A Universal First-Order Formula for the Ring of Integers inside a Number Field

Presentation by Jennifer Park

1 Motivation

Hilbert's Tenth Problem over R; **H10R**: Is there an algorithm to decide, given a polynomial equation $f(x_1, \dots, x_n) = 0$ with $f(x_1, \dots, x_n) \in R[x_1, \dots, x_n]$, whether or not it has a solution with $x_1, \dots, x_n \in R$.

 $H10(\mathbb{Q})$ (and H10K for K a number field) are open.

A possible approach to produce a negative result for these question: Suppose that we can find a polynomial $p \in K[t, y_1, \dots, y_m]$ such that $\mathcal{O}_K = \{a \in K \mid \exists \bar{b} \in K^m \ p(a, \bar{b}) = 0\}$.

Claim: If such a *p* exists, and if $H10\mathcal{O}_K$ is known to have a negative answer then H10K also has a negative answer.

Proof. Suppose for contradiction that there is an algorithm for H10K and let $f \in \mathcal{O}_K[x_1, \dots, x_n]$. Consider the system of equations $f(x_1, \dots, x_n) = 0$, $p(x_1, y_{11}, \dots, y_{1m}) = 0$, $\dots, p(x_n, y_{n1}, \dots, y_{nm}) - 0$. Then by taking a degree two extension of K, $K(\sqrt{c})$, for two polynomials f, g we can express $f = 0 \land g = 0$ as $Nm(f + \sqrt{c}g) = 0$, which is again a polynomial. Then do induction. \Box

Definition 1. $A \subseteq R$ is Diophantine if $\exists n \in \mathbb{Z}_{>0}$ and $p \in R[t, y_1, \dots, y_n]$ such that $A = \{a \in R \mid \exists \overline{b} \in R^n f(a, \overline{b}) = 0\}$

Theorem 1. (*Robinson, 1949*) *There is a polynomial* $q \in \mathbb{Q}[t, x_1, x_2, y_1, \dots, y_7, z_1, \dots, z_6]$ such that $\mathbb{Z} = \{t \in \mathbb{Q} \mid \forall a_1, a_2 \exists b_1, \dots, b_7 \forall c_1, \dots, c_6 \in \mathbb{Q} \ g(t, a_1, a_2, b_1, \dots, b_7, c_1, \dots, c_6) = 0\}$

Theorem 2. (Poonen, 2009) There is a polynomial $h \in K[t, x_1, x_2, y_1, \dots, y_7]$ satisfying $\mathcal{O}_K = \{t \in K \mid \forall a_1, a_2 \exists b_1, \dots, b_7 \in K \ h(t, a_1, a_2, b_1, \dots, b_7) = 0\}.$

Theorem 3. (Koenigsman) There is a polynomial $f \in \mathbb{Q}[t, x_1, \dots, x_{418}]$ satisfying $\mathbb{Z} = \{t \in \mathbb{Q} \mid \forall a_1, \dots, a_{418} \in \mathbb{Q} \mid h(t, a_1, \dots, a_{418}) = 0\}$. $\mathbb{Q} \setminus \mathbb{Z}$ is Diophantine.

Theorem 4. *Park, 2012* $K \setminus \mathcal{O}_K$ *is Diophantine.*

2 $\mathbb{Q} \setminus \mathbb{Z}$ is Diophantine

The idea is to use the following Diophantine sets as building blocks: for $a, b \in \mathbb{Q}^{\times}$

$$S_{a,b} := \{ 2x_1 \in \mathbb{Q} : \exists x_2, x_3, x_4 \in \mathbb{Q} \ x_1^2 - ax_2^2 - bx_3^2 + abx_4^2 = 1 \}$$

The trace of norm one elements of a, b: $T_{a,b} = S_{a,b} + S_{a,b}$, which is diophantine as it is $\{x_1 + x_2 \mid \exists x_1, x_2 \in S_{a,b}\}$.

