Q,.

However, in the case of ACVF — the theory of algebraically closed valued
fields — Haskell, Hrushovski and Macpherson have shown what
imaginary sorts it suffices to add.
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» The elements of T,, are of the form a + 9Mts wheres e S, and a €s.

Definition

The geometric language Lg is composed of the sorts K, S, and T,, for all
n, with £, on K and functions p,, : GL,(K) - S, and 7, : S, xK" - T,,.

» §1 can be identified with I" and p; with v;
» Ty can be identified with RV;

» The set of balls (open and closed, possibly with infinite radius) B can
be identified with a subset of Ku S, uT,.
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The geometric sorts

Definition
» The elements of S,, are the free O-module in K" of rank n.

» The elements of T,, are of the form a + 9Mts wheres e S, and a €s.

Definition

The geometric language L is composed of the sorts K, S, and T, for all
n, with £, on K and functions p,, : GL,(K) - S, and 7, : S, xK" - T,,.
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» The elements of T,, are of the form a + 9Mts wheres e S, and a €s.

Definition

The geometric language L is composed of the sorts K, S, and T, for all
n, with £, on K and functions p,, : GL,(K) - S, and 7, : S, xK" - T,,.

o

Theorem (Haskell, Hrushovski and Macpherson, 20006)

» The Lg-theory ACVFY eliminates imaginaries.
» In particular, the imaginaries in ACVFg,p (respectively those in
ACVFpg,p) can be eliminated uniformly in p.
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» The elements of S,, are the free O-module in K" of rank n.

» The elements of T,, are of the form a + 9Mts wheres e S, and a €s.

Definition

The geometric language Lg is composed of the sorts K, S, and T,, for all
n, with £, on K and functions p,, : GL,(K) - S, and 7, : S, xK" - T,,.

o

Question

1. Are all imaginaries in Q, coded in the geometric sorts or are there
new imaginaries in this theory?

2. Can these imaginaries be eliminated uniformly in p?

6/18
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The general setting

In the paper, we give a more general setting, but here we will only
consider substructures of ACVF.

» Let T2 ACVF{ be an Lg-theory.

Let M = ACVFY and M £ T such that M c M. Let us fix some notations:
» Let A ¢ M, we will write dclg;(A) for the £g-definable closure in M,

» Let A € M9, we will write dcl, (A) for the £°-definable closure in
M*9,

Similarly for acl, tp and TP (the space of types).
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The specific cases of interest

The theory T will be either :
[pCF] The Lg-theory of K a finite extension of Q,, with a constant added

—alg —alg
for a generator of KN Q ~ over Q,nQ 7;

[PLF] The Lg-theory of equicharacteristic zero Henselian valued fields
with a pseudo-finite residue field, a Z-group as valuation group and 2
constants added:

» A uniformizer, i.e. 7w € K with minimal positive valuation;
» An unramified Galois-unifomizer. i.e an element ¢ € K such that res(c)
generates k™ /(N, Pn(k™)).

Remark

Every [1K,/U where K,, is a finite extension of Q, and ¢/ is a non
principal ultrafilter on the set of primes is a model of PLF. In fact, By the
Ax-Kochen-Ersov principle any model of PLF is equivalent to one of these
ultraproducts.

y
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A first example: extracting square roots in Q;

» Letae Qs andf: P,(Q3) +a — Qs, where P, is the set of squares,
defined by:
f(x)* =x —aand ac(f(x)) = 1.

» This function can be defined in Q; but not in @alg = ACVEF 3.

» However, the 1-to-2 correspondence
F={(xy) |y =x-a}

is quantifier free definable both in Q; and @alg.

» Fis the Zariski closure of the graph of f and f(x) can be defined (in
Qj3) as the y such that (x,y) € Fand ac(y) = 1.

