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Introduction

I I will focus on function field (or geometric) Mordell-Lang,
both in characteristic 0 and p > 0.

I In the first talk I will discuss Hrushovski’s original proof,
although it is well-known. In the second talk I will discuss
subsequent simplifications and/or elaborations (which have
impacted on further developments), namely (i) a proof using
differential jet spaces, and (ii) a reduction of Mordell-Lang (+
other things) to Manin-Mumford.

I I will not discuss explicitly the stability-theoretic approach to
Manin-Mumford over number fields, although this has also
had an impact on current developments (e.g. algebraic
dynamics).

I I will try to convey something of the richness of the
mathematics, although the stability-theoretic background and
tools are less accessible to the “outsider” (or even “insider”)
than o-minimality.



Introduction

I I will focus on function field (or geometric) Mordell-Lang,
both in characteristic 0 and p > 0.

I In the first talk I will discuss Hrushovski’s original proof,
although it is well-known. In the second talk I will discuss
subsequent simplifications and/or elaborations (which have
impacted on further developments), namely (i) a proof using
differential jet spaces, and (ii) a reduction of Mordell-Lang (+
other things) to Manin-Mumford.

I I will not discuss explicitly the stability-theoretic approach to
Manin-Mumford over number fields, although this has also
had an impact on current developments (e.g. algebraic
dynamics).

I I will try to convey something of the richness of the
mathematics, although the stability-theoretic background and
tools are less accessible to the “outsider” (or even “insider”)
than o-minimality.



Introduction

I I will focus on function field (or geometric) Mordell-Lang,
both in characteristic 0 and p > 0.

I In the first talk I will discuss Hrushovski’s original proof,
although it is well-known. In the second talk I will discuss
subsequent simplifications and/or elaborations (which have
impacted on further developments), namely (i) a proof using
differential jet spaces, and (ii) a reduction of Mordell-Lang (+
other things) to Manin-Mumford.

I I will not discuss explicitly the stability-theoretic approach to
Manin-Mumford over number fields, although this has also
had an impact on current developments (e.g. algebraic
dynamics).

I I will try to convey something of the richness of the
mathematics, although the stability-theoretic background and
tools are less accessible to the “outsider” (or even “insider”)
than o-minimality.



Statements I

I The origins are (i) the Mordell conjecture that a curve X of
genus > 1 over a number field F has only finitely many
F -rational points, and (ii) a conjecture of Manin that a curve
of genus > 1 embedded in its Jacobian variety J(X) meets
only finitely many torsion points of J(X).

I A big common generalization of (i) and (ii) is Mordell-Lang:
(char. 0.) If G is a semiabelian variety, Γ < G is
“finite-rank”, i.e. contained in the division points of a finitely
generated subgroup Γ0, X a subvariety of G and X ∩ Γ is
Zariski-dense in X, then X is a translate of an algebraic
subgroup of G. When Γ is the just the torsion subgroup of G,
this is sometimes called Manin-Mumford.

I M-L was proved by Faltings, McQuillan... M-M is “easier”,
was first proved by Raynaud and has many other proofs,
including by Hrushovski, and more recently Pila-Zannier (both
with model theoretic input).
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Statements II

I The rough gist of the “function-field” version of M-L is that
the statement is true as long as no part of the data is defined
over a given algebraically closed subfield k (e.g. Q̄).

I This subsumes the function-field version of the Mordell
conjecture, proved by Manin in the 1960’s: Suppose K is a
finitely generated extension of C (such as C(t)), and X is a
curve over K of genus > 1 which is not defined over C. Then
X has only finitely many K-rational points.

I It is worthwhile giving the “geometric” description of the
latter when K = C(t), as this is often how things are
described in the literature.

I X is the general fibre of a family of complex algebraic curves
X → S where S is P1(C) minus finitely many points, X not
defined over C means the family is nonconstant, and
K-rational points of X are precisely rational sections S → X .
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Statements III

I A precise statement of function-field ML, including also
semiabelian varieties is a kind of contrapositive of the above:

I Function field ML in characteristic 0. Suppose that k < K
are algebraically closed fields, G is a semiabelian variety over
K, X a subvariety of G over K, Γ a “finite rank” subgroup of
G(K), X ∩ Γ Zariski-dense in X, AND Stab(X) is finite.
Then, after possibly translating X, and replacing G by a
semiabelian subvariety containing X, the pair (G,X) is
defined over k (up to isomorphism).

