Counting Algebraic Points on Definable Sets

Presentation by Margaret Thomas

1 Some Definitions

Definition 1 (Heights). For a $\frac{a}{b} \in \mathbb{Q}$ such that $(a, b) = 1$, $h(\frac{a}{b})$ $\frac{\alpha}{b}$) = log max(|a|, |b|) := log H.

Definition 2 (Pfaffian). Consider a sequence $f_1, \dots, f_r : U \to \mathbb{R}$ of analytic functions $(U \subseteq \mathbb{R}^n)$ open) such that $\frac{\partial f_i}{\partial x}$ ∂x_j $(\overline{x}) = P_{ij}(\overline{x}, f_1(\overline{x}), \cdots, f_i(\overline{x})).$

A function $f(\vec{x})$ is Pfaffian if we can write it as the solution to a polynomial differential equation $f(\overline{x}) = P(\overline{x}, f_1(\overline{x}), \cdots, f_r(\overline{x}))$ with deg $P_{ij} \leq \alpha$, deg $P \leq \beta$.

2 Strategy For Pila-Wilkie over Number Fields

(1) Parametrization: Cover $S \subseteq \mathbb{R}^n$ by \bigcup^n $i=1$ $Im(\phi_i)$ for $\phi_i : (0,1)^{\dim S} \to \mathbb{R}^n$ with ϕ_i chosen so that we have nice bounds on the absolute values of the derivatives of the ϕ_i 's.

(2) Diophantine Part: Reduce from considering the set of points $S(F, H) := \{ \overline{q} \in S \cap \overline{q} \}$ $F^n | ht(\overline{q}) \leq H$ } to counting $(S \cap Z(P))(F, H)$ for polynomials of suitable degree, F a number field.

(3) Zero Estimates: Count $|S \cap Z(P)|$ or $|(S \cap Z(P))(F, H)|$.

Università Konsta

Counting algebraic points on definable sets

Margaret E. M. Thomas

Fachbereich Mathematik und Statistik & Zukunftskolleg, Universität Konstanz and The Mathematical Sciences Research Institute

> MSRI Connections for Women: Model Theory and Its Interactions with Number Theory and Arithmetic Geometry February 10th 2014

Pila–Wilkie Theorem

Let $S \subseteq \mathbb{R}^n$ be definable in an o-minimal expansion of the ordered field of real numbers. Assume that *S* contains no infinite semialgebraic subset. Let $\varepsilon > 0$. There exists $C = C(\varepsilon) > 0$ such that if $H \geq C$, then S contains at most H^ε rational points of height at most H , i.e. setting $S(\mathbb{Q},H) := \{ \bar{q} \in S \cap \mathbb{Q}^n \mid \, \text{ht}(\bar{q}) \leq H \}$, we have that for $H \geq C$, $|S(\mathbb{Q},H)| \leq H^{\varepsilon}$.

(Pila 2009) The theorem also holds for

- any fixed number field $F \subseteq \mathbb{R}$ in place of \mathbb{Q} i.e. $S(F,H) \leq H^{\varepsilon}$;
- • algebraic points whose coordinates have degree bounded by a fixed *k*, i.e. $S(k, H) \le H^{\varepsilon}$, where $S(k, H) :=$ $|S \cap \{(x_1,\ldots,x_n) \in \mathbb{R}^n \mid \text{for all } i, [\mathbb{Q}(x_i) : \mathbb{Q}] \leq k \text{ and } \text{ht}(x_i) \leq H\}|.$

It is not possible to obtain an improvement in the H^ε bound which would hold for all o-minimal expansions of the real ordered field.

(Pila 1991) Given any function $\varepsilon(H) \to 0$ as $H \to \infty$, there is a transcendental analytic function $f: [0,1] \to \mathbb{R}$ and a sequence $(H_n)_n$ with $H_n\to\infty$ such that, for all $n\in\mathbb N, |\Gamma(f)(\mathbb Q,H_n)|\ge H_n^{\varepsilon(H_n)}.$ These functions are definable in the o-minimal structure \mathbb{R}_{an} .

However, there is a proposed improvement for \mathbb{R}_{exp} :

Wilkie's Conjecture (2006)

Let $F \subseteq \mathbb{R}$ be a number field of degree *k*. Suppose *S* is definable in \mathbb{R}_{exp} and does not contain an infinite semialgebraic subset. There exist $c(S, k), \gamma(S) > 0$ such that $|S(F,H)| \leq c(\log H)^{\gamma}$.

There is a version for algebraic points of bounded degree formulated by Pila (2010), where the exponent $\gamma = \gamma(S, k)$.

In practice we consider a much wider class of functions than just the exponential function.