» Fiscoded in @alg and this code is in dclg; (Q;) = Q;.
» The graph of fis coded by the code of F.
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Another abstract criterion

Theorem
Assume the following holds:
(i) Any L£L(M)-definable unary set X ¢ K(M) is coded;
(ii) Forall My <M and c € K(M), dcl}(Mic) n M < acly; (Mqc);
(iii) For all e € dclg;(M), there exists a tuple e’ € M such that for all
o € Aut(M) with o(M) = M, o fixes e if and only if it fixes e';
(iv) Forany A = acl};(A) n M and c € K(M), there exists an
Aut(M/A)-invariant type p € TPy; (M) such that p|M is consistent
with tp . (c/A);
(V') Forall A € M and any e € acl;; (A) there exists e’ € M such that
e € dcly/(Ae’) and e’ € dclj; (Ae).

Then T eliminates imaginaries.
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Ultraproducts

Theorem

Let K = [1K,/U be an ultraproduct of finite extensions K, of Q,. The
theory of K in the language L, with constants added for a uniformizer
and an unramified Galois-uniformizer, eliminate imaginaries.

Proof.

It follows from the second El criterion. ]

Remark

The sorts T, are useless in those two cases.
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Uniformity

Let L be L with two constants in K added.

Definition

An unramified m-Galois uniformizer is a point c¢ € K such that res(c)
generates k* /P, (k™).

Corollary

For any equivalence relation E, on a set D, definable in K,, uniformly in p,
there exists mg and an L;-formula ¢ (x,y) such that for all p, ¢ defines a

function
fp: D _>K§9 x Sm(Kp)

where K, is made into a £;-structure by choosing a uniformizer and an
unramified mg-Galois uniformizer and

Ky = Vx,y, xEpy <= fp(x) =f,(¥).

14 /18
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Definable families of equivalence relations

Fix p a prime and let K}, be a finite extension of Q,.

Definition
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Definable families of equivalence relations

For all prime p, let K, be a finite extension of Q,,.

Definition

A family (R, ;)ienr € Kj is said to be definable uniformly in p if there is an
Lg formula ¢(x,y) such that for all prime p and [ € N,

d)(Kp) l) = Rp,l-

We say that E, ¢ Rlz, is a family of equivalence relations on R, definable
uniformly in p if E, is an equivalence relation on R, and

VpVx,y € Ry, xEpy = 3l e N', X,y € R, .

In particular, for all / € N', E, induces an equivalence relation E, ; on R, ;.
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Rationality

Theorem

Fix p a prime. Let (Ry)venr € Kj be uniformly definable and E a family of
definable equivalence relations on R such that for all / ¢ N, a, = Ry /E+|
is finite. Then

> ayt" is rational.
g
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Rationality

Theorem

Let (Rp,v)venr € K} be definable uniformly in p and E, a family of
equivalence relations on R definable uniformly in p such that for all prime
pandveN' a, = |R,/E,|is finite. Then for all p,

> ap~t" is rational.
-

Moreover, there exists my and d € N such that for all choice of my-Galois
uniformizer c, € K, for all v € N" with |v| < d, there exists g, € Q and
varieties V,, and W,, over Z[X] such that for all p > 0,

Za £y = Z|v|sdQV|VV(reS(Kp))|tv
> Y Xivi<d W (res(Kp) )|t

where X is specialized to res(c,) in res(K,).
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Some remarks

» The proof proceeds by:

1. Using uniform elimination of imaginaries to reduce to counting cosets
of GL,(O(K,)) in GLn(K));
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Some remarks

v

The proof proceeds by:
1. Using uniform elimination of imaginaries to reduce to counting cosets
of GL,(O(K,)) in GLn(K));
2. Using the Haar measure y, on GL,(K,) normalized such that
1y (GLA(O(Ky))) =1, rewrite the sum as an integral,
3. Use Denef’s result on p-adic integrals (and its uniform version given by
Pas or even motivic integration).

In the appendix, Raf Cluckers gives an alternative proof of the
counting theorem for fixed p that does not use elimination of
imaginaries and generalizes to the analytic setting.

The denominator of the rational function can described more
precisely.

These results are used to show that some zeta functions that appear
in the theory of subgroup growth and representation growth are
rational uniformly in p.
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Thank you
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