I Function field ML in characteristic p, as formulated by
Abramovich and Voloch, is just as above, but the “finite
rank” assumption on Γ is replaced by: Γ is contained in the
prime-to-p division points of a finitely generated subgroup Γ0

of G(K). (And defined over k is meant in a weaker sense.)

I So we consider proofs of the above two statements, where the
characteristic p case is the truly new theorem.
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Differentially closed fields

I The stability-theoretic approach to ML initiated by Hrushovski
depends on two first order theories, DCF0,m in characteristic
0 and SCFp,m in characteristic p > 0. The m = 1 case
suffices.

I DCF0,m is the model companion of the theory of fields of
characteristic 0 with m commuting derivations in the
language +,×, 0, 1,−, ∂1, .., ∂m.

I DCF0,m is complete, has quantifier elimination, and is
ω-stable.

I We usually work in a saturated model U of DCF0,m, with
common field of constants C which is an algebraically closed
field “without additional structure”, although an interesting
special model is the differential closure (prime model over) of
(C(t1, .., tm), d/dt1, .., d/dtm).

I Differential algebra already played a role in work of Manin and
of Buium on characteristic 0 function field ML.
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Separably closed fields

I It is convenient to define SCFp,m to be the first order theory
of Fp(t1, .., tm)sep in the language of fields.

I This theory is stable but not superstable; for example if K is a
model then the sequence of pnth powers of K form a strictly
descending chain of definable fields.

I SCFp,m has quantifier elimination after adding symbols for m
iterative Hasse derivations ∂i = {∂i,n : n ≥ 1} for i = 1, ..,m
such that ∂i,n(tj) = 1 if i = j and n = 1, and = 0 otherwise.

I We again tend to work in a saturated model U and the
(absolute) constants C is the subfield defined by the countable
set of formulas {∂i,n(x) = 0 : i = 1, ..,m, n ≥ 1} equivalently
by {∃y(x = yp

n
) : n = 1, 2, ...}.

I Again C is an algebraically closed field with “no induced
structure” (be careful as it is just type-definable).
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Dichotomy I

I I will now outline Hrushovski’s original proof, explaining the
relevant stability theory along the way.

I Zilber Principle. A minimal type (in an ambient stable
theory) is either 1-based or “nonorthogonal” to a
type-definable minimal field.

I A minimal type X is a type-definable set each relatively
definable subset of which is finite or cofinite. X is 1-based if
any two tuples from X are independent over their common
algebraic closure. And nonorthogonal to a minimal field F can
be taken to mean that X is “internal to” F , namely in
definable bijection with some relatively definable subset of Fn.

I Note that 1-basedness and “internality to ...” make sense for
any type-definable X, whether or not X is minimal.

I Zilber actually formulated the principle in the special case
when X is “strongly minimal” (namely minimal and
definable).
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Dichotomy II.

So Step I of the proof (connected with earlier work of Hrushovski,
Zilber, Sokolovic, and of independent interest) is:

Theorem 0.1
The Zilber principle is true for DCF0,m and SCFp,m (for
finite-dimensional, also called thin, minimal types). Moreover in
either case F can be taken to be the field of (absolute) constants
C.

I The proof goes via “Zariski geometries” (or structures). A
Zariski geometry, as defined in HZ, or in Zilber’s book is a
strongly minimal set X (in an ambient structure if one
wishes) such that certain subsets of X,X ×X, .. are
designated to be closed, and these closed sets satisfy abstract
conditions somewhat like the Zariski closed sets of Cartesian
powers of a smooth algebraic curve.

I The HZ theorem is that the Zilber principle holds for Zariski
geometries (and this theorem is the raison d’etre for the
notion of Zariski geometries).
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Dichotomy III

I All proofs of the HZ theorem are complicated to say the least,
involving an abstract notion of tangency of closed definable
sets as well as Hrushovski’s group and field configuration
theorem. I don’t want to say anything more about it now but
will discuss possible direct treatments in the case at hand in
my second talk.

