An Ax-Schanuel theorem for the modular curve and the j-function
Model Theory in Geometry and Arithmetic May 12, 2014 - May 16, 2014
Location: SLMath: Eisenbud Auditorium
v1345
The classical Ax-Schanuel theorem states that, in a differential field, any algebraic relations involving the exponential function must arise in a 'trivial'
manner. It turns out that one can formulate natural analogues of this theorem in the context of uniformization maps arising from Shimura varieties, the simplest case of which is the j-function. Besides their inherent appeal, such analogues have applications to the Zilber-Pink conjecture in number theory; a far reaching generalization of Andre-Oort.
We will explain these analogues and sketch a proof in the case of the j-function. This is joint work with J.Pila.
v1345
H.264 Video |
v1345.mp4
|
Download |
Please report video problems to itsupport@slmath.org.
See more of our Streaming videos on our main VMath Videos page.