Koenigmann showed: $\bigcap_{p \in \mathbb{Q}^{\times}} (T_{-1,p} + T_{-2,p}) = \bigcap_{p \equiv 3 \mod 8, p \text{ prime}} \mathbb{Z}_{(p)}$ $\bigcap_{p \in \mathbb{Q}^{\times}} (T_{-1,p} + T_{-2,p}) = \bigcap_{p \equiv 5 \mod 8, p \text{ prime}} \mathbb{Z}_{(p)}$ $\bigcap_{p \in \mathbb{Q}^{\times}} (T_{-1,p} + T_{2,p}) = \bigcap_{p \equiv 7 \mod 8, p \text{ prime}} \mathbb{Z}_{(p)}$

 $\bigcap_{p \in \mathbb{Q}^{\times}} (T_{-p,q} + T_{2p,q}) = \bigcap_{p \equiv 1 \mod 8, p \text{ prime}} \mathbb{Z}_{(p)}$ Using this you can show that $\mathbb{Z}_{(2)}$ is diophantine. Then $\mathbb{Z} = \mathbb{Z}_2 \cap \bigcap_{p \in \mathbb{Q}^{\times}} [(T_{-1,p} + T_{-2,p}) \cap \dots \uparrow$ which gives a $\forall \exists$ definition of \mathbb{Z} in \mathbb{Q} . To get an \forall definition:

Proposition 1. 1. $T_{a,b} + T_{c,d} = \bigcap_{p \text{ prime}, (a,b)_p = (c,d)_p = -1} \mathbb{Z}_{(p)}.$

- 2. If the Jacobson radical of the ring $T_{a,b} + T_{c,d}$ is Diophantine then $\bigcup_{p \text{ prime},(a,b)_p=(c,d)_p=-1} \mathbb{Z}_{(p)}$ is defined with one universal quantifier.
- 3. Most of the rings appearing above have diophantine Jacobson radical, and

$$\mathbb{Z} = \mathbb{Z}_{(2)} \cap \bigcap_{p,q \in \mathbb{Q}^{\times}} \left(\bigcup_{\ell \text{ prime}, (-1,\ell)_p = (-2,\ell)_p = -1} \mathbb{Z}_{(\ell)} \cdots \right)$$

3 Over Number Fields

Biggest obstruction: how to generalize things like $p \equiv 3 \mod 8$? Look more closely at the Hilbert symbol.

$$S_{a,b}(K) := \{ 2x_1 \in K : \exists x_2, x_3, x_4 \in K \ x_1^2 - ax_2^2 - bx_3^2 + abx_4^2 = 1 \}$$

If $\sqrt{-1}, \sqrt{-2} \in K$ then $\bigcap_{p \in \mathbb{Q}^{\times}} (T_{-1,p}(K) + T_{-2,p}(K)) = K.$

Question: What number theoretic construction gives

$$T_{a,b}(K) + T_{c,d}(K) = \bigcap_{\mathfrak{p} \text{ prime}, (a,b)\mathfrak{p} = (c,d)\mathfrak{p} = -1} (\mathcal{O}_K)\mathfrak{p}$$

What is known is that if $a, b \in K^{\times}$ then $(a, b)_{\mathfrak{p}} = ((-1)^{\nu_{\mathfrak{p}}(a)\nu_{\mathfrak{p}}(b)}red_{\mathfrak{p}}(\frac{a^{\nu_{\mathfrak{p}}(b)}}{b^{\nu_{\mathfrak{p}}a)})\frac{q-1}{2}$ for $q = |\mathbb{F}_{\mathfrak{p}}|$.

Suppose that a is a p-adic unit. Then $(a, p)_{\nu} = -1$ if and only if $\nu(p)$ is odd and $red_{\nu}(a)$ in \mathbb{F}_{ν} is not a square.

 $red_{\nu}(a) \in \mathbb{F}_{\nu}^{2}$ if and only if $a \in (K_{\nu}^{\times})^{2}$ if and only if \mathfrak{p}_{ν} splits in $K(\sqrt{a})/K$.

Artin Homomorphism: Given L/K a finite extension, $L = K(\sqrt{a})$ we have the morphism $\psi: I^s \to Gal(L/K) \cong \{\pm 1\}$ that maps $\mathfrak{p} \to (a/\mathfrak{p})$ Legendre symbol = 1 is a is a square mod \mathfrak{p} and -1 otherwise.

And consider the map $\psi: I^s \to Gal(K(\sqrt{a}, \sqrt{b})/K) \cong \{\pm 1\}^2$ mapping $\mathfrak{p} \mapsto [(a/\mathfrak{p}), (b/\mathfrak{p})]$ (Legendre symbols).

Using these maps we can show

Proposition 2.
$$\bigcap_{p \in K^{\times}} T_{p,a}(K) + T_{p,b}(K) = \bigcap_{\mathfrak{p} \text{ prime}, \psi(\mathfrak{p}) = (-1, -1)} (\mathcal{O}_K)_{\mathfrak{p}}$$

Given this proposition, much of Koenigsman's previous argument goes through and the result is proved.