I The proof that strongly minimal sets in DCF0,m are Zariski is
straightforward, more or less taking the closed sets to be the
Kolchin closed sets (and generalizes easily to arbitrary finite
Morley rank sets in DCF0,m being “Zariski-type structures”).
Together with a classification of definable fields in DCF0,m

this yields Theorem 0.1 for DCF0,m.
I To prove Theorem 0.1 for SCFp,m by such methods requires

dealing with type-definable Zariski geometries. These do not
appear in Zilber’s book and are not explicit in HZ.
Nevertheless arguments are given for adapting HZ to this case
and proving that thin, minimal sets in SCFp,m are Zariski.
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Dichotomy IV

I A good exposition of type-definable Zariski geometries and
the relevant applications would be welcome, and possibly
appears already in Bernard Elsner’s thesis.

I In any case, Theorem 0.1 is at the core of Hrushovski’s
approach to ML (although in our expositions 20 years ago we
tended to take this as an unexplained black box).

I The remainder of the proof involves:
Step II.: embedding the ML data into a definable framework
(DCF0/SCFp),
Step III. using stable-group-theoretic arguments together
with Step I (Theorem 0.1) to obtain descent of the
(type)-definable data to the constants, and
Step IV.: deducing descent of the original algebraic
geometric data.
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Step II, characteristic 0

I So we have the data k,K,G,X,Γ. G,X, Γ are defined over
the algebraic closure of K0 = k(t1, .., tm) for some m. Put
the canonical partial differential structure on K0 and pass to
the differential closure which we may assume to be K and has
constants k. (In fact we may take m = 1.)

I Buium defines a generalized “logarithmic derivative”
homomorphism µ (definable in the differential field K) from
G = G(K) to some (K,+)n, whose kernel G] has finite
Morley rank.

I It follows that Γ is contained in a definable subgroup H of G
which has finite Morley rank. Why? Then X] = X ∩H is
definable, and Zariski dense in X.

I The original data G,X,Γ has been replaced by the definable
data G,X,H. Moreover X] has trivial stabilizer in H.
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Step II, characteristic p

I The data G,X,Γ is defined over the separable closure K of
k(t1, .., tm) some m, by definition a model of SCFp,m (can
reduceto case m = 1.)

I Now compactness/saturation enters the picture in a nontrivial
way. Pass to a saturated elementary extension U of K.

I For each n, pnΓ has finite index in Γ, hence some coset Cn of
pnG(U), defined over K, meets X in a Zariski-dense set. We
may assume the Cn’s are compatible, hence by saturation of
U , C = ∩nCn, a coset of G] =def p

∞G(U) =def ∩npnG(U),
type-definable over K, meets X in a Zariski-dense set.

I Replacing X by a suitable translate, defined over K, we may
assume that X] = X ∩G] is Zariski dense in X and again
note that Stab(X]) in G] is trivial.

I Γ has been replaced by the type-definable group G], which
can be shown to be finite-dimensional, so finite U -rank (but
not necessarily Morley rank).
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Stable group theory 1

I We start with Step III in the char. 0 case, namely we have
the finite Morley rank (commutative) group H definable in
K |= DCF0 and X] is a definable subset of H with trivial
stabilizer.

I The model-theoretic (or stability-theoretic) socle s(H) of G is
the largest (or biggest) connected definable subgroup of H
which is generated by strongly minimal definable subsets of H.

I Udi proves the (weak) socle theorem for arbitrary finite Morley
rank groups H (nice but not too hard)

Theorem 0.2
Suppose H is sufficiently “rigid” in the sense of having no infinite
definable families of definable subgroups. Suppose Y is a definable
subset of H with finite stabilizer. Then, up to to translation
Y ⊆ s(H).
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Stable group theory 2

I Now, in general we can write s(H) = H1 +H2 where H1 is
generated by 1-based strongly minimal sets, and H2 is
generated by non 1-based strongly minimal sets. It follows
that H1 is 1-based in its own right and early work (HP) yields:

I Structure of 1-based groups. Any definable subset of H1 is
a translate of a definable subgroup, up to finite Boolean
combination.