Such an approach is suggested by the following result:

Theorem (Pila 2007)

For any transcendental Pfaffian function $f: I \longrightarrow \mathbb{R}$ on an interval $I \subseteq \mathbb{R}$, there exist $c(f), \gamma(f) > 0$ such that $|\Gamma(f)(\mathbb{Q}, H)| \leq c(\log H)^{\gamma}.$

- (Khovanskii) Pfaffian functions: solutions to upper triangular systems of first order polynomial differential equations.
- They are analytic and o-minimal (\mathbb{R}_{Pfsff} , the expansion of the real ordered field by all Pfaffian functions, is o-minimal).
- • They include exp on R, log on $(0, \infty)$, sin on $(0, \pi)$, ...

(Khovanskii 1980) For a Pfaffian function *f* , we have effective bounds on the number of connected components of

 $Z(f), Z(f'), \ldots$, the zero sets of f and its derivatives, and on Γ(*f*)∩*Z*(*P*), the graph of *f* intersected with the zero set of a polynomial *P*,

which depend on the number of variables *n* of *f* , the order *r* of *f* (i.e. the number of functions defined by the system defining *f*), and the degree (α, β) of f, where α is a bound on the degrees of the polynomials in the system and β is the degree of the polynomial defining *f* , and (polynomially) on the degree *d* of *P*.

(Khovanskii 1980) If $g_1, \ldots, g_m: U \to \mathbb{R}$, $U \subseteq \mathbb{R}^n$, are Pfaffian of common order *r* and degree (α, β) , and $P \in \mathbb{R}[X_1, \ldots, X_n]$ has degree *d*, then the number of connected components of *Z*(*g*₁)∩...∩*Z*(*g*_{*m*})∩*Z*(*P*) has an effective bound *c*(*n*,*r*,α,β)· *d*^{*n*+r}.

[PW Theorem](#page-2-0) [Curves](#page-4-0) [Surfaces](#page-8-0) [Complex functions](#page-10-0) [Weierstrass Zeta](#page-12-0) Adopting Pila's method for one-variable, transcendental Pfaffian functions, and first establishing the appropriate zero estimates for *f* implicitly defined from Pfaffian functions, we obtain:

Theorem (Jones-T. 2010)

Let $F ⊂ \mathbb{R}$ be a number field of degree *k*. Let $f : I \longrightarrow \mathbb{R}$ be transcendental and implicitly defined from Pfaffian functions, *I* ⊆ R an interval. There are $c(f, k)$, $\gamma(f) > 0$ s.t. $|\Gamma(f)(F, H)| \leq c(\log H)^{\gamma}$.

Corollary (Jones-T. 2010)

For any $f: I \longrightarrow \mathbb{R}$ existentially definable in $\mathbb{R}_{Pf \circ f}$ s.t. $\Gamma(f)$ contains no infinite semialgebraic subset, there exist $c(f, k)$, $\gamma(f) > 0$ s.t. $|\Gamma(f)(F,H)| \leq c(\log H)^{\gamma}.$

Proof.

By methods of Wilkie, such an *f* is piecewise implicitly defined.

П

Corollary (Jones-T. 2010)

For any $f: I \longrightarrow \mathbb{R}$ existentially definable in \mathbb{R}_{Pfaff} s.t. $\Gamma(f)$ contains no infinite semialgebraic subset, there exist $c(f, k)$, $\gamma(f) > 0$ s.t. $|\Gamma(f)(F,H)| \leq c(\log H)^{\gamma}.$

[PW Theorem](#page-2-0) [Curves](#page-4-0) [Surfaces](#page-8-0) [Complex functions](#page-10-0) [Weierstrass Zeta](#page-12-0)

It follows directly that this bound will hold for any function definable in any model complete reduct of \mathbb{R}_{Pfaff} - in particular \mathbb{R}_{ern} .

Corollary (Jones-T. 2010; also shown by Butler)

Wilkie's Conjecture holds for any 1-dimensional set *S*.

In each of these results, if we know the common complexity (m,r,α,β) of the Pfaffian functions implictly defining the curve, in each of the bounds we can compute the constant $c(m,r,\alpha,\beta,k)$ and the exponent $\gamma(m,r) = 3m + 3r + 8$.

[PW Theorem](#page-2-0) [Curves](#page-4-0) [Surfaces](#page-8-0) [Complex functions](#page-10-0) [Weierstrass Zeta](#page-12-0) Another approach: find suitable parameterizations in all dimensions, à la Pila–Wilkie. (Pila) This should be "mild parameterization": the covering functions ϕ are C^{∞} and have roughly $||\phi^{(\alpha)}|| \leq |\alpha|^{C|\alpha|}$.

