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valued field, algebraically closed

Field K, with valuation function v : K* — T, an ordered group satisfying:

For convenience, we often write v(0) = oc.
We will write

Ok = {xeK:v(x)>0},
mg = {xeK:v(x) >0},
k = O[(/m](.

Given another valued field L, we will refer to I'y, O, my, k;..
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valued field, algebraically closed

A valued field K may or may not be algebraically closed. If it is, then k& is also
algebraically closed and I'k is divisible.

Examples

U2, C((X'/™)) is algebraically closed. Here T' = Q, k = C, characteristic is
(0,0).

Uf,iLpr((X 1/m)) is henselian, but not algebraically closed. Here I' = Q,

k = TF),, characteristic is (p, p).

@p. HereI' = Q, k = Iﬁ‘p, characteristic is (0, p).
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ACVF

We work in a sorted language, with sorts for the field, the residue field and the
value group.

The language Lir

On the field sort K we have the language of rings +, -, 0, 1

On the residue field sort k£ we have the language of rings +, -, 0, 1

On the value group sort I' we have the language of ordered groups +, <, 0, co
Between the sorts we have two functions Res : K x K —+ k,v: K - T'U oo

y

The theory of valued fields
e Kis afield
® kis afield
@ I is an ordered group, oo is larger than everything else
@ v is a non-trivial valuation
@ Res(x,y) =res(x/y),if v(x/y) > 0 and Res(x,y) = 0 € k,if v(x/y) < 0.
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Add a family of axioms to say that every polynomial in one variable has a root
in the field.

This is not a complete theory; to make it complete, have to specify the
characteristic (p, q).

From now on, take K to be a model of ACVF, K = ACVF.
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definable sets in ACVF — balls

A definable set is {x : ¢(x,a)}, where ¢ is a formula in the language, a is a
tuple of parameters, x is a (tuple of) variables in any of the sorts.

closed ball radius v around a
{xeK:v(x—a) >~} = Bf‘yl(a)

We allow a singleton to be a closed ball B ().

open ball radius ~ around a
{xeK:v(x—a) >y} =B"(a)
We allow all of K as an open ball B _(a).

The open balls form a basis for a topology on K called the valuation topology.
Open and closed balls are both clopen in the sense of the topology.
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definable sets in ACVF — balls

Of course, B/ (0) = Ok and B (0) = mg.

Moreover, for any a, -, there is a 1-1 correspondence between Bg’ (a) and Ok,
and between B (a) and mg given by x — (x — a)/c, where v(c) = . Neither
a nor c is unique.

B<(0), B (0) are Og-modules, and the quotient B/ (0) /B (0) is a
one-dimensional k-vector space and is isomorphic to k.

We can write

B(0)/B¥(0) = {a+BY(0):v(a) =~}
= {BY(a) :v(a) =7}
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definable sets in ACVF — swiss cheeses

Since two balls are either nested or disjoint, the intersection of finitely many

balls is just a ball. Thus boolean combinations of balls can be written in a
canonical way as unions of swiss cheeses

B\CiU---UCy,
where B, Cy, ..., C, are balls.
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definable sets in ACVF — swiss cheeses

Since two balls are either nested or disjoint, the intersection of finitely many
balls is just a ball. Thus boolean combinations of balls can be written in a
canonical way as unions of swiss cheeses

B\CiU---UGC,,

where B, Cy, ..., C, are balls.

Because the field is algebraically closed, {x € K : v(p(x)) > 0}, where p is a
polynomial in x, is also a finite union of swiss cheeses. Thus every
quantifier-free definable set in one variable is a finite union of swiss cheeses.
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definable sets in ACVF — swiss cheeses

Since two balls are either nested or disjoint, the intersection of finitely many
balls is just a ball. Thus boolean combinations of balls can be written in a
canonical way as unions of swiss cheeses

B\C U UG,

where B, Cq, ..., C, are balls.

Because the field is algebraically closed, {x € K : v(p(x)) > 0}, where p is a
polynomial in x, is also a finite union of swiss cheeses. Thus every
quantifier-free definable set in one variable is a finite union of swiss cheeses.

Theorem

Every formula in the language is equivalent in ACVF to a formula without
quantifiers.

Corollary

Every definable set in one variable is either finite or has non-empty interior in
the valuation topology.
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types
A type p in one variable over parameters C is a complete consistent set of
formulas {¢(x, ¢) with ¢ € C. The set of realizations of p in K is

{a € K : p(a,c) for all p € p}.

Thus a type is an infinite intersection of definable sets.

Examples
Fix K |= ACVF, element a ¢ K.

tp(a/K) = {¢(x,¢) : p(a,c) holds}.