I Coming back to the case at hand, and using Theorem 0.1, we
have

I Structure of H2. H2 is internal to k, namely in definable
bijection with a definable group living on some kn.

I By Theorem 0.2, after a translation X] is contained in s(H).

I The structure of 1-based groups above and the assumption
that Stab(X]) is trivial implies that after a further translation
X] ⊆ H2.
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Stable group theory 3

I So (H2, X
]) “descends” in a strong sense to the field of

constants.

I In positive characteristic the same proof works using among
other things the validity of Theorem 0.2 for finite U -rank
groups. Yielding that X] is contained in H2 and that H2 is
internal to C.

I Step IV is obtained by taking Zariski closures of the (type)
definable data. This involves additional arguments, especially
in the characteristic p case where we want to deduce descent
to k from descent to C. But more or less straightforward. End
of outline.

Although not made explicit in the sketch above, a key ingredient is:

Theorem 0.3
Suppose A is an abelian variety over U with C-trace 0 then A] is
1-based, and moreover (strongly) minimal when A is simple.
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Simplifications and elaborations

I It was natural to try to find a more direct account of the
mathematical core (Theorem 0.1) of the proof discussed last
time, avoiding recourse to HZ, especially for the positive
characteristic case.

I With Ziegler we found such an approach (motivated by results
and methods in bimeromorphic geometry) namely “differential
jet spaces”.

I The “good news” is that this approach not only recovers
Theorem 0.1, but also subsumes Step III of the ML proof
above.

I The “bad news” is that the approach does not always work in
positive characteristic case, and only recovers Mordell-Lang
for so-called ordinary semiabelian varieties, already done by
Abramovich-Voloch.

I So in the first part of this second talk I will give a few details.
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Differential jet spaces 1

I Suppose first that V is an (affine) algebraic variety over an
algebraically closed field K, and a ∈ V (K). We have the
higher tangent spaces of V at a, namely jn(V )a is the dual
space to m/mn+1 where m is the maximal ideal of V at a
namely the set of functions in the coordinate ring K[V ] of V ,
which vanish at a.

I It is an easy fact that a subvariety Y of V passing through a
is determined by the collection of subspaces jn(Y )a of the
jn(V )a. In particular given a (canonical) algebraic family
(Yb : b ∈ Z) of subvarieties of V passing through a we have a
birational embedding of Z in Gr(jn(V )a) for sufficiently large
n.

I Exactly the same thing holds for “finite-dimensional”
differential algebraic varieties, in characteristic 0 at least,
which we will discuss next.
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Differential jet spaces 2

I If X is defined by f(y, y′) = 0 say then the Kolchin tangent
space to X at a point a is defined by the linear differential
equation (∂f/∂y)(a)(u) + (∂f/∂y′)(a)(u′) = 0.

I For a differential algebraic variety X and a ∈ X the higher
Kolchin tangent spaces j∂n(X)a (differential jet spaces) at
a ∈ X are defined by linear differential equations, and
“finite-dimensionality” of X corresponds to these spaces being
finite-dimensional vector spaces over the constants.

I Hence Fact 1: If (Yb : b ∈ Z) is a differential algebraic family
of differential algebraic subvarieties of (finite-dimensional) X,
all passing through a ∈ X, we have a differential rational (so
definable) embedding of Z in Gr(j∂n(X)a) for some n.



Differential jet spaces 2

I If X is defined by f(y, y′) = 0 say then the Kolchin tangent
space to X at a point a is defined by the linear differential
equation (∂f/∂y)(a)(u) + (∂f/∂y′)(a)(u′) = 0.

I For a differential algebraic variety X and a ∈ X the higher
Kolchin tangent spaces j∂n(X)a (differential jet spaces) at
a ∈ X are defined by linear differential equations, and
“finite-dimensionality” of X corresponds to these spaces being
finite-dimensional vector spaces over the constants.

I Hence Fact 1: If (Yb : b ∈ Z) is a differential algebraic family
of differential algebraic subvarieties of (finite-dimensional) X,
all passing through a ∈ X, we have a differential rational (so
definable) embedding of Z in Gr(j∂n(X)a) for some n.



