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63ème année, 2010–2011, no 1037.

T. Scanlon, Counting special points: Logic, diophantine geometry, and
transcendence theory, Bull. AMS (N.S.) 49 (2012), no. 1, 51 – 71.

2



A general problem scheme

Setting
C = an underlying family of sets

S ⊆ C is a collection of so-called “special” C-sets

S0 = a set of so-called “special” points, often these are the S-sets of
dimension zero.

The problem scheme
Start with an S-set V and consider an arbitrary C-set X ⊆ V . Assume
that X has “many” special points. Then X contains a special set of
positive dimension. Under additional assumptions, X itself is a special
set.
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The Pila-Wilkie results (viewed in this scheme)

FixM = 〈R, <,+, ·, ......〉 an o-minimal expansion of the real field.
C = the family of all definable sets inM.
S = The family of semi-algebraic sets (defined over Q).
S0 = points in (Qalg)n ∩ Rn.

The Pila-Wilkie theorem(s)

Assume that X ⊆ Rn is definable inM. If X ∩ (Qalg)n is large∗ then X
contains a connected infinite semi-algebraic set defined over Q.
More precisely, if one removes all infinite connected semi-algebraic
subsets of X then a small∗ number of Qalg-points remains.

X ∩ (Qalg)n is large∗ if exists k ∈ N and ε > 0 such that

limsupT
|{q̄ ∈ X ∩ (Qalg

k )n : heightk (q̄) 6 T}|
T ε

=∞.

4



The Pila-Wilkie results (viewed in this scheme)

FixM = 〈R, <,+, ·, ......〉 an o-minimal expansion of the real field.
C = the family of all definable sets inM.
S = The family of semi-algebraic sets (defined over Q).
S0 = points in (Qalg)n ∩ Rn.

The Pila-Wilkie theorem(s)

Assume that X ⊆ Rn is definable inM. If X ∩ (Qalg)n is large∗ then X
contains a connected infinite semi-algebraic set defined over Q.
More precisely, if one removes all infinite connected semi-algebraic
subsets of X then a small∗ number of Qalg-points remains.

X ∩ (Qalg)n is large∗ if exists k ∈ N and ε > 0 such that

limsupT
|{q̄ ∈ X ∩ (Qalg

k )n : heightk (q̄) 6 T}|
T ε

=∞.

4



The Pila-Wilkie results (viewed in this scheme)

FixM = 〈R, <,+, ·, ......〉 an o-minimal expansion of the real field.
C = the family of all definable sets inM.
S = The family of semi-algebraic sets (defined over Q).
S0 = points in (Qalg)n ∩ Rn.

The Pila-Wilkie theorem(s)

Assume that X ⊆ Rn is definable inM. If X ∩ (Qalg)n is large∗ then X
contains a connected infinite semi-algebraic set defined over Q.
More precisely, if one removes all infinite connected semi-algebraic
subsets of X then a small∗ number of Qalg-points remains.

X ∩ (Qalg)n is large∗ if exists k ∈ N and ε > 0 such that

limsupT
|{q̄ ∈ X ∩ (Qalg

k )n : heightk (q̄) 6 T}|
T ε

=∞.

4



The Pila-Wilkie results (viewed in this scheme)

FixM = 〈R, <,+, ·, ......〉 an o-minimal expansion of the real field.
C = the family of all definable sets inM.
S = The family of semi-algebraic sets (defined over Q).
S0 = points in (Qalg)n ∩ Rn.

The Pila-Wilkie theorem(s)

Assume that X ⊆ Rn is definable inM. If X ∩ (Qalg)n is large∗ then X
contains a connected infinite semi-algebraic set defined over Q.
More precisely, if one removes all infinite connected semi-algebraic
subsets of X then a small∗ number of Qalg-points remains.

X ∩ (Qalg)n is large∗ if exists k ∈ N and ε > 0 such that

limsupT
|{q̄ ∈ X ∩ (Qalg

k )n : heightk (q̄) 6 T}|
T ε

=∞.

4



The Pila-Wilkie results (viewed in this scheme)

FixM = 〈R, <,+, ·, ......〉 an o-minimal expansion of the real field.
C = the family of all definable sets inM.
S = The family of semi-algebraic sets (defined over Q).
S0 = points in (Qalg)n ∩ Rn.

The Pila-Wilkie theorem(s)

Assume that X ⊆ Rn is definable inM. If X ∩ (Qalg)n is large∗ then X
contains a connected infinite semi-algebraic set defined over Q.
More precisely, if one removes all infinite connected semi-algebraic
subsets of X then a small∗ number of Qalg-points remains.

X ∩ (Qalg)n is large∗ if exists k ∈ N and ε > 0 such that

limsupT
|{q̄ ∈ X ∩ (Qalg

k )n : heightk (q̄) 6 T}|
T ε

=∞.