Theorem (Pila 2009)

Suppose that $S \subseteq \mathbb{R}^n$ has a mild parameterization. Then $S(F,H)$ is contained in at most $K_1(\log H)^{K_2}$ zero sets of polynomials of degree at most $(\log H)^{\frac{\dim S}{n-\dim S}}$, for some $K_1(S,k),K_2(S)>0.$

Bound $|(S \cap Z(P))(F,H)|$, for a surface *S*, the graph of $f: U \longrightarrow \mathbb{R}$ implicitly defined from Pfaffian functions (again assume *S* contains no infinite semialgebraic subset):

Proposition (Jones-T. 2010)

For such a surface *S*, there exist $c(S, k)$, $\gamma(S) > 0$ and a polynomial $Q \in \mathbb{R}[X]$ of degree $N(S)$ such that, for any polynomial $P : \mathbb{R}^3 \to \mathbb{R}$ of degree d , $|(S \cap Z(P))(F,H)| \leq cQ(d)(\log H)^{\gamma}$.

This proposition $+$ all sets definable in \mathbb{R}_{an} have a mild parameterization gives:

1st Corollary (Jones-T. 2010)

If $S \subseteq \mathbb{R}^n$ is a surface definable in $\mathbb{R}_{\mathsf{resPfaff}},$ the real field expanded by all restricted Pfaffian functions, then there exist $c(S, k)$, $\gamma(S) > 0$ such that $|S(F,T)| \leq c(\log H)^{\gamma}$.

2nd Corollary (Jones-T. 2010)

Wilkie's Conjecture holds for any surface *S* which admits a mild parameterization.

[PW Theorem](#page-2-0) [Curves](#page-4-0) [Surfaces](#page-8-0) [Complex functions](#page-10-0) [Weierstrass Zeta](#page-12-0)

This question has also been addressed for special cases, and can also make sense for subsets of $\mathbb C$ (where $F \subseteq \mathbb C$).

In 2011, Masser proved the following bound for algebraic points of bounded degree on the graph of the Riemann zeta function:

Theorem (Masser 2011)

Let *S* be the graph of ζ |^{*∆*}, where $\Delta := \{z \mid |z - \frac{5}{2}\}$ $\frac{5}{2}|\leq\frac{1}{2}\}$. There exists an effective, absolute constant $C > 0$ such that, for all $H > e$, $|S(k,H)| \leq C \left(\frac{k^2 \log 4H}{\log (k \log 4H)} \right)$ $\frac{k^2 \log 4H}{\log (k \log 4H)}\bigg)^2$.

Masser: "It may be an interesting problem to prove analogues ... for other natural functions. For example the Euler gamma function Γ(*z*)... Or the Weierstrass zeta function $\zeta_Λ(z)$... in spite of its differential equation we do not know a single rational *z* with $\zeta_1(z)$ irrational... Pila has also suggested $\frac{\zeta(z)}{\pi^z}$ [for ζ Riemann zeta]."

Theorem (Masser 2011)

Let *S* be the graph of ζ | Δ , where $\Delta := \{z \mid |z - \frac{5}{2}\}$ $\left|\frac{5}{2}\right|\leq\frac{1}{2}\}$ There exists an effective, absolute constant $C > 0$ such that, for all $H \geq e$, $|S(k,H)| \leq C \left(\frac{k^2 \log 4H}{\log (k \log 4H)} \right)$ $\frac{k^2 \log 4H}{\log (k \log 4H)}\bigg)^2$.

(Boxall-Jones 2013) Analogous results hold for the functions Γ(*z*) and $\frac{\zeta(z)}{\pi^z}$ (for ζ the Riemann zeta function), with exponent $3+\varepsilon$ in place of 2, holding for the restriction to $(2, \infty)$. Independently, Besson (2013) adapted Masser's methods and proved that a bound

$$
C(n) \frac{(k^2 \log H)^2}{\log(k \log H)}
$$

holds for $\Gamma(z)$ $\upharpoonright_{[n-1,n]}$.

Let $\Lambda := \{m\omega_1 + n\omega_2 \mid m, n \in \mathbb{Z}\}\$ be a lattice in the complex plane \mathbb{C} , with $|\omega_1| \leq |\omega_2|$. The Weierstrass elliptic function $\wp_{\Lambda} : \mathbb{C} \setminus \Lambda \to \mathbb{C}$ corresponding to Λ is defined as follows:

$$
\wp_{\Lambda}(z) := \frac{1}{z^2} + \sum_{n^2 + m^2 \neq 0} \left(\frac{1}{(z + m\omega_1 + n\omega_2)^2} - \frac{1}{(m\omega_1 + n\omega_2)^2} \right).
$$

We know

$$
\begin{array}{rcl} (\mathscr{O}_{\Lambda}(z))^2 & = & 4(\mathscr{O}_{\Lambda}(z))^3 - g_2 \mathscr{O}_{\Lambda}(z) - g_3 \\ & = & g_{\Lambda}(\mathscr{O}_{\Lambda}(z)). \end{array}
$$

By restricting to a fixed fundamental domain $\mathscr F$, we may define an inverse $(\wp_\Lambda)^{-1}$ which satisfies $(\wp_\Lambda^{-1})(z) = \int^z \frac{d\omega}{\sqrt{g_\Lambda(\omega)}}$.