Differential jet spaces 2

I If X is defined by f(y, y′) = 0 say then the Kolchin tangent
space to X at a point a is defined by the linear differential
equation (∂f/∂y)(a)(u) + (∂f/∂y′)(a)(u′) = 0.

I For a differential algebraic variety X and a ∈ X the higher
Kolchin tangent spaces j∂n(X)a (differential jet spaces) at
a ∈ X are defined by linear differential equations, and
“finite-dimensionality” of X corresponds to these spaces being
finite-dimensional vector spaces over the constants.

I Hence Fact 1: If (Yb : b ∈ Z) is a differential algebraic family
of differential algebraic subvarieties of (finite-dimensional) X,
all passing through a ∈ X, we have a differential rational (so
definable) embedding of Z in Gr(j∂n(X)a) for some n.



Differential jet spaces 3.

I Now suppose X is a strongly minimal (so finite-dimensional)
differential algebraic variety. Non 1-basedness of of X means
precisely that there is an infinite definable family (Yb : b ∈ Z)
of differential algebraic subvarieties of X ×X passing through
a generic point a ∈ X ×X.

I Now jn(X ×X)a is internal to C, hence by Fact 1, so is Z.
This yields some definable relationship between X and C
which is enough to prove Theorem 0.1 for DCF0.

In fact we also obtain:

Theorem 0.4
(Strong socle theorem) Let G be a finite Morley rank group in
DCF0 and Y a differential algebraic subvariety with trivial
stabilizer. Then Y is internal to C.
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Differential jet spaces 4.

I The proof is: (Yb = Y − b : b ∈ Y ) is a canonical definable
family of differential algebraic subvarieties of G passing
through 0, hence Y definably embeds in some Gr(j∂n(G)0) so
is internal to C.

I This yields directly Step III of the proof in the characteristic 0
case.



Positive characteristic case 1

I The situation described above depends essentially on being
able to describe a finite-dimensional differential algebraic
variety in characteristic 0 (up to a change of coordinates) as
the solution set of a first order polynomial differential
equation ∂(y) = s(y) on an algebraic variety V (so s is a kind
of Ehresmann connection on V ).

I A differential jet space at a good point a comes from a
∂-module structure on the algebraic jet space at a.

I So in positive characteristic (SCFp,1 say), the approach
directly works for so-called ∂-varieties X, where ∂ is the
iterative Hasse derivation.

I Namely sets X of the form
{x ∈ V (U) : ∂n(x) = si(x) : i = 1, 2, ...} for V an algebraic
variety and sn suitable polynomial functions.
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Positive characteristic case 2

I So in this case the differential tangent space (for example) at
a good point is defined by an iterative Hasse linear differential
system: {∂n(y) = A(y) : n = 1, 2, ...}, whose solution set is a
finite-dimensional vector space over C.

I The approach also works for type-definable definable sets X
such that for generic a ∈ X, ∂n(a) is separably algebraic over
a for eventually all n (so called very thin types). And for
finite-dimensional groups whose generic type is very thin, we
also obtain the Strong socle theorem.

I This turns out to be the case for G] = p∞G(U) where G is an
ordinary semiabelian variety (namely the p-torsion of the
abelian part is maximal possible). So this yields another proof
of ML in positive characteristic when the ambient semiabelian
variety is ordinary.

I It remains open to find a transparent jet-space account of
Theorem 0.1 and/or Theorem 0.3 for traceless abelian
varieties A in the positive characteristic case. See later.
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Miscellanea

I In a stable theory Cb(tp(a/M)) is the tuple of “codes” of
φ-definitions of the type, as φ(x, y) varies.

I The stability theoretic content of the above jet space
arguments is that in DCF0 for example, if tp(a) is
finite-dimensional, and b = Cb(tp(a/M)) then tp(b/a) is
internal to the constants. This property has been abstracted
to obtain the CBP property for arbitrary finite rank stable
theories. Counterexamples were recently found.

I Moosa and Scanlon have substantially generalized the jet
space arguments to fields with operators.

