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1 Motivation
The motivating problem:

Hilbert’s Tenth Problem: Find an algorithm to decide, given a polynomial equation f(x1, · · · , xn) =
0 with f(x1, · · · , xn) ∈ Z[x1, · · · , xn], whether or not it has a solution with x1, · · · , xn ∈ Z.

In 1970, this problem was solved by Matiyasevich (building on work of Davis, Putnam, and
Robinson), showed that no such algorithm exists. Thus, we say that Hilbert’s Tenth Problem is
undecidable.

Before this problem was solved, people already generalized this problem to arbitrary commu-
tative rings R:

Hilbert’s Tenth overR: Find an algorithm to decide, given a polynomial equation f(x1, · · · , xn) =
0 with f(x1, · · · , xn) ∈ R[x1, · · · , xn], whether or not it has a solution with x1, · · · , xn ∈ R.

Hilbert’s Tenth over Q is still an open problem, as is Hilbert’s Tenth over K a number field.
Despite this, we can answer Hilbert’s tenth negatively for some rings Z ⊆ R ⊆ Q.
Theorem: Let K be a number field over which there is an elliptic curve defined over K whose

K-rank is 1. For every t > 1 and every collection δ1, · · · , δt of nonnegative computable real
numbers whose sum is 1, the set of nonarchimedean valuations of K may be partitioned into t
mutually disjoint subsets s1, · · · , st of densities δ1, · · · , δt such that Hilbert’s Tenth is undeciable
over OK,si .

Here OK,si = {x ∈ K | ordOx ≥ 0∀p /∈ si}
Remark: We believe such curves exist for all number fields K.
Example: K = Q, t = 2. The nonarchimedean valuations are in bijective correspondence with

the primes P . The theorem implies that P = S1∪S2 with S1∩S2 = ∅, S1 and S2 recursive and of
prescribed density and such that Hilbert’s Tenth for Z[S−11 ] and H10 for Z[S−12 ] is undecidable. If
we take densities 0 and 1, we get a strengthening of Poonen’s earlier result, which did not address
the undecidability of the density 0 set.

Some known results:

• H10 is decidable over

– finite fields

– p-adic fields (Ax-Kochen, Ersov)

– real-closed fields

• H10 is undecidable over

– function fields of curves over finite fields (Pheidas, Shlapentokh, Videla, Eisentraeger)

– some rings of integers of number fields (any ring of integers if Shafarevich-Tate con-
jecture holds [Mazur-Rubin])

Today’s theorem generalizes techniques of Poonen (2002) and Poonen-Shlapentokh (2005) and
Eisentraeger-Everest (2009)

Outline of Talk
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• Sketch proof for K = Q, t = 2

• Say something about densities and Mazur’s conjecture at the end

2 Outline of Proof
Definition 1. LetR be a commutative ring. A subsetA ⊆ Rk is diophantine overR if there exists
a polynomial f(x1, · · · , xk, y1, · · · , ym) with coefficients inR such thatA = {x ∈ R | ∃y1, · · · , ym ∈
R : f(x1, · · · , xk, y1, · · · , ym) = 0}

Examples: (1) N is diophantine over Z: x ∈ N if and only if ∃y1, · · · , y4 ∈ Z such that
y21 + · · ·+ y24 − x = 0

(2) The set of primes is diophantine
Proving undecidability through reductions: Let K be a number field, R ⊆ K a subring

Proposition 1. If Z is diophantine over R then H10 / R is undecidable.

Assume for contradiction that we have an H10 algorithm forR. Take an equation f(x1, · · · , xn) ∈
Z[x1, · · · , xn] and regard it as a polynomial over R. Then as Z is diophantine consider its defin-
ing equation over R. Then to decide whether or not f has solutions in Z it suffices to determine
whether or not f 2 + g21 + · · ·+ g2n = 0 for gi saying that xi is an element of Z. This contradicts the
undecidability of H10 for Z.

Definition 2. A diophantine model of Z overR is a setA ⊆ Rn that is diophantine overR together
with a bijection Z → A under which the graphs of addition and multiplication in Z correspond to
subsets of A3 that are diophantine over R.

Proposition 2. If R admits a diophantine model of Z then H10/R is undecidable

Proof. As above.

We will use the existence of the elliptic curve in the hypothesis to produce such a diophantine
model of Z. This is tricky though- when taking multiples of points in an elliptic curveE on integral
points we divide, which may take us to a rational non-integral point.

Proof of theorem: Construction of the diophantine model. Take any elliptic curve E/Q of rank
1, so that E(Q) ∼= Z⊕ E(Q)tors.

Let Q be a generator for E(Q)/E(Q)tors.
Let P = zQ (suitable multiple of the generator) so that P has integral coordinates.
Fix a Weierstrass equation for E : y2 = x3 + ax+ b.
Outline of construction:
Step 1: Construct two sequences of primes which are disjoint (they have nothing to do with

what S1 and S2 look like) `1 < `2 < · · · and `′1 < `′2 < · · · . The choice of these sequences is cru-
cial to let us control the orders of certain valuations of points to make addition and multiplication
work out.

Step 2: Construct four sets T1, R1, T2, R2 s.t. T1 ∩ R1 = ∅, T2 ∩ R2 = ∅, T1 ∩ T2 = ∅, and
R1 ∩ R2 = ∅. We will get undecidability for S1, S2 which are such that T1 ⊆ S1 ⊆ P − R1 and
T2 ⊆ S2 ⊆ P −R2. In general we can’t get R1 or R2 infinite.
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Choose T1, T2, R1, R2 such that

E(Z[S−11 ]) ∩ z · E(Q) =
⋃
{±`i(P )}+ finite set

and
E(Z[S−12 ]) ∩ z · E(Q) =

⋃
{±`′i(P )}+ finite set

and so T1 should contain all primes appearing in the denominators of the `iP ; similarly for the T2.
R1 should contain primes that appear in the denominator of points `P for ` 6= `i; similarly for

R2.
Step 3: Construct S1, S2 with S1 ∪ S2 = P and S1 ∩ S2 = ∅.
Step 4: Let xn = x(nP ) (the x-coordinate of nP ). Let A1 := {x`1 , x`2 , · · · } and A2 :=

{x`′1 , x`′2 , · · · }. Now the Ak are in bijection with Z just by the correspondence x`i ↔ i. The Ai are
respectively diophantine over Z[S−1i ], which depends heavily in the choice of prime sequences in
step 1.

For steps 2 and 3, we need elliptic divisibility sequences: we have that xn = x(nP ) =
An

B2
n

with P on E of infinite order, such that gcd(An, Bn) = 1, Bn > 0. We say that B1, B2, · · · is an
elliptic divisibility sequence, so Bn|Bm whenever n|m.

To define R1, R2(· · · , Rt), need to show that denominators of points `P have many prime
divisors (in order to choose enough primes to put into the Ri).

Definition 3. Let (Bn)n≥1 be an elliptic divisibililty sequence for P . An integer d > 1 is a prime
divisor of Bn if

• d|Bn

• gcd(d,Bm) = 1 for all Bm with 0 < m < n.

Theorem 1. Let p be a prime, q = pt−1 for t > 1. Let Q ∈ E(Q) be a point of infinite order,
p = q ·Q. Let Bn be an elliptic divisibility sequence for P . Then for every large enough n coprime
to p the term Bn has at least t primitive divisors.

For number fields, you have to talk about primitive prime ideal divisors, most everything else
works the same (though there’s some tricky combinatorics involved)
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