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valued field, algebraically closed

Field K, with valuation function v : K

⇥ ! �, an ordered group satisfying:

8x, y 2 K v(xy) = v(x) + v(y)

v(x + y) � min{v(x), v(y)}.

For convenience, we often write v(0) = 1.
We will write

O
K

= {x 2 K : v(x) � 0},
m

K

= {x 2 K : v(x) > 0},
k = O

K

/m
K

.

Given another valued field L, we will refer to �
L

,O
L

,m
L

, k

L

.
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valued field, algebraically closed

A valued field K may or may not be algebraically closed. If it is, then k is also
algebraically closed and �

K

is divisible.

Examples
S1

n=1 C((X1/n)) is algebraically closed. Here � = Q, k = C, characteristic is
(0, 0).
S1

n=1
eF

p

((X1/n)) is henselian, but not algebraically closed. Here � = Q,
k = F̃

p

, characteristic is (p, p).
eQ

p

. Here � = Q, k = F̃
p

, characteristic is (0, p).
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ACVF

We work in a sorted language, with sorts for the field, the residue field and the
value group.

The language L
k�

On the field sort K we have the language of rings +, ·, 0, 1
On the residue field sort k we have the language of rings +, ·, 0, 1
On the value group sort � we have the language of ordered groups +, <, 0,1
Between the sorts we have two functions Res : K ⇥ K ! k, v : K ! � [1

The theory of valued fields
K is a field
k is a field
� is an ordered group, 1 is larger than everything else
v is a non-trivial valuation
Res(x, y) = res(x/y), if v(x/y) � 0 and Res(x, y) = 0 2 k, if v(x/y) < 0.
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ACVF

The theory of algebraically closed valued fields
Add a family of axioms to say that every polynomial in one variable has a root
in the field.

This is not a complete theory; to make it complete, have to specify the
characteristic (p, q).
From now on, take K to be a model of ACVF, K |= ACVF.
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definable sets in ACVF — balls

A definable set is {x : '(x, ā)}, where ' is a formula in the language, ā is a
tuple of parameters, x is a (tuple of) variables in any of the sorts.

closed ball radius � around a

{x 2 K : v(x � a) � �} = B

cl

� (a)

We allow a singleton to be a closed ball B

cl

1(a).

open ball radius � around a

{x 2 K : v(x � a) > �} = B

op

� (a)

We allow all of K as an open ball B

op

�1(a).

The open balls form a basis for a topology on K called the valuation topology.
Open and closed balls are both clopen in the sense of the topology.

Deirdre Haskell (McMaster University) ACVF model-theoretically MSRI Introductory Workshop 6 / 19



definable sets in ACVF — balls

Of course, B

cl

0 (0) = O
K

and B

op

0 (0) = m
K

.
Moreover, for any a, �, there is a 1-1 correspondence between B

cl

� (a) and O
K

,
and between B

op

� (a) and m
K

given by x ! (x � a)/c, where v(c) = �. Neither
a nor c is unique.
B

cl

� (0), B

op

� (0) are O
K

-modules, and the quotient B

cl

� (0)/B

op

� (0) is a
one-dimensional k-vector space and is isomorphic to k.
We can write

B

cl

� (0)/B

op

� (0) = {a + B

op

� (0) : v(a) = �}
= {B

op

� (a) : v(a) = �}
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definable sets in ACVF — swiss cheeses

Since two balls are either nested or disjoint, the intersection of finitely many
balls is just a ball. Thus boolean combinations of balls can be written in a
canonical way as unions of swiss cheeses

B \ C1 [ · · · [ C

n

,

where B, C1, . . . ,C

n

are balls.

Because the field is algebraically closed, {x 2 K : v(p(x)) � 0}, where p is a
polynomial in x, is also a finite union of swiss cheeses. Thus every
quantifier-free definable set in one variable is a finite union of swiss cheeses.

Theorem
Every formula in the language is equivalent in ACVF to a formula without
quantifiers.

Corollary
Every definable set in one variable is either finite or has non-empty interior in
the valuation topology.
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types

A type p in one variable over parameters C is a complete consistent set of
formulas {'(x, c̄) with c 2 C. The set of realizations of p in K is

{a 2 K : '(a, c̄) for all ' 2 p}.

Thus a type is an infinite intersection of definable sets.

Examples
Fix K |= ACVF, element a /2 K.

tp(a/K) = {'(x, c̄) : '(a, c̄) holds}.

By quantifier elimination and the swiss cheese decomposition, we may
assume that each formula '(x, c̄) says either “x is in a given ball” or “x is not
in a given ball”.
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types in ACVF

Examples: a is generic in a closed ball
The type says that a is in the closed ball B

cl

� (c) and a is not in any smaller ball
defined over K.
Then v(a � c) � �, but v(a � c) 6> �, so v(a � c) = �; in fact, v(a) = v(c).
But B

op

� (a) is not defined over K, so res(a/c) /2 k

K

.
Thus K(a) is a residual extension of K.
This is a definable type: for any formula  (x, y), there is a formula d (y)
such that  (x, c) 2 tp(a/C) iff d (c) holds.
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types in ACVF

Examples: a is generic in an open ball
The type says that a is in the open ball B

op

� (c) and a is not in any smaller ball
defined over K.
Then v(a � c) > �, but v(a � c) 6� � for any � > �, so v(a � c) /2 �

K

.
Thus K(a) is a ramified extension.
This is also a definable type.