I Also Theorem 0.3 was used (together with other ingredients)
to obtain an Ax-Lindemann theorem for nonconstant
semiabelian varieties. (BP) The work is ongoing.
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MM implies ML I

I In this final part of my talks I want to discuss a strategy for
deducing ML from MM (function field case), avoiding
Theorem 0.1 (and coming out of discussions with Bouscaren
and Benoit).

I It works in characteristic 0 and works, modulo an interesting
model-theoretic statement, in positive characteristic.

I The motivation is again to give a transparent account of ML
in positive characteristic and that fact that Pink-Roessler have
a reasonably direct account of function field MM in positive
characteristic (dealing with all torsion points, not only prime
to p ones).

I In so far as it works it also gives deductions from MM of
Theorem 0.3 for example.

I Note that such an elementary strategy could not work in the
absolute case, where MM and ML are of different orders of
difficulty.
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MM implies ML II

I It is convenient to take the contrapositive of the
contrapositive in the statement of ML, with a slightly stronger
hypothesis and conclusion:

I Function field ML: restatement Let K = C(t)alg in char. 0,

and = Fp(t)
sep in char. p and k be the “constants”, C, Falg

p

respectively. Let A be an abelian variety over K with k-trace
0. Let X be an irreducible subvariety of G (defined over K),
Γ ⊂ G(K) be as before, namely (prime-to-p) division points
of a finitely generated subgroup of G, and assume X ∩ Γ is
Zariski-dense in X. THEN X is a translate of an abelian
subgroup of G (by a point of Γ). Now the MM statement is
when Γ is contained in the group of all torsion points of G.

I So the Basic Strategy is: MM + Theorem of the kernel +
Frank implies ML (and also Theorem 0.3).
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Theorem of the kernel

I A] can be defined as the smallest Zariski-dense
(type)-definable subgroup of A, where in the positive
characteristic case we read this in a saturated model, but in
any case in positive char. case A](K) = ∩npn(A(K)) and can
also be described as the maximal divisible subgroup of A(K).

I Statement of the kernel. Assuming A] has k-trace 0,
A](K) is contained in the torsion subgroup of A. In
characteristic 0 this becomes an equality.

I This is a model-theoretic/differential algebraic version of what
is often called Manin’s theorem of the kernel in the char. 0
case.

I In char. 0, the statement of the kernel is true. For example in
BP it is deduced from Chai’s strengthening of Manin.

I In positive characteristic the statement was recently proved by
Roessler.
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Frank

I Frank refers to Frank Wagner.

I In particular it refers to a model-theoretic result about
connected commutative groups of finite Morley rank (possibly
with additional structure).

I Call such a group G g-minimal if G contains no proper infinite
connected definable subgroup.

Theorem 0.5
(Frank) Suppose G is g-minimal. Then any infinite algebraically
closed subset of G is an elementary substructure.

So g-minimal groups behave somewhat like strongly minimal sets.
The result was originally proved by Frank for arbitrary fields of
finite Morley rank, with relevance to “bad groups”.
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Characteristic 0

I We will first show that the basic strategy works in
characteristic 0.

I Consider the data in the restatement above. We can quotient
A by Stab(X) (an algebraic subgroup of A defined over K),
to obtain another abelian variety over K with C-trace 0. So,
somewhat perversely we will assume X to have trivial (or
finite) stabilizer and look for a contradiction.

I As in Step II, adjoin the derivation d/dt to K, pass to the
differential closure Kdiff of K, which is the model of DCF0

in which we will work, let H > A] be a finite-dimensional
definable subgroup of A(Kdiff ) containing Γ, and let
X] = X ∩H, Zariski-dense in X.

I By the weak socle theorem we may assume that X] is
contained in s(H).
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Characteristic 0 continued

I Now it is quite easy to check that s(H) ≤ A] ≤ H, hence (*)
X] = X ∩A] is Zariski-dense in X.

I We view A] as a structure in its own right by equipping it
with predicates for relations defined over K. As such A] is a
sum of g-minimal connected groups of finite Morley rank, so
Theorem 0.5 applies, to show that A](K) is an elementary
substructure.

I As Kdiff is the prime model over K it follows that
A](Kdiff ) = A](K) which by the Theorem of the kernel is
precisely the torsion points of A.

