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A general problem scheme

C = an underlying family of sets

8 C C is a collection of so-called “special”’ C-sets

8o = a set of so-called “special” points, often these are the s-sets of
dimension zero.

The problem scheme

Start with an S-set V and consider an arbitrary C-set X C V. Assume
that X has “many” special points. Then X contains a special set of
positive dimension. Under additional assumptions, X itself is a special
set.
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Fix M = (R, <,+,-, ......) an o-minimal expansion of the real field.
C = the family of all definable sets in M.

8 = The family of semi-algebraic sets (defined over Q).

8o = points in (Q@9)" N R".

The Pila-Wilkie theorem(s)

Assume that X C R” is definable in M. If X N (Q%9)" is large* then X
contains a connected infinite semi-algebraic set defined over Q.

More precisely, if one removes all infinite connected semi-algebraic
subsets of X then a small* number of Q#9-points remains.

X N (Q9)"is large* if exists k € N and ¢ > 0 such that

{g € XN (QF9)" : height(§) < T}
Te -

limsupr
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From now on-the algebraic general problem scheme
The algebraic presentation

C = complex algebraic (irreducible) varieties, (quasi) affine or
projective.

8 = a specified subfamily of “special” varieties.
89 = 0-dimensional S-sets: special points.
V = an irreducible S-variety.

X C V =anirreducible complex algebraic subvariety

The set X N 8 is Zariski dense in X.

The variety X is itself in 8.
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A test case-the exponential example (algebraic torus)

The algebraic side

Let V = (C*)" = (Gm)" (so here V admits the structure of an algebraic
group, which is also a complex Lie group).

C ={X C(Gp)": X anirreducible algebraic variety}.
§ ={A+p: Aaconn. algebraic subgrp of G}, & p a torsion point}.

8o = Torsion points in (G )"

Theorem (Laurent)

If X C (Gn)" an irreducible algebraic variety and X 1 Tor(Gp,)" is
Zariski dense in X then X = A+ p for some A < (G,;)" and

p € Tor(Gm)".

Namely,

If X € C and X N 8q is Zariski dense in X then X € 8.
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Back to the general problem-the analytic presentation

We work with affine (or projective) algebraic variety V and an algebraic
subvariety X C V.

| A\

An analytic covering map

We haveNV — a (semi-algebraic) open subset of C” (with n = dim V).
And © : V — V a holomorphic, transcendental, surjection.

General strategy

| A\

Replace V and its algebraic variety X C V by V and a complex
analytic subvariety ©~1(X) C V.

Caution

In general, © and ©~'(X) are not definable in any “tame” structure.
We will need to “truncate” them.

| A\

~
.
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The analytic presentation: additional data

An underlying group action

We have G = a real algebraic group acting semi-algebraically and
transitively on V. In some cases V = G.

I'= an infinite discrete subgroup of G (not necessarily normal).

The map © : V — V is I-invariant. Namely, O(x) = O(y) if and only if
x=Ty.

So, V can be identified with '\V.

If X C V'is a complex algebraic subvariety then o (X)=Xisa
I-invariant analytic subvariety of V.

In general, X might have infinitely many connected components.
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special-varieties and points

An irreducible analytic subvariety Y C Vis called a ssé\cﬁl variety if
O(Y) is a spacial subvariety of V. In particular, ©(Y) is algebraic (!).

A point z € V is special if ©(z) is a special point. Namely ©(z) € 8.

Fact (an alternative definition): special varieties as orbits

An irreducible complex analytic variety XCVis special iff

(i) @()N() is an algebraic subvariety of V.

(ii) There exists a real algebraic subgroup H C G such that X is an
orbit of H. In case V = G it means that X is a coset. (Note: it follows in
either case that X is real algebraic).

(i) X N Sy # @. -

e If only (i) and (ii) hold then X is called weakly special.

v
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The exponential example: the analytic presentation
Recall V = (C*)" = (Gp)". Take V=C"and®:=exp:C" — (cHn
defined by exp(z1,...,z,) = (e*1,...,e™).