Examples: a is generic in an infinite intersection of balls
The type says that a is in B�

i

(c
i

) for an infinite nested sequence of balls (and
not generic in an open or closed ball).
Then �

K(a) = �
K

and k

K(a) = k

K

, for otherwise a would be put into some
K-definable open or closed ball. Thus K(a) is an immediate extension.
This type is not definable.
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imaginaries

An imaginary is an equivalence class of an ;-definable equivalence relation E.
The imaginary is eliminated if there is an ;-definable function f : K

n ! K

m

such that f (x) = f (y) if and only if xEy.

Examples of imaginaries in ACVF
xEy () v(x) = v(y) In the sorted language, v : K ! � is the function which
eliminates the imaginary.

xEy () v(x) = v(y) = 0 ^ v(x � y) > v(x) is eliminated by the function

f (x) =

(
x if v(x) 6= 0;
res(x) if v(x) = 0.

in the sorted language.
xEy () v(x) = v(y) ^ v(x � y) > v(x) should be coded by the pair
(v(x),B

op

v(x)(x)), except that the ball is not in the language.
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how to eliminate imaginaries

Add sorts to the language for the following sets:

S

n

= {s : s is a free O-submodule of K

n of rank n}
In particular,

S1 = {Oa : a 2 K} = {B

cl

v(a)(0) : a 2 K}.

For any s 2 S

n

, s/ms = {a +ms : a 2 s} is an n-dimensional k-vector space.
Let

T

n

=
[

s2S

n

s/ms.

Then
T1 =

[

s2S1

{a +ms : a 2 s} =
[

s2S1

{B

op

v(a)(a) : a 2 s}.

Theorem
Let G be the collection of sorts K, k,�,S =

S
S

n

, T =
S

T

n

and let LG be a
language with appropriate functions on each sort. The theory ACVF has
elimination of imaginaries in LG .
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stable part

stable theories by example
An algebraically closed field is stable.
A vector space over an algebraically closed field is stable.
An ordered group is not stable.
A valued field is not stable.

stable, stably embedded sets
A definable set D in K is stable if the structure with universe D and relation
symbols for D \ E for all definable sets E in K is stable.
A definable set D is stably embedded if for all definable sets E in K, D \ E is
definable with parameters from D.
k is stably embedded (by quantifier elimination) and stable (because it is an
algebraically closed field),
� is stably embedded by qe, but is not stable (because it is an ordered group)
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stable part

Definition
Given parameters C, the stable part over C, St

C

, is the multi-sorted structure
whose sorts are the stable, stably embedded sets defined over C, with the
structure induced from the ambient structure. For any set A,
St

C

(A) = dcl(CA) \ St
C

. Notice that St

C

is stable.

Definition
Given parameters C in a model of ACVF, we denote by VS

k,C the
multi-sorted structure with sorts s/ms, where s 2 S

n

(C) (which are all stable,
stably embedded).

Fact
In ACVF, up to interpretability, VS

k,C and St
C

are the same structure. In
particular, if C |= ACVF then St

C

is precisely k

C

.
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stably dominated types

A stable theory has a notion of independence: we write A

|̂
C

B and say A is
independent from B over C, if tp(A/C) ` tp(A/B) (the type of A over B has
no more information than the type of A over C).
Another way to say this (if the base C is algebraically closed) is: whenever �
is an automorphism fixing C pointwise and mapping A to A

0, there is an
automorphism ⌧ fixing B pointwise and mapping A to A

0.

Definition
tp(A/C) is stably dominated if, whenever C ⇢ B and St

C

(A) |̂ St
C

St
C

(B) then

tp(A/CSt
C

(B)) ` tp(A/CB);

that is, if there is an automorphism � fixing C [ St
C

(B) pointwise and
mapping A to A

0 then there is an automorphism ⌧ fixing C [ B and mapping A

to A

0.
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examples around stably dominated types in ACVF

tp(a/K) generic in a closed ball
Then tp(a/K) is stably dominated.
We already observed that K(a)/K is a residual extension; k

K(a) 6= k

K

.
Let L be another field. To say that St

K

(a) |̂ St
K

St
K

(L) means precisely that
res(a) |̂

k

k

L

, or that res(a) /2 k

L

. Then any automorphism fixing k

L

and
mapping a to a

0 will extend to an automorphism fixing all of L and mapping a

to a

0.

tp(a/K) generic in an open ball
Then tp(a/K) is not stably dominated.
In this case, K(a)/K is a ramified extension.
Because k

K(a) = k

K

, the independence condition St
K

(a) |̂ St
K

St
K

(L) gives no
information about the relationship between L and a.
Suppose 0 < v(a) < � for all � 2 �

K

, but there is � 2 L with 0 < � < v(a).
There can be an automorphism � fixing k

L

with v(�(a)) < �, so no
automorphism fixing L will map a to �(a).
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orthogonality

Definition
tp(a/C) is orthogonal to � if for every model K extending C, �

Ka

= �
K

.

Theorem
tp(a/C) is stably dominated if and only if it is orthogonal to �.

Example
The type of an element a which is generic in an infinite intersection of balls
over K is not stably dominated.
For let L be an extension of K which puts another element into the same
intersection. Then �

La

6= �
L

.
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maximally complete base

Definition
K is maximally complete if it has no proper immediate extensions.

Theorem
Let K |= ACVF be a maximally complete field, a a new element. Then
tp(a/K [ �

K(a)) is stably dominated.

In field-theoretic terms: let L be an extension of K with res(a) /2 k

L

. Then if
there is an isomorphism fixing k

L

and �
K(a) and mapping K(a) to K(a0) then

there is such an isomorphism fixing all of L.

Martin Hils will talk about the connection between stably dominated types
and berkovich space.
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