I By Manin-Mumford and (*), X is a translate of an abelian
subvariety of A. End of proof and/or contradiction.
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Quantifier elimination for type-definable sets

I In preparation for the positive characteristic case let us explain
the notion in the heading above.

I Fix a saturated structure (stable if you wish) U , and a
type-definable set X in U , type-defined over a small set of
parameters A.

I We view X as a structure (X, ...) in its own right by adjoining
predicates for relatively definable (over A) subsets of
X,X ×X, ...

I We say that X has QE if the first order theory of (X, ...) has
QE, equivalently (X, ...) is saturated.

I Not always true, but I know no example of a type-definable
minimal group which does not have QE.



Quantifier elimination for type-definable sets

I In preparation for the positive characteristic case let us explain
the notion in the heading above.

I Fix a saturated structure (stable if you wish) U , and a
type-definable set X in U , type-defined over a small set of
parameters A.

I We view X as a structure (X, ...) in its own right by adjoining
predicates for relatively definable (over A) subsets of
X,X ×X, ...

I We say that X has QE if the first order theory of (X, ...) has
QE, equivalently (X, ...) is saturated.

I Not always true, but I know no example of a type-definable
minimal group which does not have QE.



Quantifier elimination for type-definable sets

I In preparation for the positive characteristic case let us explain
the notion in the heading above.

I Fix a saturated structure (stable if you wish) U , and a
type-definable set X in U , type-defined over a small set of
parameters A.

I We view X as a structure (X, ...) in its own right by adjoining
predicates for relatively definable (over A) subsets of
X,X ×X, ...

I We say that X has QE if the first order theory of (X, ...) has
QE, equivalently (X, ...) is saturated.

I Not always true, but I know no example of a type-definable
minimal group which does not have QE.



Quantifier elimination for type-definable sets

I In preparation for the positive characteristic case let us explain
the notion in the heading above.

I Fix a saturated structure (stable if you wish) U , and a
type-definable set X in U , type-defined over a small set of
parameters A.

I We view X as a structure (X, ...) in its own right by adjoining
predicates for relatively definable (over A) subsets of
X,X ×X, ...

I We say that X has QE if the first order theory of (X, ...) has
QE, equivalently (X, ...) is saturated.

I Not always true, but I know no example of a type-definable
minimal group which does not have QE.



Quantifier elimination for type-definable sets

I In preparation for the positive characteristic case let us explain
the notion in the heading above.

I Fix a saturated structure (stable if you wish) U , and a
type-definable set X in U , type-defined over a small set of
parameters A.

I We view X as a structure (X, ...) in its own right by adjoining
predicates for relatively definable (over A) subsets of
X,X ×X, ...

I We say that X has QE if the first order theory of (X, ...) has
QE, equivalently (X, ...) is saturated.

I Not always true, but I know no example of a type-definable
minimal group which does not have QE.



Characteristic p > 0

I We are again in the set up of the ML restatement above, and
in positive characteristic.

I Hypothesis. A] = p∞A(U) has QE. Where U is a saturated
elementary extension of K.

Theorem 0.6
Under this hypothesis, the basic strategy works.

I Proof.

I As in Step II in the first talk we apply compactness/saturation
to find a translate C = ∩nCn of A], defined over K such that
X] = X ∩ C is Zariski-dense in X.

I By hypothesis A], as a structure in its own right has QE, and
hence has finite Morley rank, and is a sum of g-minimal
definable subgroups.
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Characteristic p > 0, continued

I So the 2-sorted structure (A], C) (again equipped with
relatively definable over K sets) has QE and finite Morley
rank.

I Now A](K) is an infinite algebraically closed subset of A]

hence by Frank, is an elementary substructure.

I By taking a prime model over A](K) we find an elementary
substructure (A](K), C0) of (A], C).

I Hence X ∩C0 is Zariski-dense in X. Translating by a point in
X ∩ C0 we find a translate Y of X such that
Y ] = Y ∩A](K) is Zariski-dense in Y , in particular Y is
defined over K, so without loss Y = X.

I By the Theorem of the kernel A](K) consists of torsion
points, so by Manin-Mumford (proved by Pink-Roessler), X is
a translate of an abelian subvariety of A. End of proof of
Theorem 0.6.
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