So ©: (C" +) — ((Gp)", ) is a holomorphic group homomorphism.
[ := Ker(©) = (2miZ)". Clearly, © is I-invariant.

special points
Because © i§ a homomorphism, ©(z) is a torsion point of order k iff
kzeTl.So,80={z€C": 3k kz € (2wiZ)"} = (27iQ)".
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An irreducible analytic Y C C" is special if ©(Y) = p+ A, where Ais an
algebraic subgroup of (G,,)" and p € Tor(Gn,)". So, Y = g + H, where
H is a C-linear subspace of C" defined over Q, and g € (27/Q)".
(Note: these are exactly the cosets of real subgroups of C” which
project onto algebraic varieties). )
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The general case: The (non) definability of ©

Wehave©:V =V ~NV
The non-definability of

Since T is infinite discrete, ©'(p) is an infinite discrete set (for every
p € V). Hence, the map © is never definable in an o-minimal structure.

Instead we aim for a small subset of VV on which © is definable in
some o-minimal structure.

Fundamental sets

A closed semi-algebraic set § C V is a fundamental set for © if:
Hoe@E)=Viiel -g=V)
(ii) There are only finitely many v € I' such that v - § N § # @.

By (i), the quotient N§ can be identified with V. By (ii), the relation
O(z) = ©(w) is semi-algebraic on §. So, the quotient N is
semi-algebraic.
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The ingredients for the Pila-Zannier method

Wehave © : V — V ~ F\V. 8o C V the set of special points.

I. Definability requirements (from algebraic to o-minimal)

One needs to establish the existence of a semialgebraic fundamental
set § C V and the definability of © | § in some o-minimal structure M.
In all examples, M is Ran exp.

For X C V algebraic, let X C V be an irreducible analytic component
of ©(X). Note that X N § = (©[F) ' (X) is definable in M.

[I. Number theory goal

o The set So = ©1(8p) is contained in Qi’g for some k(up to definable
bijection).

»» If X 1 §p (on the algebraic side) is Zariski dense in X then

S0 (X NF) (on the analytic side) is large* (in the sense of Pila-Wilkie).
This is “the lower bound”.
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The ingredients of the Pila-Zannier method (cont)

The Pila-Wilkie input
o Assume that we established that S, 1 (X N §) is large*.

e By PW, There exists a connected semi-algebraic nontrivial curve
CCXnNg.

o Let C C C" be the Zariski closure of C. It is a complex algebraic
curve, and by dimension considerations (C N V) C X.

e So X contains a complex algebraic curve (relative to the open
semialgebraic V).
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We have ©: V — V ~NV. X C V acomponent of 0~ 1(X).

The general idea

Take A a maximal algebraic subset of ©1(X).

The I-periodicity of ©~'(X) together with the algebraicity of Ais
“unlikely” and should imply that the stabilizer of Ain G(R) is nontrivial.
In fact, it should imply that Ais “special’”.

More precisely,

Ingredient Ill, the “Ax-Lindemann” goal

Assume that A is a maximal irreducible algebraic (relative to V) subset
of X.

Then A is a weakly special variety. Namely,
(i) Ais an orbit of a real algebraic subgroup of G (defined over Q).
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The Pila-Zannier method: The punch-line!

We have ©: V — V ~NV. X C V acomponent of 0~ 1(X).

The general idea

Take A a maximal algebraic subset of ©1(X).

The I-periodicity of ©~'(X) together with the algebraicity of Ais
“unlikely” and should imply that the stabilizer of Ain G(R) is nontrivial.
In fact, it should imply that Ais “special’”.

More precisely,

Ingredient Ill, the “Ax-Lindemann” goal

Assume that A is a maximal irreducible algebraic (relative to V) subset
of X.

Then A is a weakly special variety. Namely,
(i) Ais an orbit of a real algebraic subgroup of G (defined over Q).