By quantifier elimination and the swiss cheese decomposition, we may
assume that each formula ¢ (x, ¢) says either “x is in a given ball” or “x is not
in a given ball”.
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types in ACVF

Examples: a is generic in a closed ball

The type says that a is in the closed ball nyl(c) and a is not in any smaller ball
defined over K.

Then v(a — ¢) > v, butv(a — ¢) # v, s0v(a — ¢) = ~; in fact, v(a) = v(c).
But BY (a) is not defined over K, so res(a/c) ¢ kk.

Thus K(a) is a residual extension of K.

This is a definable type: for any formula ¢ (x, y), there is a formula di)(y)
such that ¢(x, ¢) € tp(a/C) iff di)(c) holds.
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The type says that a is in the open ball BY(c) and a is not in any smaller ball
defined over K.

Then v(a — ¢) > 7, but v(a — ¢) 2 0 forany § > v, sov(a — c) ¢ T'k.
Thus K (a) is a ramified extension.

This is also a definable type.
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types in ACVF

Examples: a is generic in an open ball

The type says that a is in the open ball B (c) and a is not in any smaller ball
defined over K.

Then v(a — ¢) > ~,butv(a — c¢) 2 d forany § > v, sov(a —c) ¢ I'k.

Thus K (a) is a ramified extension.

This is also a definable type.

Examples: a is generic in an infinite intersection of balls

The type says that a is in B+, (c;) for an infinite nested sequence of balls (and
not generic in an open or closed ball).

Then I'x(,) = I'k and kg (,) = kk, for otherwise a would be put into some
K-definable open or closed ball. Thus K(a) is an immediate extension.

This type is not definable.
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imaginaries

An imaginary is an equivalence class of an ()-definable equivalence relation E.
The imaginary is eliminated if there is an ()-definable function f : K" — K™
such that f(x) = f(y) if and only if xEy.

Examples of imaginaries in ACVF

xEy <= v(x) = v(y) In the sorted language, v : K — I is the function which
eliminates the imaginary.
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imaginaries

An imaginary is an equivalence class of an ()-definable equivalence relation E.
The imaginary is eliminated if there is an ()-definable function f : K" — K™
such that f(x) = f(y) if and only if xEy.

Examples of imaginaries in ACVF

xEy <= v(x) = v(y) In the sorted language, v : K — I is the function which
eliminates the imaginary.

xEy <= v(x) = v(y) = 0 Av(x —y) > v(x) is eliminated by the function

_)x if v(x) # 0;
foe) = {res(x) if v(x) = 0.

in the sorted language.
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imaginaries

An imaginary is an equivalence class of an ()-definable equivalence relation E.
The imaginary is eliminated if there is an ()-definable function f : K" — K™
such that f(x) = f(y) if and only if xEy.

Examples of imaginaries in ACVF

xEy <= v(x) = v(y) In the sorted language, v : K — I is the function which
eliminates the imaginary.

xEy <= v(x) = v(y) = 0 Av(x —y) > v(x) is eliminated by the function

_)x if v(x) # 0;
foe) = {res(x) if v(x) = 0.

in the sorted language.

xEy <= v(x) = v(y) A v(x —y) > v(x) should be coded by the pair
(v(x), B(v’fx) (x)), except that the ball is not in the language.
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Add sorts to the language for the following sets:

Sp = {s : sis a free O-submodule of K" of rank n}
In particular,

S ={0a:a€K} = {Bf,l(a)(O) ta €K}

it
v
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how to eliminate imaginaries

Add sorts to the language for the following sets:
Sp = {s : sis a free O-submodule of K" of rank n}

In particular,
S1={0a:a€K}= {Bil(a)(O) ta € K}.

For any s € S,,, s/ms = {a + ms : a € s} is an n-dimensional k-vector space.

Let
T, = U s/ms.
SESn
Then
U{a+ms aEs}—U{Bzfa) a € s}
SES] SES]
Theorem

Let G be the collection of sorts K, k,I',S = |JS,, 7 = T, and let Lg be a
language with appropriate functions on each sort. The theory ACVF has
elimination of imaginaries in Lg.
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@ An algebraically closed field is stable.

@ A vector space over an algebraically closed field is stable.
@ An ordered group is not stable.

@ A valued field is not stable.




stable part

stable theories by example
@ An algebraically closed field is stable.
@ A vector space over an algebraically closed field is stable.
@ An ordered group is not stable.
o A valued field is not stable.

stable, stably embedded sets

A definable set D in K is stable if the structure with universe D and relation
symbols for D N E for all definable sets E in K is stable.

A definable set D is stably embedded if for all definable sets £ in K, D N E is
definable with parameters from D.

k is stably embedded (by quantifier elimination) and stable (because it is an
algebraically closed field),

I' is stably embedded by ge, but is not stable (because it is an ordered group)
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Given parameters C, the stable part over C, Stc, is the multi-sorted structure

whose sorts are the stable, stably embedded sets defined over C, with the
structure induced from the ambient structure. For any set A,
Stc(A) = del(CA) N Ste. Notice that Stc is stable.
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stable part

Definition

Given parameters C, the stable part over C, Stc, is the multi-sorted structure
whose sorts are the stable, stably embedded sets defined over C, with the
structure induced from the ambient structure. For any set A,

Stc(A) = dcl(CA) N Ste. Notice that St¢ is stable.

Definition

Given parameters C in a model of ACVF, we denote by VS, ¢ the
multi-sorted structure with sorts s/ms, where s € S,(C) (which are all stable,
stably embedded).

Fact
In ACVF, up to interpretability, VS, ¢ and Stc are the same structure. In

particular, if C |= ACVF then St is precisely kc.

Deirdre Haskell (McMaster University) ACVF model-theoretically MSRI Introductory Workshop 15/19



stably dominated types

A stable theory has a notion of independence: we write ALCB and say A is
independent from B over C, if tp(A/C) - tp(A/B) (the type of A over B has
no more information than the type of A over C).

Another way to say this (if the base C is algebraically closed) is: whenever o
is an automorphism fixing C pointwise and mapping A to A’, there is an
automorphism 7 fixing B pointwise and mapping A to A’.
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stably dominated types

A stable theory has a notion of independence: we write AJ/CB and say A is
independent from B over C, if tp(A/C) - tp(A/B) (the type of A over B has
no more information than the type of A over C).

Another way to say this (if the base C is algebraically closed) is: whenever o
is an automorphism fixing C pointwise and mapping A to A’, there is an
automorphism 7 fixing B pointwise and mapping A to A’.

Definition
tp(A/C) is stably dominated if, whenever C C B and Stc(A)J/stCStc(B) then
tp(A/CStc(B)) - tp(A/CB);

that is, if there is an automorphism o fixing C U St¢(B) pointwise and
mapping A to A’ then there is an automorphism 7 fixing C U B and mapping A
to A’
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examples around stably dominated types in ACVF

tp(a/K) generic in a closed ball

Then tp(a/K) is stably dominated.

We already observed that K(a)/K is a residual extension; kg ;) 7 k-

Let L be another field. To say that Stk (a )LStKStK( ) means pre01se1y that
res(a)J/kkL, or that res(a) ¢ kz. Then any automorphism fixing k;, and
mapping a to @’ will extend to an automorphism fixing all of L and mapping a
tod.
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examples around stably dominated types in ACVF

tp(a/K) generic in a closed ball

Then tp(a/K) is stably dominated.

We already observed that K(a)/K is a residual extension; kg ;) 7 k-

Let L be another field. To say that StK(a)LStKStK(L) means precisely that
res(a)Lykz, or that res(a) ¢ k;. Then any automorphism fixing k; and
mapping a to @’ will extend to an automorphism fixing all of L and mapping a
tod.

tp(a/K) generic in an open ball

Then tp(a/K) is not stably dominated.

In this case, K(a)/K is a ramified extension.

Because kg(q) = kx, the independence condition StK(a)J/StK Stk (L) gives no
information about the relationship between L and a.

Suppose 0 < v(a) < 7y forall v € T'k, but there is § € L with 0 < 6 < v(a).
There can be an automorphism o fixing k; with v(o(a)) < d, so no

automorphism fixing L will map a to o(a).
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orthogonality

Definition
tp(a/C) is orthogonal to T if for every model K extending C, I'x, = T'k.

Theorem
tp(a/C) is stably dominated if and only if it is orthogonal to I".

Example

The type of an element a which is generic in an infinite intersection of balls
over K is not stably dominated.

For let L be an extension of K which puts another element into the same
intersection. Then I', # ;.
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maximally complete base

Definition
K is maximally complete if it has no proper immediate extensions.

Theorem

Let K = ACVF be a maximally complete field, a a new element. Then
tp(a/K U Tg(,)) is stably dominated.

In field-theoretic terms: let L be an extension of K with res(a) ¢ kr. Then if
there is an isomorphism fixing k; and I'x(,) and mapping K (a) to K(a’) then
there is such an isomorphism fixing all of L.
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maximally complete base

Definition
K is maximally complete if it has no proper immediate extensions.

Theorem

Let K = ACVF be a maximally complete field, a a new element. Then
tp(a/K U Tg(,)) is stably dominated.

In field-theoretic terms: let L be an extension of K with res(a) ¢ kr. Then if
there is an isomorphism fixing k; and I'x(,) and mapping K (a) to K(a’) then
there is such an isomorphism fixing all of L.

Martin Hils will talk about the connection between stably dominated types
and berkovich space.
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