Lehmer Problem and Applications

Presentation by Maria Carrizosa

1 Zilber-Pink Conjecture

The Lehmer problem is one of the "special points/ special varieties" problems.

We want to find all rational points of a polynomial of the form p(x, y) = 0 which gives us a smooth projective curve X/\mathbb{Q} . We know that the number of \mathbb{Q} points of these solutions is determined by its genus g.

- 1. g = 0. Then $X(\mathbb{Q})$ is either empty or infinite, and its solutions are rationally parametrized.
- 2. g = 1. Then $X(\mathbb{Q})$ is an elliptic curve, and the Mordell-Weil theorem asserts that $X(\mathbb{Q})$ is a finitely generated group. More generally, for A an abelian variety, $A(\mathbb{Q})$ is finitely generated.
- 3. g > 1, $X(\mathbb{Q})$ is finite. For every such curve, there is an embedding of X into its Jacobian J(X) := A. an abelian variety of dimension g and consider $X \cap A(\mathbb{Q})$ in this embedding. This situation is what the Mordell-Lang conjecture generalizes.

This leads to the statement of the **Mordell-Lang Conjecture**: Let X be a curve contained in an abelian variety A, Γ a finite rank subgroup (i.e. $\Gamma \otimes \mathbb{Q}$ is a f.d. \mathbb{Q} vector space). Then $X \cap \Gamma$ is finite except if X is a translate of an elliptic curve.

Zilber-Pink Conjecture Let A be an (semi-)abelian variety over K a number field, Γ a finiterank subgroup of $A(\overline{K})$, X a subvariety that is Γ transverse (i.e. X is *not* contained in a translate by points of $\Gamma_{sat} = \{x \in A \mid \exists n \in \mathbb{Z}n \cdot x \in \Gamma\}$ of a proper abelian subvariety of A). Consider the sets of the form $X \cap (\Gamma + B)$ (with $\operatorname{codim} B \ge \dim X + 1$); none of these are Zariski dense in Xby Mordell-Lang. Then the conjecture says that $X \cap (\Gamma + \bigcap_{abelian subgroups of A such that <math>\operatorname{codim} B \ge \dim X + 1$

is not dense in X

Equivalently, we can suppose that $\Gamma = \{0\}$, or that X is A-transverse. The main first steps in this direction are

Theorem 1. (Bombieri-Masser-Zannier and Manin) The Zilber-Pink conjecture is true for $A = \mathbb{G}_m^n$, X = C a curve.

Theorem 2. (*Habegger-Pila*) A an abelian variety, X = C a curve.

How can we try to prove this conjecture?

2 A Strategy

Very general idea: We're studying the intersection of X with some set $S; X \cap S$. We try to...

- 1. Find an "exceptional" $Z \subseteq X$ closed such that
- 2. Show that $(X \setminus Z) \cap S$ has bounded height

- 3. Show that $(X \setminus Z) \cap S$ is finite
- 4. Show that, in fact, X = Z.

Definition 1. For any $\Gamma \subseteq A(\overline{K})$, let

 $Z_{X,\Gamma} = \{x \in X \mid \exists H \text{ a } \Gamma - \text{torsion subvariety such that } \dim_x(X \cap H) > \max(0, \dim X + \dim H - \dim A)\}$

People who worked on each step...

- 1. Step one done for \mathbb{G}_m^n by Bombieri-Masser-Zannier for $\Gamma = A$ for A an abelian subgroup. Also done for A an abelian variety by G. Remond.
- 2. Step two done for \mathbb{G}_m^n by Habegger for $\Gamma = 0$ and by Manin for general Γ . Also done for abelian varieties A by Habegger for $\Gamma = 0$ and also by Remond.
- 3. Step 3- Lehmer Problem
- 4. For step four, all we really know is that this step works for curves.