(i) ©(A) is an algebraic subvariety of V.

v
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Summary of the Pila-Zannier method
We have X C V, © : V — Vand XN 8o Zariski dense in X.

I. Definability
© | § is definable in an o-minimal structure.

[I. Number Theory

The set Sy N (0-1(X) N ) is large™.

v

Application of the Pila-Wilkie Theorem.

v

I1l. Ax-Lindemann

fAC 1 (X) is maximal irreducible algebraic then it is weakly
special. (So, f in addition AN Sy # @ then A is special).

\

We conclude: X contains a special variety ©(A).
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Applying Pila-Zannier to the exponential case

We have V = (C*)"

8o = Tor(C*)"
8§={A+p:A<(C")", pe 8o}
We have © : C" — (C*)" given by ©(z1,...,2,) = (e7,...,e").
¢ A fundamental set for © is:

§={z=(z1,...,2,) €C": 0 < |Im(z))| < 7}.
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F={(z1,..., n) 10 <|z| < 2r}.

© | § is definable in Rz exp:

We have &7 = &*¥ = eX(cosy + i siny).

The map e* is definable in Reyp; the maps cos, sin | [0, 27] are
definable in R,, hence:

The map e” | {0 < Im(z) < 27} is definable in R exp.
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The exponential case: the definability of © | §

F={(z1,..., n) 10 <|z| < 2r}.

© | § is definable in Rz exp:
We have % = &+ = eX(cosy + i siny).

The map e* is definable in Reyp; the maps cos, sin | [0, 27] are
definable in R,, hence:

The map e” | {0 < Im(z) < 27} is definable in R exp.
It follows that © [ § = exp | § is definable in Ry exp.

v
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The exponential case: Il. Basic Number Theory

e Assume that X C (C*)" is an irreducible algebraic variety and that
X N Tor(C*)"is Zariski dense in X.

We want to show that (27/Q)" N (0~ 1(X) N ) is large*.

e X is defined over a number field k. For simplicity, kK = Q.

e Since X N Tor(C*)" is infinite there are natural numbers
my < mo < ...and elements g; € X, with ord(g;) = m;.

e If g € (C*)", and ord(g) = mthen g has at least ¢(m) conjugates
over Q, where ¢(m) = #{i < m: (i,m) = 1} is the Euler function.

Fact Forevery 0 < e < 1, lim¢(m)/m° = oc.

Hence, lim; 19=X0d@)=mill _
m.

/

Corollary
The following set is large*

{(g1,--.,0n) € Q" : T;27ig; € 07 (X) N §}
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—_—

Goal: A is weakly special= a coset of a linear s.space of C" over Q.

A proof using the classical Ax’s theorem (corrected)
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The exponential case: the Ax Lindemann statement

The Pila-Wilkie input

The analytic set ©'(X) C C" contains a nontrivial algebraic set. Take
a maximal such irreducible algebraic set A.

—_—

Goal: A is weakly special= a coset of a linear s.space of C" over Q.

A proof using the classical Ax’s theorem (corrected)

Ax’s Theorem If &, ... &, € C(A) and lin.dimg(&/C) = m then
tr.deg(C(exp(&1), - - -, exp(§n))/C) = m.

e Take H C C" a minimal subspace /Q with A C H + pfor p € C". Let
m = dim H.

e We have ©(A) C ©(H) + ©(p), and ©(H) < (C*)" algebraic.

o Take &1, ..., &n € C(A) coordinate functions in the function field of A.
Then lin.dimg(£/C) = m, so by Ax’s theorem ir.deg(C(©(¢))/C) = m
=dim(©(H) + ©(p)).
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Ax-Lindemann (cont)

It follows that ©(A) is Zariski dense in ©(H) + ©(p), so
o(H) +©(p) C X.

Hence, AC H+p C 7 1(X).

