The Geometry of Algebraic Dynamics

Presentation by Holly Krieger

1 Motivating Question

What geometric conditions on an algebraic variety affect the existence of interesting dynamical systems on that variety?

What do we mean by *interesting*? One place to look is the dynamical Manin-Mumford. The setup:

- A dominant endomorphism $f: X \to X$ with X smooth, projective, over \mathbb{C}
- Forward orbits: let $\alpha \in X$ and define the forward orbit of f on α as $\mathcal{O}_f(\alpha) = \{f^{\circ n}(\alpha)\}_{n \in \mathbb{N}}$
- fixed (f(Y) = Y), periodic $(f^n(Y) = Y)$, and preperiodic $(f^n(Y) = f^m(Y)$ with $m \neq n$) subvarieties

To have interesting cases, we need to assume that f has infinite order. Example: Curves

- genus 0: on $\mathbb{P}^1 \to \mathbb{P}^1$ there are many such interesting families, ex. $f(z) = z^d + c$
- genus 1 (elliptic curves): multiplication and CM give many infinite order endomorphisms. Also, there are the Lattès maps $f: E \to E$ which make the following diagram commute

genus g(C) ≥ 2. There is a theorem [de Franchis]: there are only finitely many surjective φ : C → C. Thus, very dynamically uninteresting.

Definition 1. Assume that X is a smooth projective variety over \mathbb{C} . The *canonical divisor* of X is the divisor:

 $K_X =$ zeros of $\omega -$ poles of ω

for any meromorphic top form ω . The multiples of nK_X determine rational $\phi_{nK_X} : X \to \mathbb{P}^n$. The *Kodaira dimension* of X is the maximal dimension of $\phi_{nK_X}(X)$ for $n \in \mathbb{N}$

1. If this map is undefined (when $H^0(X, nK_X) = \{0\}$ for all $n \in \mathbb{N}$) we say $\kappa_X = -\infty$.

- 2. $\kappa_X \in \{-\infty, 0, 1, \cdots, \dim X\}$
- 3. $\kappa_{\mathbb{P}^1} = -\infty$, $\kappa_E = 0$, $\kappa_C = 1$ if $g(C) \ge 2$ (so that Kodaira dimension distinguishes these three classes of curves)
- 4. $\kappa_{X \times Y} = \kappa_X + \kappa_Y$
- 5. finite surjective morphisms cannot increase Kodaira dimension

Theorem 1 (Kobayashi-Ochiai). If X has $\kappa_X = \dim X$ (i.e. "of general type") then X carries only finitely many endomorphisms.

This theorem rules out dynamical properties of very many algebraic varieties.

Definition 2. A map $\phi : X \to X$ is **polarizable** if there is an ample line bundle \mathcal{L} and q > 1 such that the pullback of \mathcal{L} , $\phi^* \mathcal{L} \cong \mathcal{L}^{\otimes q}$, then (X, ϕ, \mathcal{L}) is a polarized dynamical system.

- A degree d > 1 morphism $\mathbb{P}^n \to \mathbb{P}^n$ is a polarizable dynamical system.
- Multiplication [n] ∈ End(A), n ≠ 0, ±1 on an abelian variety forms a polarizable dynamical system.
- A map $\phi : \mathbb{P}^1 \times E$ is *not* polarizable
- 1. This definition guarantees that $|\{x \mid f^m(x) = f^n(x)\} < \infty$ is finite for each m, n.

Fakhouddin This condition is equivalent to there being a commutative diagram of the form

2. This result allows for a canonical height of (X, \mathcal{L}, ϕ) which can allow us to characterize what we mean by a special point, allows for equidistribution to make sense. The height is

$$\hat{h}_{\phi,\mathcal{L}}: X \to \mathbb{R}_{\geq 0}$$

such that $\hat{h}_{\phi,\mathcal{L}}(x) = 0$ if and only if x is preperiodic.

2 Dynamical Manin-Mumford Conjecture

Principle: If $Y \subseteq X$ is a closed irreducible subvariety then Y is special if and only if Y has a Zariski-dense subset of special points.

Conjecture 1 (Zhang). For special = preperiodic, this holds for polarized dynamical systems.

This is false [Ghioca-Tucker-Zhang]. To see this, let E be a CM curve, $|\omega_1| = |\omega_2| > 1$ and consider $[\omega_1] \times [\omega_2] : E \times E \to E \times E$. If $\frac{\omega_1}{\omega_2}$ is not a root of 1, $\Delta_{E \times E}$ is not perperiodic but $\operatorname{Prep}(E \times E) = \operatorname{Tors}(E \times E)$.

Modification: Require a Zariski dense subset of preperiodic points on which the induced map on the $Gr_{\dim Y}(T_{X,x})$ leaves $T_{Y,x}$ preperiodic. This has been verified for abelian varieties and lines in $\mathbb{P}^1 \times \mathbb{P}^1$.

Theorem 2 (Falkhouddin). Let X be smooth projective variety over \mathbb{C} such that $\kappa_X \ge 0$. Then if (X, \mathcal{L}, ϕ) is polarized then $X \cong A/G$ with A an abelian variety and G a finite group acting fixed-point freely.

Corollary 1. (Does not require smoothness) If (X, \mathcal{L}, ϕ) is polarized then $\kappa_X \leq 0$.

This theorem rules out $E \times C$ from having polarized dynamical structures for E elliptic and C of genus ≥ 2 as $\kappa_{E \times C} = 1$.

Fact From any X smooth projective over \mathbb{C} there is an $\alpha : X \to A$ an abelian variety (the Albanese variety of X) which is unique to translation, satisfying the universal property

for complex tori T.

This induces a dynamical system on the Albanese variety given by the commutative diagram

Theorem 3 (Serre + Lefschetz). If ϕ is polarized then $\Phi : A \to A$ is without loss of generality an *isogeny*.

Theorem 4 (Pink-Roessler, Krieger-Reschke). Let $\Phi : A \to A$ be an isogeny. Let u_{Φ} be the number of root of unity eigenvalues on $H^{1,0}(A)$. Then if V is an irreducible subvariety of A with $\Phi(V) = V$, $\kappa(V) \leq u_{\Phi}$,

Corollary 2. If (X, \mathcal{L}, ϕ) is polarized then the induced map from the Albanese variety is surjective.