4



The Pila-Wilkie results (viewed in this scheme)

FixM = 〈R, <,+, ·, ......〉 an o-minimal expansion of the real field.
C = the family of all definable sets inM.
S = The family of semi-algebraic sets (defined over Q).
S0 = points in (Qalg)n ∩ Rn.

The Pila-Wilkie theorem(s)

Assume that X ⊆ Rn is definable inM. If X ∩ (Qalg)n is large∗ then X
contains a connected infinite semi-algebraic set defined over Q.
More precisely, if one removes all infinite connected semi-algebraic
subsets of X then a small∗ number of Qalg-points remains.

X ∩ (Qalg)n is large∗ if exists k ∈ N and ε > 0 such that

limsupT
|{q̄ ∈ X ∩ (Qalg

k )n : heightk (q̄) 6 T}|
T ε

=∞.

4



The Pila-Wilkie results (viewed in this scheme)

FixM = 〈R, <,+, ·, ......〉 an o-minimal expansion of the real field.
C = the family of all definable sets inM.
S = The family of semi-algebraic sets (defined over Q).
S0 = points in (Qalg)n ∩ Rn.

The Pila-Wilkie theorem(s)

Assume that X ⊆ Rn is definable inM. If X ∩ (Qalg)n is large∗ then X
contains a connected infinite semi-algebraic set defined over Q.
More precisely, if one removes all infinite connected semi-algebraic
subsets of X then a small∗ number of Qalg-points remains.

X ∩ (Qalg)n is large∗ if exists k ∈ N and ε > 0 such that

limsupT
|{q̄ ∈ X ∩ (Qalg

k )n : heightk (q̄) 6 T}|
T ε

=∞.

4



The Pila-Wilkie results (viewed in this scheme)

FixM = 〈R, <,+, ·, ......〉 an o-minimal expansion of the real field.
C = the family of all definable sets inM.
S = The family of semi-algebraic sets (defined over Q).
S0 = points in (Qalg)n ∩ Rn.

The Pila-Wilkie theorem(s)

Assume that X ⊆ Rn is definable inM. If X ∩ (Qalg)n is large∗ then X
contains a connected infinite semi-algebraic set defined over Q.
More precisely, if one removes all infinite connected semi-algebraic
subsets of X then a small∗ number of Qalg-points remains.

X ∩ (Qalg)n is large∗ if exists k ∈ N and ε > 0 such that

limsupT
|{q̄ ∈ X ∩ (Qalg

k )n : heightk (q̄) 6 T}|
T ε

=∞.

4



The Pila-Wilkie results (viewed in this scheme)

FixM = 〈R, <,+, ·, ......〉 an o-minimal expansion of the real field.
C = the family of all definable sets inM.
S = The family of semi-algebraic sets (defined over Q).
S0 = points in (Qalg)n ∩ Rn.

The Pila-Wilkie theorem(s)

Assume that X ⊆ Rn is definable inM. If X ∩ (Qalg)n is large∗ then X
contains a connected infinite semi-algebraic set defined over Q.
More precisely, if one removes all infinite connected semi-algebraic
subsets of X then a small∗ number of Qalg-points remains.

X ∩ (Qalg)n is large∗ if exists k ∈ N and ε > 0 such that

limsupT
|{q̄ ∈ X ∩ (Qalg

k )n : heightk (q̄) 6 T}|
T ε

=∞.

4



From now on-the algebraic general problem scheme
The algebraic presentation

C = complex algebraic (irreducible) varieties, (quasi) affine or
projective.

S = a specified subfamily of “special” varieties.

S0 = 0-dimensional S-sets: special points.

V = an irreducible S-variety.

X ⊆ V = an irreducible complex algebraic subvariety

Assumption
The set X ∩ S0 is Zariski dense in X .

Goal
The variety X is itself in S.
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A test case-the exponential example (algebraic torus)

The algebraic side
Let V = (C∗)n = (Gm)n (so here V admits the structure of an algebraic
group, which is also a complex Lie group).

C = {X ⊆ (Gm)n : X an irreducible algebraic variety}.

S = {A + p : A a conn. algebraic subgrp of Gn
m & p a torsion point}.

S0 = Torsion points in (Gm)n

Theorem (Laurent)
If X ⊆ (Gm)n an irreducible algebraic variety and X ∩ Tor(Gm)n is
Zariski dense in X then X = A + p for some A 6 (Gm)n and
p ∈ Tor(Gm)n.
Namely,
If X ∈ C and X ∩ S0 is Zariski dense in X then X ∈ S.
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Back to the general problem-the analytic presentation

We work with affine (or projective) algebraic variety V and an algebraic
subvariety X ⊆ V .