By maximality, A = H + p, so A is weakly special. O
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Summary of proof in the exponential case

e We started with X C (G™)" such that Tor(G)" N X is Zariski dense
in X.

e Using Pila-Wilkie, we concluded that ©~'(X) contained a nontrivial
complex algebraic set A. Furthermore we can choose it so AN 8y is
nonempty. Take such A maximal.

« By Ax, A is weakly special, hence special (AN 8 # @).
o It follows that X contains a nontrivial special set ©(A)..

¢ By using the full strength of Pila-Wilkie we could show that X is
actually special.
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Another example: The Manin-Mumford conjecture

The setting
V = an abelian variety in P"(C).

So, V is a projective algebraic variety which admits an algebraic group
structure, abelian. It is also a compact, complex Lie group.

C = allirreducible algebraic subvarieties of V.

8 = all cosets of the form A + p, where p € Tor(V) and A a connected
algebraic subgroup (i.e. abelian subvariety) of V.

8o = Tor(V) the torsion elements.

The Manin-Mumford conjecture (Raynaud’s Theorem, 1983)

Assume that V is a complex abelian variety defined over a number
field, and X C V an irreducible algebraic subvariety. If X N Tor(V) is
Zariski dense in V then X = A+ p as above.

v




The analytic presentation

e There exists a holomorphic group homomorphism © : (C",+) — V.



The analytic presentation

e There exists a holomorphic group homomorphism © : (C",+) — V.

o [ := Ker(©) is a 2n-lattice. l.e., I = Z,?L Zwj, where wy, ..., wop, are
linearly independent over R.



The analytic presentation

e There exists a holomorphic group homomorphism © : (C",+) — V.

o [ := Ker(©) is a 2n-lattice. l.e., [ = ¥2". Zw;, where wy., ..., ws, are
linearly independent over R.

(Note: While every 2n-lattice gives rise to a complex torus, it might not
give rise, if n > 1, to an projective complex torus, i.e. abelian variety.)



The analytic presentation

e There exists a holomorphic group homomorphism © : (C",+) — V.

o [ := Ker(©) is a 2n-lattice. l.e., [ = ¥2". Zw;, where wy., ..., ws, are
linearly independent over R.

(Note: While every 2n-lattice gives rise to a complex torus, it might not
give rise, if n > 1, to an projective complex torus, i.e. abelian variety.)

—~—

« special points = 0~ '(Tor(V))



The analytic presentation

e There exists a holomorphic group homomorphism © : (C",+) — V.

o [ := Ker(©) is a 2n-lattice. l.e., [ = ¥2". Zw;, where wy., ..., ws, are
linearly independent over R.

(Note: While every 2n-lattice gives rise to a complex torus, it might not
give rise, if n > 1, to an projective complex torus, i.e. abelian variety.)

—_—

« special points = ©'(Tor(V)) = QI = £2", Qu;.



The analytic presentation

e There exists a holomorphic group homomorphism © : (C",+) — V.

o [ := Ker(©) is a 2n-lattice. l.e., [ = ¥2". Zw;, where wy., ..., ws, are
linearly independent over R.

(Note: While every 2n-lattice gives rise to a complex torus, it might not
give rise, if n > 1, to an projective complex torus, i.e. abelian variety.)

« special points = ©'(Tor(V)) = QI = £2", Qu;.

e special varieties are cosets of the form z + H, where H a complex
linear subspace defined over Q and z € QT.
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e There exists a holomorphic group homomorphism © : (C",+) — V.

o [ := Ker(©) is a 2n-lattice. l.e., [ = ¥2". Zw;, where wy., ..., ws, are
linearly independent over R.

(Note: While every 2n-lattice gives rise to a complex torus, it might not
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« special points = ©'(Tor(V)) = QI = £2", Qu;.

e special varieties are cosets of the form z + H, where H a complex
linear subspace defined over Q and z € QT.

o Weakly special varieties are arbitrary cosets of such H.



The analytic presentation

e There exists a holomorphic group homomorphism © : (C",+) — V.

o [ := Ker(©) is a 2n-lattice. l.e., [ = ¥2". Zw;, where wy., ..., ws, are
linearly independent over R.

(Note: While every 2n-lattice gives rise to a complex torus, it might not
give rise, if n > 1, to an projective complex torus, i.e. abelian variety.)

« special points = ©'(Tor(V)) = QI = £2", Qu;.

e special varieties are cosets of the form z + H, where H a complex
linear subspace defined over Q and z € QT.

o Weakly special varieties are arbitrary cosets of such H.

(weakly) special varieties as orbits

Note that the weakly special varieties are exactly those orbits (i.e.,
cosets) of real subgroups of (C”. +) which project onto algebraic
subvarieties of V.
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The Pila-Zannier method for Manin-Mumford

I. The fundamental set and definability of © | §

Consider the compact semilinear parallelogram
&= {2,221 fiwi: 0 <t < 1}. Then:
@Hr+g=Cn

(i) Theset {y el : (y+3)NF # o} is finite.
§ is a fundamental set for ©.

w1 s Wit Wy
Fo 7

w

Since © is analytic on C"” and § compact, © | § is definable in the
o-minimal R4, (by considering the real and imaginary parts of ©).
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e V is an abelian variety defined over a number field F.
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Pila-Zannier for Manin-Mumford (cont)

[I. Number Theory (on the algebraic side)

e V is an abelian variety defined over a number field F.
e X C Vs irreducible algebraic, with X n Tor(V) Zariski dense in X.
e So, X is also defined over a number field kK O F.

Number theoretic input (Masser)

There exists p = p(V) > 0 and a constant c, such that for every P € V,
if ord(P) = T then [F(P) : Q] > cT".

v

By conjugating X n Tor( V) over k we conclude: if ¢ < p(V) then

{PeXiord(PISTH _ o,

limsupr

Conclusion: on the analytic side

The set {(q1,...,qn) € Q*": Zj?z’q giwi € ©1(X)NF} is large*.
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The variety X C V contains ©(/), a coset of a subgroup.
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Finishing the proof of MM

On the analytic side

We saw that ©~'(X) contains an affine line ¢ C C".

Back to the algebraic side
The variety X C V contains ©(/), a coset of a subgroup.

The Zariski closure of ©(/) is a coset of an algebraic subgroup of V,
which is contained in X.

Hence, X contains a (weakly) special variety z + A, for A < X.

By using the full strength of Pila-Wilkie, together with the ability to write
/' as a an almost direct product A & B, we can show that X itself is a
special variety.

END of the proof of Manin-Mumford.

v
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Andre-Oort setting

The general analytic setting for Shimura varieties (simplified)
e G(RR) is the R-points of an algebraic semisimple group G over R.
e K < G(RR) a maximal compact subgroup of G(RR).

e (with additional assumptions) the quotient space G(R)/K admits the
structure of an open semi-algebraic subset of C". This set is our V.

e G(RR) acts on V. Actually, for every g € G(R), g : V- Visa
biholomorphism.

e Let = G(Z) (more generally, an arithmetic subgroup), and consider
the quotient V =T\V.

The Baily-Borel Theorem (1966)

There exists a holomorphic embedding © : I'\V — PM(C) whose image
is a quasi-projective variety.

Im(©) = V is a Shimura variety (a non-specialist viewpoint).
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We start with the upper half plane H = {z € C : Im(z) > 0}.
The group SL(2,R) acts on H (transitively) as follows:
If A= < i b ) and 7 € Hthen A+ = 2+tb

d cr+d-

Connection to elliptic curves

H is a parameter space for elliptic curves, namely, every 7 represents
the elliptic curve E. = C/A. where A the lattice Z-1 + Z-7.

E. = E,, & 1,1 are in the same SL(2, Z)-orbit. So, SL(2, Z)\H is the
moduli space of elliptic curves.

The J-invariant

There exists a holomorphic, transcendental surjection J : H — C such
that J(mq) = J(m2) & SL(2,Z)my = SL(2,Z)7>.
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o V=H"

e G(R) = SL(2,R)" acts on H" in coordinates.

e The action is transitive so H” = G(R)/stabg(z) for any z € H".

e Since stab(i,...,i) = O(2,R)", we have H" = SL(2,R)"/O(2,R)"
(namely, K = O(2,R)").

Note: V is not a group anymore. It is a semialgebraic homogenous
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André-Oort for C"

o V=H"
e G(R) = SL(2,R)" acts on H" in coordinates.
e The action is transitive so H” = G(R)/stabg(z) for any z € H".

e Since stab(i,...,i) = O(2,R)", we have H" = SL(2,R)"/O(2,R)"
(namely, K = O(2,R)").

Note: V is not a group anymore. It is a semialgebraic homogenous
space.

eletl =SL(2,Z2)"and © :=(J,...,J) : H" — C". © is a -invariant
surjection.

On the algebraic side
We define V := C" ~ NH", via ©.
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(1,...,7n) € H" is special, if for every i, the elliptic curve E,, has
complex multiplication (End(E;) # 7Z).

Equivalently, 7; belongs/gg/an imaginary quadratic extension of Q.
(abstract definition of special points in Shimura varieties-omitted here).
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Special varieties and points

Again, the definition begins on the analytic side.

Definition of special points: The set Sg

|

(r1,...,mn) € H" is special, if for every i, the elliptic curve E;, has
complex multiplication (End(E;) # 7Z).

Equivalently, 7; belongs/t_g/an imaginary quadratic extension of Q.
(abstract definition of special points in Shimura varieties-omitted here).

Definition of special varieties

Recall: An irreducible analytic variety Y C H" is sﬁ&:i/al if
(i) Y is an orbit of a real algebraic group H < SL(2,R)".
(i) ©(Y) € C"is an algebraic variety.

(iii) Y N So # 2.
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The Image under © of special variety is special in C".
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The image under © of a special point is special in C". 8y := e('éo).
The Image under © of s?e;éi/al variety is special in C".

Examples of special varieties

o X = {r} x H' ', with 7 € 8o; itis an orbit of H = {1} x SL(2,R)""".
O(X) = {p} x C" is a special variety.

o X = {(r,N7) : 7 € H} x H"~2, for some N < N. It is an orbit of

H; x SL(2,R)"2, with H; = {(g,hgh™") : g € SL(2,R)} and
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@()N() = Z(®py) x €2 where ®, is the zero set of a modular
polynomial.




Special varieties and points in V = C”

The image under © of a special point is special in C". 8y := e(’éo).
The Image under © of sg_e\éfal variety is special in C".

Examples of special varieties

o X = {r} x H' ', with 7 € 8o; itis an orbit of H = {1} x SL(2,R)""".
O(X) = {p} x C" is a special variety.

o X = {(r,N7) : 7 € H} x H"~2, for some N < N. It is an orbit of

H; x SL(2,R)"~2, with H; = {(g, hgh—") : g € SL(2,R)} and

10
(o n)
O(X) = Z(dy) x C"2 where ® is the zero set of a modular
polynomial.

Moonen’s work

Every special variety in C" is obtained from the above examples by
permutation of variables and cartesian products.
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If X C C"is an irreducible algebraic variety and X N 8y is Zariski dense
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The André-Oort Conjecture for C” (a theorem of Pila)

If X C C"is an irreducible algebraic variety and X N 8y is Zariski dense
in X then X is special.

By the nature of the definitions, we immediately have an analytic
presentation of the problem:

e We have © : H" — C" given by the J function in each coordinate.

e We have notions of special points and varieties in H".



By the basic theory of elliptic curves, the following is a fundamental set
for SL(2,7) (for every 0 < a < 1/3/2):

§={zeH: -1/2< Re(z) <1/2&Im(z) > a}.

