Uniformity in Representation Theory

Presentation by Nir Avni

1 History

Let G be a finite group, $Irr(G) = \{$ irreducible characters of $G \}$. To each such representation there is a homomorphism G to a matrix group.

Some facts from basic representation theory

 $\sum_{\substack{\dim \chi \in Irr(G) \\ |Irr(G)| = |\text{conjugacy classes of } G| = \sum_{\chi \in Irr(G)} (\dim \chi)^0 \text{ which is the zeroeth moment}}$

Theorem 1. (Frobenius 1896) For every $k \ge 0$, the $-2k^{th}$ moment can be interpreted as $\sum_{Irr(G)} (\dim \chi) =$

$$\frac{|Hom(\pi_1 S_{k+1}, G)|}{|G|^{2k+1}} \text{ for } S_{k+1} \text{ a surface of genus } g = k+1.$$

We will study the limiting behavior of $\operatorname{SL}_d(\mathbb{Z}/p^N)$ as $N \to \infty$ using this theorem. Its inverse limit is $\Gamma = \operatorname{SL}_d(\mathbb{Z}_p)$. The left hand side of the equation in Frobenius' theorem tends to $\sum_{Irr(\Gamma)} (\dim \chi)^{-2k}$ and the right converges to an integral of (the absolute value of a) top-degree form

 ω over a *p*-adic manifold $\int_{\text{Hom}(\pi_1 S_{k+1},\Gamma)|} |\omega|$.

Theorem 2. For every $k \ge 11$, the $-2k^{th}$ moment can be interpreted as $\sum_{Irr(\Gamma)} (\dim \chi)^{-2k} = \int_{\Gamma} \int_{\Gamma} (\dim \chi)^{-2k} dx$

 $\int_{Hom(\pi_1 S_{k+1},\Gamma)} |\omega|.$

The same works for $\Delta := \ker(\operatorname{SL}_d(\mathbb{Z}_p) \to \operatorname{SL}_d(\mathbb{F}_p))$. Note that Δ is a pro-*p* group.

Theorem 3. (Jaikin 2003) There are quantifier-free (in the Denef-Pas language) definable functions $f_1, f_2 : \mathbb{Z}_p^{d^2} \to \mathbb{Z}_p$ such that

$$\zeta_{\Delta}(s) := \sum_{\chi \in Irr\Delta} (\dim \chi)^{-s} = \int_{\mathbb{Z}_p^{d^2}} |f_1| \cdot |f_2|^{-s}$$

for Re(s) >> 0 (just such that the sum converges.)

Remark: note that $\dim_{SL_d(\mathbb{Z}_p)} = d^2$. Also, this tells us that there's a *definable* way to interpolate the data in the Frobenius theorem.

Corollary 1. $\zeta_{\Delta}(s)$ as a rational function in p^s , and we can meromorphically continue $\zeta_{\Delta}(0)$, $\zeta_{\Delta}(-2)$.

Theorem 4. (Jaikin, Klopsch) $\zeta_{\Gamma}(-2) = 0.$

Question: Is there a meaning to $\zeta_{\Gamma}(0)$? We know it's a nonzero number.

Frobenius' formula holds for the group $SL_d(\mathbb{F}_p[[t]])$. The transfer principle tells you that $\zeta_{SL_d(\mathbb{F}_p[[t]])}(2k)$ if p >> k.

The theorem if Jaikin uses the exponential map very crucially, so you can't use that in the characteristic p case; instead, use transfer to get it for large enough p.

Conjecture 1. If p >> 0, then $\zeta_{SL_d(\mathbb{Z}_p)}(s) = \zeta_{SL_d(\mathbb{F}_p[[t]])(s)}$ independently of k. Equivalently,

 $|n-dimensional irreducible characters of SL_d(\mathbb{F}_p[[t]])| = |n-dimensional irreducible characters of SL_d(\mathbb{Z}_p)|$

Equivalently, if you look at the group of locally constant functions to \mathbb{C} , $(\zeta(SL_d(\mathbb{Z}_p)), *) = (\zeta(SL_d(\mathbb{F}_p[[t]])), *).$

Evidence:

- 1. True for SL_2
- 2. True for units in quaternion algebra