The Weierstrass zeta function $\zeta_{\Lambda} : \mathbb{C} \setminus \Lambda \to \mathbb{C}$ corresponding to Λ is defined by

$$
\zeta_{\Lambda}(z) := \frac{1}{z} + \sum_{n^2 + m^2 \neq 0} \left(\frac{1}{(z + m\omega_1 + n\omega_2)} + \frac{1}{(m\omega_1 + n\omega_2)} + \frac{z}{(m\omega_1 + n\omega_2)^2} \right).
$$

It satisfies $\frac{\partial \zeta_{\Lambda}}{\partial z}(z) = -\wp_{\Lambda}(z)$. We also know that ζ_{Λ} satisfies $\zeta_{\Lambda}(z) = -G_{\Lambda}(\wp_{\Lambda}(z))$, where

$$
G_{\Lambda}(z) := \int^z \frac{\omega \, d\omega}{\sqrt{g_{\Lambda}(\omega)}}.
$$

In order to prove his result, Masser establishes not only a good zero estimate for the Riemann zeta function, but also gives a new proof of the parameterization $+$ diophantine part of the general strategy which applies to algebraic points of bounded degree in the complex setting.

This can be applied to the Weierstrass ζ_{Λ} function for a given lattice Λ to prove that $\Gamma(\zeta_{\Lambda}\upharpoonright_{\Lambda'})(k,H)$ lies in some $N(\Lambda)$ zero sets of polynomials of degree at most *c*(*k*,Λ)·log*H*, for some suitable disc Δ' depending on Λ .

The final step is to count the size of intersections $|\Gamma(\zeta_A)\cap Z(P)|$.

Recall: on a fundamental domain, $\zeta_{\Lambda}(z) = -G_{\Lambda}(\wp_{\Lambda}(z))$, where $G_{\Lambda}(z) :=$ \int^z ω *d*ω $\sqrt{g_{\Lambda}(\omega)}$ and $(g_{\Lambda}^{-1})(z) = \int^{z} \frac{d\omega}{\sqrt{g_{\Lambda}(\omega)}}$. Macintyre (2008): using Cauchy-Riemann equations, can obtain expressions for the 1st order derivatives of $Re(G_\Lambda)$ and $Im(G_\Lambda)$ $\left(\text{and Re}(\mathscr{P}_{\Lambda}^{-1}) \text{ and } \text{Im}(\mathscr{P}_{\Lambda}^{-1})\right)$ in terms of $\frac{\partial G_{\Lambda}}{\partial z}$ (respectively $\frac{\partial \mathscr{P}_{\Lambda}^{-1}}{\partial z}$). For example,

$$
\frac{\partial \text{Re}(\wp_\Lambda^{-1})}{\partial x} = \frac{\text{Re}(\sqrt{g_\Lambda(z)})}{|g_\Lambda(z)|} = \frac{\sqrt{\sqrt{A^2 + B^2} + A}}{\sqrt{2(A^2 + B^2)}},
$$

where $g_{\Lambda}(z) = A(x, y) + iB(x, y)$. Hence, away from $\Lambda/2$ (the branch points of $\sqrt{g_\Lambda(z)}$), Re(G_Λ), Im(G_Λ), Re(\wp_Λ^{-1}), Im($\wp_\Lambda^{-1})$ are real Profits of $\sqrt{s} \Lambda(x)$, $\Lambda(c) \Lambda(x)$, $\Lambda(c) \Lambda(x)$, $\Lambda(c) \Lambda(x)$, $\Lambda(c) \Lambda(x)$ are read-
Pfaffian functions, and hence ζ_{Λ} is implicitly defined from Pfaffian functions of common order 9 and degree (9,1). So if $\deg P\leq c\!\cdot\!\log\!H$, then $|\Gamma(\zeta_\Lambda)\cap Z(P)|\leq c'\!\cdot\!(\log\!H)^{15}$, and hence $|\Gamma(\zeta_{\Lambda}\!\!\restriction_{\Delta'})(k,H)|\leq c(k,\Lambda)\cdot(\log H)^{15}.$

Universität Konsta

Note that on the one hand the exponent is much worse (41 v. 15),

but, on the other, the constant does not depend on the lattice Λ .