An analytic covering map

We have Ṽ = a (semi-algebraic) open subset of Cn (with n = dim V ).
And Θ : Ṽ → V a holomorphic, transcendental, surjection.

General strategy

Replace V and its algebraic variety X ⊆ V by Ṽ and a complex
analytic subvariety Θ−1(X ) ⊆ Ṽ .

Caution
In general, Θ and Θ−1(X ) are not definable in any “tame” structure.
We will need to “truncate” them.
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We have Ṽ = a (semi-algebraic) open subset of Cn (with n = dim V ).
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The analytic presentation: additional data

An underlying group action

We have G = a real algebraic group acting semi-algebraically and
transitively on Ṽ . In some cases Ṽ = G.

Γ= an infinite discrete subgroup of G (not necessarily normal).

The map Θ : Ṽ → V is Γ-invariant. Namely, Θ(x) = Θ(y) if and only if
Γx = Γy .

So, V can be identified with Γ\Ṽ .

If X ⊆ V is a complex algebraic subvariety then Θ−1(X ) = X̃ is a
Γ-invariant analytic subvariety of Ṽ .

In general, X̃ might have infinitely many connected components.
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Γ= an infinite discrete subgroup of G (not necessarily normal).
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Γ= an infinite discrete subgroup of G (not necessarily normal).
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The analytic presentation-special varieties

˜special-varieties and points

An irreducible analytic subvariety Y ⊆ Ṽ is called a ˜special variety if
Θ(Y ) is a spacial subvariety of V . In particular, Θ(Y ) is algebraic (!).

A point z ∈ Ṽ is ˜special if Θ(z) is a special point. Namely Θ(z) ∈ S0.

Fact (an alternative definition): s̃pecial varieties as orbits

An irreducible complex analytic variety X̃ ⊆ Ṽ is s̃pecial iff
(i) Θ(X̃ ) is an algebraic subvariety of V .
(ii) There exists a real algebraic subgroup H ⊆ G such that X̃ is an
orbit of H. In case Ṽ = G it means that X̃ is a coset. (Note: it follows in
either case that X̃ is real algebraic).
(iii) X̃ ∩ S̃0 6= ∅.
• If only (i) and (ii) hold then X̃ is called weakly ˜special.
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Θ(Y ) is a spacial subvariety of V . In particular, Θ(Y ) is algebraic (!).
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The exponential example: the analytic presentation

Recall V = (C∗)n = (Gm)n. Take Ṽ = Cn and Θ := exp : Cn → (C∗)n

defined by exp(z1, . . . , zn) = (ez1 , . . . ,ezn ).

So Θ : (Cn,+)→ ((Gm)n, ∗) is a holomorphic group homomorphism.
Γ := Ker(Θ) = (2πiZ)n. Clearly, Θ is Γ-invariant.

s̃pecial points
Because Θ is a homomorphism, Θ(z) is a torsion point of order k iff
kz ∈ Γ. So, S̃0 = {z̄ ∈ Cn : ∃k kz̄ ∈ (2πiZ)n} = (2πiQ)n.

s̃pecial varieties

An irreducible analytic Y ⊆ Cn is s̃pecial if Θ(Y ) = p + A, where A is an
algebraic subgroup of (Gm)n and p ∈ Tor(Gm)n. So, Y = q̄ + H, where
H is a C-linear subspace of Cn defined over Q, and q̄ ∈ (2πiQ)n.
(Note: these are exactly the cosets of real subgroups of Cn which
project onto algebraic varieties).
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Recall V = (C∗)n = (Gm)n. Take Ṽ = Cn and Θ := exp : Cn → (C∗)n

defined by exp(z1, . . . , zn) = (ez1 , . . . ,ezn ).

So Θ : (Cn,+)→ ((Gm)n, ∗) is a holomorphic group homomorphism.
Γ := Ker(Θ) = (2πiZ)n. Clearly, Θ is Γ-invariant.

s̃pecial points
Because Θ is a homomorphism, Θ(z) is a torsion point of order k iff
kz ∈ Γ. So, S̃0 = {z̄ ∈ Cn : ∃k kz̄ ∈ (2πiZ)n} = (2πiQ)n.

s̃pecial varieties

An irreducible analytic Y ⊆ Cn is s̃pecial if Θ(Y ) = p + A, where A is an
algebraic subgroup of (Gm)n and p ∈ Tor(Gm)n. So, Y = q̄ + H, where
H is a C-linear subspace of Cn defined over Q, and q̄ ∈ (2πiQ)n.
(Note: these are exactly the cosets of real subgroups of Cn which
project onto algebraic varieties).

10



The general case: The (non) definability of Θ

We have Θ : Ṽ → V ∼ Γ\Ṽ

The non-definability of Θ

Since Γ is infinite discrete, Θ−1(p) is an infinite discrete set (for every
p ∈ V ). Hence, the map Θ is never definable in an o-minimal structure.