3 Heights and Dobrowolski group

We begin by defining heights. Let $\frac{a}{b} \in \mathbb{Q}$ such that (a, b) = 1. Then defin $h(\frac{a}{b}) = \log \max(|a|, |b|)$. Now let $\alpha \in \overline{\mathbb{Q}}$. Let μ_{α} = minimal polynomial of α over $\mathbb{Z} = \sum a_i x^i$. Define the *naive* height of α as

$$h_{naive}(\alpha) = \frac{1}{d} \log \max |a_i|$$

and then define the height as $h(\alpha) = \lim_{n \to \infty} \frac{1}{n} h_{naive}(\alpha^n)$. We also have that

$$h(\alpha) = \sum_{\nu \in \mathfrak{M}_{K}} \frac{[K_{\nu} : \mathbb{Q}_{\nu}]}{[K : \mathbb{Q}]} \log \max(1, |\alpha|_{\nu})$$

 $, \alpha \in \overline{\mathbb{Q}}^*.$

Some easy facts about height:

- $h(\alpha) = 0$ if and only if α is a root of unity
- $h(\alpha^n) = |n|h(\alpha)$ for $n \in \mathbb{Z}$.

Lehmer's Conjecture (1933) $\exists c > 0, \alpha \in \overline{\mathbb{Q}}^*, \alpha$ not a root of unity such that $h(\alpha) \geq \frac{c}{[\mathbb{Q}(\alpha):\mathbb{Q}]}$

Theorem 3. (Dobrowolski 1979) $\forall \epsilon > 0 \exists c(\epsilon) > 0, \alpha \in \overline{\mathbb{Q}}^*, \alpha \in \mu \text{ with } D^{1+\epsilon}h(\alpha) \geq c \text{ where } D = [\mathbb{Q}(\alpha) : \mathbb{Q}].$

4 Lehmer and Dobrowolski Groups

First we define the **obstruction index**, a generalization of heights: Consider $K \subseteq L \subseteq \overline{K}$, $x \in A$. Define the obstruction index of L over K as

$$w_L(x) = \min\{\deg \mathcal{L}(V)^{1/[\dim A - \dim V]}, x \in V/L \subseteq A\}$$

taking $L = \mathbb{Q}$ and $V = \{x\}$, the degree $\deg_{\mathcal{L}}$ is simply $[\mathbb{Q}(x) : \mathbb{Q}]$ and we recover height.

Remark: The line bundle \mathcal{L} above comes from a choice of embedding our variety A in projective space.

Let K_{Γ} = field of rationality of Γ .

Definition 2. Γ is a Lehmer group if $\exists c(\Gamma) > 0 \ \forall x$ that are Γ -transverse we have $w_{K_{\Gamma}}(x)h(x) \ge c_{\Gamma}$.

Examples:

- Take $\Gamma = \{0\}, K_{\Gamma} = K, \Gamma_{sat} = A_{tors}$. This is called the **Lehmer problem**).
- Likewise, let $\Gamma = A_{tors}$, $K_{\Gamma} = K(A_{tors})$. This is the *relative* Lehmer problem.
- Take $\Gamma = A$, so $K_{\Gamma} = \overline{K}$, which is the effective Bogomolov conjecture.

What we know:

Definition 3. Γ is a Dobrowolski group if $\exists \epsilon > 0$, $\exists c_{\epsilon}(\Gamma) > 0 \ \forall x$ that are Γ -transverse we have $w_{K_{\Gamma}}(x)h(x) \ge c_{\epsilon,\Gamma}$.

Theorem 4. Let $A = \mathbb{G}_m^n$, A an abelian variety with CM. Then $\Gamma = \{0\}$, A_{tors} , A are Dobrowolski.

5 Back to Zilber-Pink Conjecture

Theorem 5. If A_{tors} is Dobrowolski, A is Dobrowolski, and $X \neq Z_{x,A}$ then the Zilber-Pink conjecture in that case is true.

If $\alpha \in \mathbb{Q}^{ab}$ then $h(\alpha) \ge \frac{\log 5}{12}$ so that the Lehmer problem is true for such α . Another sufficient condition, which comes by easy bounds on height, is that is α^{-1} is not a conjugate of α .