So §" is a fundamental set for SL(2,Z)".
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The restriction of J to § is definable in Rz exp. l
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The restriction of J to § is definable in Rz exp. l

Proof Consider first the map z — €°7. It sends § onto a punctured
disc D*. The “point” Im(z) = oo is sent to 0.
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The restriction of J to § is definable in Rz exp.

Proof Consider first the map z — €°7. It sends § onto a punctured
disc D*. The “point” Im(z) = oo is sent to 0.

PRI 627riz

N

AN
. 1
“1d 12 d

o The restriction of €™ to § is definable in R exp-
e As pointed out in an earlier talk, we may write J in the variable
q = €°™7 and obtain a meromorphic function on D*. Hence (???) J(q)
is definable in R ;. It follows that J(z) is definable in IR a5 exp-
35
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We have © : H” — C", and X C C" algebraic, with X N 8y Zariski
dense in X. We use § for the fundamental set for © (= §").

On the analytic side

Let X C H" be an irreducible analytic component of ©(X).
We already saw that if 7 = (71,...,7,) € H" is special then each 7; is
imaginary quadratic, so Sy C (leg)”..

Using a theorem of Siegel on imaginary quadratic fields, Pila proves:

Largness of special points
The set 8o N X N § is large*.




The Pila-Wilkie input

X contains an algebraic set of positive dimension (relative to H"). Let
A be maximal irreducible such set.

Ais weakly speC|aI Namely

(i) it is the orbit of a real algebraic subgroup of SL(2,R)", and
(i) ©(A) is algebraic.

v
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e We have A C ©~'(X) a maximal, irreducible relatively algebraic
subset, of positive dimension. Namely, there exists an algebraic
AC C"suchthat A=AnNH".

Write G := SL(2,R)", and I' = SL(2,Z)".

e Without loss of generality dim(A N §) = dim A (if not, replace X and A
by vX and ~A, for some v € T).

Fact A is not contained in finitely many I'-translates of 3. J

WHY?

Otherwise A C Uﬁ‘:1 ~;i§. Because the real part of §§ is bounded, it
follows that Re(z) is bounded for z ¢ AN H". This would imply (?) that
A must be compact. But a compact complex analytic subset of H" is
finite. Contradiction.
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Hence, there are infinitely many ~ € I such that dim(vAN §) = dim A.
For v € I', we have yA C ©~1(X) (since that set is -invariant).
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A counting Lemma (proof omitted)
The set { € SL(2,Z)" : v € G(A)} is large*.

A second use of Pila-Wilkie
By PW, G(A) contains a semi-algebraic connected curve o.
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containing a semi-algebraic curve o.

e The set o - A C ©7(X) is a semi-algebraic set containing (a translate
of) A.

e By the maximality of A, o - A = A, hence the group Stabg(A) is
infinite.

e Consider the real algebraic group Stabg(A) C G. It is thus infinite
and contains infinitely many I points (by a finer use of Pila-Wilkie).

e Let H be the Zariski closure of G(A) N T. Itis a real algebraic group
defined over Q which stabilizes A. Using induction and decomposition
of Shimura varieties, one can show tha/té/is an orbit of H and that

©(A) is algebraic, hence A is weakly special.

e |t follows that X contains a (weakly) special variety.
End of Pila’s Theorem.
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Further work around Pila-Zannier

André Oort for Ag for g = 2 (Pila Tsimerman)

Theorem The André- Oort conjecture holds for A», the moduli space
of abelian surfaces.

I. Definability: P-Starchenko.
[I. Number Theory: Uses results of Tsimerman.
[ll. A-L: using strongly the low dimension of A, (dim .4, = 3).

Status of General André-Oort
Recent work of Klingler, Yafaev and Ullmo (2013)

I. The restriction of the Baily-Borel embedding of any Shimura variety
to the Siegel fundamental set is definable in Rz, exp ().
[ll. Ax-Lindemann holds for arbitrary Shimura varieties.

The number Theory part