Instead we aim for a small subset of Ṽ on which Θ is definable in
some o-minimal structure.

Fundamental sets

A closed semi-algebraic set F ⊆ Ṽ is a fundamental set for Θ if:
(i) Θ(F) = V (i.e. Γ · F = Ṽ )
(ii) There are only finitely many γ ∈ Γ such that γ · F ∩ F 6= ∅.

By (i), the quotient Γ\F can be identified with V . By (ii), the relation
Θ(z) = Θ(w) is semi-algebraic on F. So, the quotient Γ\F is
semi-algebraic.
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(ii) There are only finitely many γ ∈ Γ such that γ · F ∩ F 6= ∅.

By (i), the quotient Γ\F can be identified with V . By (ii), the relation
Θ(z) = Θ(w) is semi-algebraic on F. So, the quotient Γ\F is
semi-algebraic.

11



The general case: The (non) definability of Θ

We have Θ : Ṽ → V ∼ Γ\Ṽ
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some o-minimal structure.

Fundamental sets

A closed semi-algebraic set F ⊆ Ṽ is a fundamental set for Θ if:
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The ingredients for the Pila-Zannier method

We have Θ : Ṽ → V ∼ Γ\Ṽ . S0 ⊆ V the set of special points.

I. Definability requirements (from algebraic to o-minimal)
One needs to establish the existence of a semialgebraic fundamental
set F ⊆ Ṽ and the definability of Θ�F in some o-minimal structureM.
In all examples,M is Ran,exp.

For X ⊆ V algebraic, let X̃ ⊆ Ṽ be an irreducible analytic component
of Θ−1(X ). Note that X̃ ∩ F = (Θ�F)−1(X ) is definable inM.

II. Number theory goal

• The set S̃0 = Θ−1(S0) is contained in Qalg
k for some k (up to definable

bijection).
II If X ∩ S0 (on the algebraic side) is Zariski dense in X then
S̃0 ∩ (X̃ ∩ F) (on the analytic side) is large∗ (in the sense of Pila-Wilkie).
This is “the lower bound”.
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set F ⊆ Ṽ and the definability of Θ�F in some o-minimal structureM.
In all examples,M is Ran,exp.

For X ⊆ V algebraic, let X̃ ⊆ Ṽ be an irreducible analytic component
of Θ−1(X ). Note that X̃ ∩ F = (Θ�F)−1(X ) is definable inM.

II. Number theory goal

• The set S̃0 = Θ−1(S0) is contained in Qalg
k for some k (up to definable

bijection).
II If X ∩ S0 (on the algebraic side) is Zariski dense in X then
S̃0 ∩ (X̃ ∩ F) (on the analytic side) is large∗ (in the sense of Pila-Wilkie).
This is “the lower bound”.

12



The ingredients of the Pila-Zannier method (cont)

The Pila-Wilkie input

• Assume that we established that S̃0 ∩ (X̃ ∩ F) is large∗.

• By PW, There exists a connected semi-algebraic nontrivial curve
C ⊆ X̃ ∩ F.

• Let C ⊆ Cn be the Zariski closure of C. It is a complex algebraic
curve, and by dimension considerations (C ∩ Ṽ ) ⊆ X̃ .

• So X̃ contains a complex algebraic curve (relative to the open
semialgebraic Ṽ ).
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The Pila-Zannier method: The punch-line!

We have Θ : Ṽ → V ∼ Γ\Ṽ . X̃ ⊆ Ṽ a component of Θ−1(X ).

The general idea

Take Ã a maximal algebraic subset of Θ−1(X ).
The Γ-periodicity of Θ−1(X ) together with the algebraicity of Ã is
“unlikely” and should imply that the stabilizer of Ã in G(R) is nontrivial.
In fact, it should imply that Ã is “special”.

More precisely,

Ingredient III, the “Ax-Lindemann” goal

Assume that Ã is a maximal irreducible algebraic (relative to Ṽ ) subset
of X̃ .
Then Ã is a weakly s̃pecial variety. Namely,

(i) Ã is an orbit of a real algebraic subgroup of G (defined over Q).

(ii) Θ(Ã) is an algebraic subvariety of V .
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The general idea
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(i) Ã is an orbit of a real algebraic subgroup of G (defined over Q).
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“unlikely” and should imply that the stabilizer of Ã in G(R) is nontrivial.
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(ii) Θ(Ã) is an algebraic subvariety of V .

14



The Pila-Zannier method: The punch-line!
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Summary of the Pila-Zannier method

We have X ⊆ V , Θ : Ṽ → V and X ∩ S0 Zariski dense in X .

I. Definability
Θ� F is definable in an o-minimal structure.

II. Number Theory

The set S̃0 ∩ (Θ−1(X ) ∩ F) is large∗.

Application of the Pila-Wilkie Theorem.

III. Ax-Lindemann

If Ã ⊆ Θ−1(X ) is maximal irreducible algebraic then it is weakly
s̃pecial. (So, f in addition Ã ∩ S̃0 6= ∅ then Ã is s̃pecial).

We conclude: X contains a special variety Θ(Ã).
15
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We have X ⊆ V , Θ : Ṽ → V and X ∩ S0 Zariski dense in X .

I. Definability
Θ� F is definable in an o-minimal structure.

II. Number Theory

The set S̃0 ∩ (Θ−1(X ) ∩ F) is large∗.

Application of the Pila-Wilkie Theorem.

III. Ax-Lindemann
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Applying Pila-Zannier to the exponential case

We have V = (C∗)n

S0 = Tor(C∗)n

S = {A + p : A 6 (C∗)n , p ∈ S0}.

I. Fundamental set and the definability of Θ

We have Θ : Cn → (C∗)n given by Θ(z1, . . . , zn) = (ez1 , . . . ,ezn ).

• A fundamental set for Θ is:

F = {z̄ = (z1, . . . , zn) ∈ Cn : 0 6 |Im(zi)| 6 π}.

16
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The exponential case: the definability of Θ � F

0

2πi

F = {(z1, . . . , zn) : 0 ≤ |zi| ≤ 2π}.F = {(z1, . . . , zn) : 0 ≤ |zi| ≤ 2π}.

Θ � F is definable in Ran,exp:

We have ez = ex+iy = ex (cosy + i siny).
The map ex is definable in Rexp; the maps cos, sin � [0,2π] are
definable in Ran, hence:
The map ez � {0 6 Im(z) 6 2π} is definable in Ran,exp.
It follows that Θ�F = exp �F is definable in Ran,exp.
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The exponential case: II. Basic Number Theory

• Assume that X ⊆ (C∗)n is an irreducible algebraic variety and that
X ∩ Tor(C∗)n is Zariski dense in X .

We want to show that (2πiQ)n ∩ (Θ−1(X ) ∩ F) is large∗.

• X is defined over a number field k . For simplicity, k = Q.

• Since X ∩ Tor(C∗)n is infinite there are natural numbers
m1 < m2 < . . . and elements gi ∈ X , with ord(gi) = mi .

• If g ∈ (C∗)n, and ord(g) = m then g has at least φ(m) conjugates
over Q, where φ(m) = #{i 6 m : (i ,m) = 1} is the Euler function.

Fact For every 0 < ε < 1, limφ(m)/mε =∞.

Hence, limi
|{g∈X :ord(g)=mi}|

m1/2
i

=∞.

Corollary
The following set is large∗

{(q1, . . . ,qn) ∈ Qn : Σj2πiqj ∈ Θ−1(X ) ∩ F}
. 18
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The exponential case: the Ax Lindemann statement

The Pila-Wilkie input

The analytic set Θ−1(X ) ⊆ Cn contains a nontrivial algebraic set. Take
a maximal such irreducible algebraic set A.
Goal: A is weakly ˜special= a coset of a linear s.space of Cn over Q.

A proof using the classical Ax’s theorem (corrected)

Ax’s Theorem If ξ1, . . . , ξn ∈ C(A) and lin.dimQ(ξ̄/C) = m then
tr .deg(C(exp(ξ1), . . . ,exp(ξn))/C) = m.

• Take H ⊆ Cn a minimal subspace /Q with A ⊆ H + p for p ∈ Cn. Let
m = dim H.

•We have Θ(A) ⊆ Θ(H) + Θ(p), and Θ(H) 6 (C∗)n algebraic.

• Take ξ1, . . . , ξn ∈ C(A) coordinate functions in the function field of A.
Then lin.dimQ(ξ̄/C) = m, so by Ax’s theorem tr .deg(C(Θ(ξ̄))/C) = m
= dim(Θ(H) + Θ(p)).
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Ax-Lindemann (cont)

It follows that Θ(A) is Zariski dense in Θ(H) + Θ(p), so
Θ(H) + Θ(p) ⊆ X .

Hence, A ⊆ H + p ⊆ Θ−1(X ).

By maximality, A = H + p, so A is weakly s̃pecial.
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Ax-Lindemann (cont)
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Summary of proof in the exponential case

•We started with X ⊆ (Gm)n such that Tor(Gm)n ∩ X is Zariski dense
in X .

• Using Pila-Wilkie, we concluded that Θ−1(X ) contained a nontrivial
complex algebraic set A. Furthermore we can choose it so A ∩ S̃0 is
nonempty. Take such A maximal.

• By Ax, A is weakly sp̃ecial, hence s̃pecial (A ∩ S̃0 6= ∅).

• It follows that X contains a nontrivial special set Θ(A)..

• By using the full strength of Pila-Wilkie we could show that X is
actually special.
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Another example: The Manin-Mumford conjecture

The setting
V = an abelian variety in Pn(C).

So, V is a projective algebraic variety which admits an algebraic group
structure, abelian. It is also a compact, complex Lie group.

C = all irreducible algebraic subvarieties of V .

S = all cosets of the form A + p, where p ∈ Tor(V ) and A a connected
algebraic subgroup (i.e. abelian subvariety) of V .

S0 = Tor(V ) the torsion elements.

The Manin-Mumford conjecture (Raynaud’s Theorem, 1983)
Assume that V is a complex abelian variety defined over a number
field, and X ⊆ V an irreducible algebraic subvariety. If X ∩ Tor(V ) is
Zariski dense in V then X = A + p as above.
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The analytic presentation

• There exists a holomorphic group homomorphism Θ : (Cn,+)→ V .

• Γ := Ker(Θ) is a 2n-lattice. I.e., Γ = Σ2n
i=1Zωi , where ω1, . . . , ω2n are

linearly independent over R.
(Note: While every 2n-lattice gives rise to a complex torus, it might not
give rise, if n > 1, to an projective complex torus, i.e. abelian variety.)

• ˜special points = Θ−1(Tor(V )) = QΓ = Σ2n
i=1Qωi .

• ˜special varieties are cosets of the form z̄ + H, where H a complex
linear subspace defined over Q and z̄ ∈ QΓ.
•Weakly ˜special varieties are arbitrary cosets of such H.

(weakly) special varieties as orbits
Note that the weakly special varieties are exactly those orbits (i.e.,
cosets) of real subgroups of (Cn,+) which project onto algebraic
subvarieties of V .
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The Pila-Zannier method for Manin-Mumford

I. The fundamental set and definability of Θ � F

Consider the compact semilinear parallelogram
F = {∑2n

i=1 tiωi : 0 6 ti 6 1}. Then:
(i) Γ + F = Cn.
(ii) The set {γ ∈ Γ : (γ + F) ∩ F 6= ∅} is finite.
F is a fundamental set for Θ.

ω2

ω1 ω1 + ω2

FFΩ

Since Θ is analytic on Cn and F compact, Θ�F is definable in the
o-minimal Ran (by considering the real and imaginary parts of Θ).
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Pila-Zannier for Manin-Mumford (cont)

II. Number Theory (on the algebraic side)
• V is an abelian variety defined over a number field F .
• X ⊆ V is irreducible algebraic, with X ∩ Tor(V ) Zariski dense in X .
• So, X is also defined over a number field k ⊇ F .

Number theoretic input (Masser)
There exists ρ = ρ(V ) > 0 and a constant c, such that for every P ∈ V ,
if ord(P) = T then [F (P) : Q] > cT ρ.

By conjugating X ∩ Tor(V ) over k we conclude: if ε < ρ(V ) then

limsupT
|{P∈X :ord(P)6T}|

T ε =∞.

Conclusion: on the analytic side

The set {(q1, . . . ,q2n) ∈ Q2n : Σ2n
j=1qjωi ∈ Θ−1(X ) ∩ F} is large∗.
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III. Ax-Lindemann: an o-minimal argument

The Pila-Wilkie input

The analytic variety Θ−1(X ) contains an unbounded semialgebraic
curve σ.

By the o-minimality of σ, when we translate it into F by elements of Γ
we get (inside X̃ ) curves which are more and more “linear”. Since
X̃ ∩ F is compact, at the limit we get an affine line ` ⊆ X̃ .

`
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Finishing the proof of MM

On the analytic side

We saw that Θ−1(X ) contains an affine line ` ⊆ Cn.

Back to the algebraic side
The variety X ⊆ V contains Θ(`), a coset of a subgroup.

The Zariski closure of Θ(`) is a coset of an algebraic subgroup of V ,
which is contained in X .

Hence, X contains a (weakly) special variety z + A, for A 6 X .

By using the full strength of Pila-Wilkie, together with the ability to write
V as a an almost direct product A⊕ B, we can show that X itself is a
special variety.
END of the proof of Manin-Mumford.
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Andre-Oort setting

The general analytic setting for Shimura varieties (simplified)
• G(R) is the R-points of an algebraic semisimple group G over R.
• K 6 G(R) a maximal compact subgroup of G(R).
• (with additional assumptions) the quotient space G(R)/K admits the
structure of an open semi-algebraic subset of Cn. This set is our Ṽ .
• G(R) acts on Ṽ . Actually, for every g ∈ G(R), g : Ṽ → Ṽ is a
biholomorphism.
• Let Γ = G(Z) (more generally, an arithmetic subgroup), and consider
the quotient V = Γ\Ṽ .

The Baily-Borel Theorem (1966)

There exists a holomorphic embedding Θ : Γ\Ṽ → Pm(C) whose image
is a quasi-projective variety.

Im(Θ) = V is a Shimura variety (a non-specialist viewpoint).
28
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• G(R) acts on Ṽ . Actually, for every g ∈ G(R), g : Ṽ → Ṽ is a
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The Shimura variety Cn: Preliminaries

We start with the upper half plane H = {z ∈ C : Im(z) > 0}.
The group SL(2,R) acts on H (transitively) as follows:

If A =

(
a b
c d

)
and τ ∈ H then A · τ = aτ+b

cτ+d .

Connection to elliptic curves
H is a parameter space for elliptic curves, namely, every τ represents
the elliptic curve Eτ = C/Λτ where Λτ the lattice Z·1 + Z·τ .

Eτ1
∼= Eτ2 ⇔ τ1, τ2 are in the same SL(2,Z)-orbit. So, SL(2,Z)\H is the

moduli space of elliptic curves.

The J-invariant
There exists a holomorphic, transcendental surjection J : H→ C such
that J(τ1) = J(τ2)⇔ SL(2,Z)τ1 = SL(2,Z)τ2.
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André-Oort for Cn

We now begin on the analytic side

• Ṽ = Hn.

• G(R) = SL(2,R)n acts on Hn in coordinates.

• The action is transitive so Hn = G(R)/stabG(z̄) for any z̄ ∈ Hn.

• Since stab(i , . . . , i) = O(2,R)n, we have Hn = SL(2,R)n/O(2,R)n

(namely, K = O(2,R)n).

Note: Ṽ is not a group anymore. It is a semialgebraic homogenous
space.

• Let Γ = SL(2,Z)n and Θ := (J, . . . , J) : Hn → Cn. Θ is a Γ-invariant
surjection.

On the algebraic side
We define V := Cn ∼ Γ\Hn, via Θ.
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André-Oort for Cn

We now begin on the analytic side
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S̃pecial varieties and points

Again, the definition begins on the analytic side.

Definition of s̃pecial points: The set S̃0

(τ1, . . . , τn) ∈ Hn is ˜special, if for every i , the elliptic curve Eτi has
complex multiplication (End(Eτ ) 6= Z).
Equivalently, τi belongs to an imaginary quadratic extension of Q.
(abstract definition of s̃pecial points in Shimura varieties-omitted here).

Definition of s̃pecial varieties

Recall: An irreducible analytic variety Y ⊆ Hn is ˜special if
(i) Y is an orbit of a real algebraic group H 6 SL(2,R)n.
(ii) Θ(Y ) ⊆ Cn is an algebraic variety.
(iii) Y ∩ S̃0 6= ∅.
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Special varieties and points in V = Cn

The image under Θ of a s̃pecial point is special in Cn. S0 := Θ(S̃0).
The Image under Θ of s̃pecial variety is special in Cn.

Examples of special varieties

• X̃ = {τ} ×Hn−1, with τ ∈ S̃0; it is an orbit of H = {1} × SL(2,R)n−1.
Θ(X̃ ) = {p} × Cn−1 is a special variety.
• X̃ = {(τ,Nτ) : τ ∈ H} ×Hn−2, for some N ∈ N. It is an orbit of
H1 × SL(2,R)n−2, with H1 = {(g,hgh−1) : g ∈ SL(2,R)} and

h =

(
1 0
0 N

)
Θ(X̃ ) = Z (ΦN)× Cn−2 where ΦN is the zero set of a modular
polynomial.

Moonen’s work
Every special variety in Cn is obtained from the above examples by
permutation of variables and cartesian products.
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The statement of the theorem

The André-Oort Conjecture for Cn (a theorem of Pila)
If X ⊆ Cn is an irreducible algebraic variety and X ∩ S0 is Zariski dense
in X then X is special.

By the nature of the definitions, we immediately have an analytic
presentation of the problem:

•We have Θ : Hn → Cn given by the J function in each coordinate.

•We have notions of s̃pecial points and varieties in Hn.

33



The statement of the theorem
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The Pila Zannier method: I. The fundamental set

By the basic theory of elliptic curves, the following is a fundamental set
for SL(2,Z) (for every 0 < a <

√
3/2):

F = {z ∈ H : −1/2 6 Re(z) 6 1/2 & Im(z) > a}.

F

ia

So Fn is a fundamental set for SL(2,Z)n.
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Pila-zanner method I: Definability of J � F

Theorem
The restriction of J to F is definable in Ran,exp.

Proof Consider first the map z 7→ e2πiz . It sends F onto a punctured
disc D∗. The “point” Im(z) =∞ is sent to 0.

