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The main theorem of Hrushovski-Loeser

Theorem
Suppose AC U UT(U). Let V be a quasiprojective variety and
X C V x [ an A-definable subset.

Then there is an A-definable strong deformation retraction
H:1x X — X onto a [-internal subset ¥ C X such that ¥
A-embeds homeomorphically into I for some finite A-definable w.
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The main theorem of Hrushovski-Loeser

Theorem

Suppose ACUUT(U). Let V be a quasiprojective variety and

X C V x [ an A-definable subset.

Then there is an A-definable strong deformation retraction

H:1x X — X onto a [-internal subset ¥ C X such that ¥
A-embeds homeomorphically into IV for some finite A-definable w.

Corollary

Let X be as above. Then X has finitely many definable connected
components, all semi-algebraic and definably path-connected.

Proof.
Let H and X be as in the theorem. By o-minimality, X has finitely
many def. connected components Y 1,...,Y,,. The properties of H

imply that H;1(X;) = X;, where X; = HZ1(X;) N X N
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Some words about the proof of the main theorem

» Proof by induction on d = dim(V), fibering into curves.

» One shows the existence of H respecting extra data, namely
» an algebraic action of a finite group on V/, and
» finitely many definable functions £ : V — [.

These extra data are needed in the inductive approach.

» In going from d to d + 1, the homotopy is obtained by a
concatenation of four different homotopies.

> Only elementary tools from algebraic geometry are used, apart
from Riemann-Roch (used the proof of iso-definability of C).

» Technically, the most involved arguments are needed to
guarantee the continuity of certain homotopies. There are nice
specialisation criteria (both for the v- and for the g-topology)
which may be formulated in terms of 'doubly valued fields'.
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L Transfer to Berkovich spaces and applications

Berkovich spaces revisited

» Let F a complete valued field such that ' < R.

» