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Introduction to model theoretic techniques

Pierre Simon

Université Lyon 1, CNRS and MSRI

Introductory Workshop: Model Theory, Arithmetic Geometry and
Number Theory

Introductory Workshop: Model Theory,/AriGthl
3

Pierre Simon (Université Lyon 1, CNRS and [ Introduction to model theoretic techniques



VC-dimension

Let X be a set and C C P(X) a family of subsets of X.
Let A C X, then C shatters A if CN A = P(A).

Definition

The family C has VC-dimension d if it shatters some subset A C X of size
d, but no subset of size d + 1.

If C shatters subsets of arbitrary large (finite) size, we say that it has
infinite VC-dimension.

Examples: The family of intervals of (R, <) has VC-dimension 2.
The family of half-spaces of R? has VC-dimension 3.
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Define the shatter function w¢ of C as

me(n) = max [CNA]J
ACX.Al<n

Note that 7¢(n) = 2" if and only if VC-dim(C) > n.

Fact (Sauer-Shelah lemma)
Either :
e wc(n) = 2" for all n (infinite VC-dimension)

or
e mc(n) = O(n?) (one can take d =VC-dim(C)).

The VC-density of C defined as the infimum of r such that 7¢(n) = O(n")
is often more meaningful than the VC-dimension.
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NIP theories

Let M be a structure and T = Th(M).

$(%7) — Co = {p(M: B) : b e M} C (M),
Definition
The formula ¢(%; ¥) is NIP (No Independence Property) if the family C,
has finite VC-dimension.
The theory T is NIP if all formulas are.

In other words, the formula ¢(X; ) has IP if for all n, one can find
31,...,3n € M and a family (b, : J € B({1,...,n})) such that:

M):(p(éi;[;_/) — ieJ.
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Examples:
@ The formula x < y, where < is a linear order is NIP;
@ The formula x|y (x divides y) in N has IP.

o Every stable theory is NIP;
e Th(R;0,1,+,—,%,<)is NIP;
@ Some theories of valued fields: ACVF, Th(Q,) are NIP.

Lemma (VC-duality)

A formula p(x;y) is NIP if and only if the opposite formula p°PP(y; X) is
NIP.
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Indiscernible sequences

Definition

Let (/,<;) be a linear order and A C M. A sequence (a; : i € I) of tuples
of M is indiscernible over A if for all i <; --- <; ik and j1 <; -+ <; jk, we
have

tp(ail cee aik/A) = tp(a.il 000 ajk/A)‘
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Fact (Ramsey+Compactness)

Given any sequence (a; : i < w) of tuples and a linear order (I, <), there
is an indiscernible sequence (b; : i € 1) in U such that for any
<y <yigif

u ): So(bip ocog bik)a

then there are j1 < - -- < jx < w such that

U ): @(ajl,. o .,ajk).

Introductory Workshop: Model Theory,/Arithl
36

Pierre Simon (Université Lyon 1, CNRS and [ Introduction to model theoretic techniques



Lemma

T is NIP if and only if for any indiscernible sequence (a; : i < w) and any
model M, the sequence of types (tp(aj/M) : i < w) converges.

More generally:

Lemma

The theory T is NIP if and only if for any set A C U, any sequence of
types over A has a converging subsequence.

Theorem

If all formulas o(x;y), x a singleton, are NIP, then T is NIP.
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o-minimality

Assume that the language L contains a distinguished binary relation <
which defines a linear order on M.

Definition

The structure (M, <,...) is o-minimal if any definable subset of M is a
finite union of intervals and points.
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Fact

Assume that M is o-minimal, a, b € M U {£oo} and let f : (a,b) — M be
a definable function, then there are

a=ap<ar<---<ar=b>b

such that for each i, f|,, ., ,) is either constant or a continuous
monotonic bijection to an interval.

Fact (Cell decomposition)

Assume that M is o-minimal, then any definable subset of M is a finite
union of cells.
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Uniform finiteness

Fact

Let M be o-minimal. Let ¢(x,y) be a formula, then there is some integer
n such that any ¢(x, b), b € M, defines a union of at most n intervals.

Corollary

Assume that M is o-minimal, then any structure elementarily equivalent to
M is o-minimal. Hence o-minimiality is a property of the theory Th(M).
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Examples of o-minimal structures

o R, with the field structure;
@ Reyp: the field R with the exponential function;
@ R,,: the field R along with restricted analytic functions;

° Ran,exp-
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Back to definable types

Let p € Sx(U) be definable over a model M < U. Recall that this means
that we have a mapping

p(X:y) — dop(y),  dpp(¥) € Lm

such that for all b e Y7l

p(x;b) € p <= U = dpp(b).
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Product of definable types

Let p(x) and g(y) in S(M) be definable, then one can define the product
p® q(x,y) as tp(a, b/ M), where

b= g and a |= p|Mb.

A Morley sequence of p over M is a sequence (a; : i < w) such that:

=N ): P f M dk+1 |: P [ I\/Iao...ak.

Such a sequence is indiscernible over M.
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Generically stable types

Definition

A type p € S(M) is generically stable if:

e p is definable;

e some/any Morley sequence (a; : i < w) of p is totally indiscernible (i.e.,
every permutation of it is indiscernible).

Fact
A generically stable type commutes with any definable type.

Example: (ACVF) the generic type of a closed ball.
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End of talk 3.
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