−1/2 1/2

ia

z 7→ e2πiz

e−2πa

F

D∗ 1

• The restriction of e2πiz to F is definable in Ran,exp.
• As pointed out in an earlier talk, we may write J in the variable
q = e2πiz and obtain a meromorphic function on D∗. Hence (???) J(q)
is definable in Ran. It follows that J(z) is definable in Ran,exp.
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II. Number Theory

We have Θ : Hn → Cn, and X ⊆ Cn algebraic, with X ∩ S0 Zariski
dense in X . We use F for the fundamental set for Θ (= Fn).

On the analytic side

Let X̃ ⊆ Hn be an irreducible analytic component of Θ−1(X ).
We already saw that if τ = (τ1, . . . , τn) ∈ Hn is s̃pecial then each τi is
imaginary quadratic, so S̃0 ⊆ (Qalg

2 )n..

Using a theorem of Siegel on imaginary quadratic fields, Pila proves:

Largness of special points

The set S̃0 ∩ X̃ ∩ F is large∗.
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III. The Ax-Lindemann statement

The Pila-Wilkie input

X̃ contains an algebraic set of positive dimension (relative to Hn). Let
A be maximal irreducible such set.

Goal

A is weakly s̃pecial. Namely
(i) it is the orbit of a real algebraic subgroup of SL(2,R)n, and
(ii) Θ(A) is algebraic.
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Ax-Lindemann for Hn (third type of proof)

•We have A ⊆ Θ−1(X ) a maximal, irreducible relatively algebraic
subset, of positive dimension. Namely, there exists an algebraic
Ā ⊆ Cn such that A = Ā ∩Hn.

Write G := SL(2,R)n, and Γ = SL(2,Z)n.

•Without loss of generality dim(A ∩ F) = dim A (if not, replace X̃ and A
by γX̃ and γA, for some γ ∈ Γ).

Fact A is not contained in finitely many Γ-translates of F.

WHY?

Otherwise A ⊆ ⋃k
i=1 γiF. Because the real part of F is bounded, it

follows that Re(z) is bounded for z ∈ Ā ∩Hn. This would imply (?) that
A must be compact. But a compact complex analytic subset of Hn is
finite. Contradiction.
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Proof of A-L (cont)

We showed that A is not contained in finitely many Γ-translates of F

ia

FF

1/2−1/2

b b b b b b

Hence, there are infinitely many γ ∈ Γ such that dim(γA ∩ F) = dim A.
For γ ∈ Γ, we have γA ⊆ Θ−1(X ) (since that set is Γ-invariant).
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A-L continues

Let G(A) = {g ∈ G : dim(gA ∩ (Θ−1(X ) ∩ F)) = dim A}.
• As we showed, Γ ∩G(A) is infinite.

• By analyticity of Θ−1(X ) and irreducibility of A, if g ∈ G(A) then
gA ⊆ Θ−1(X ).

• The set G(A) is definable in Ran,exp.

A counting Lemma (proof omitted)
The set {γ ∈ SL(2,Z)n : γ ∈ G(A)} is large∗.

A second use of Pila-Wilkie
By PW, G(A) contains a semi-algebraic connected curve σ.
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End of proof of A-L

• So, we have G(A) = {g ∈ G : dim(gA ∩ (Θ−1(X ) ∩ F)) = dim A},
containing a semi-algebraic curve σ.

• The set σ ·A ⊆ Θ−1(X ) is a semi-algebraic set containing (a translate
of) A.
• By the maximality of A, σ · A = A, hence the group StabG(A) is
infinite.
• Consider the real algebraic group StabG(A) ⊆ G. It is thus infinite
and contains infinitely many Γ points (by a finer use of Pila-Wilkie).

• Let H be the Zariski closure of G(A) ∩ Γ. It is a real algebraic group
defined over Q which stabilizes A. Using induction and decomposition
of Shimura varieties, one can show that A is an orbit of H and that
Θ(A) is algebraic, hence A is weakly s̃pecial.

• It follows that X contains a (weakly) special variety.
End of Pila’s Theorem.
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Further work around Pila-Zannier

André Oort for Ag for g = 2 (Pila Tsimerman)
Theorem The André- Oort conjecture holds for A2, the moduli space
of abelian surfaces.
I. Definability: P-Starchenko.
II. Number Theory: Uses results of Tsimerman.
III. A-L: using strongly the low dimension of A2 (dimA2 = 3).

Status of General André-Oort

Recent work of Klingler, Yafaev and Ullmo (2013)
I. The restriction of the Baily-Borel embedding of any Shimura variety
to the Siegel fundamental set is definable in Ran,exp (!).
III. Ax-Lindemann holds for arbitrary Shimura varieties.

what is missing?
The number Theory part
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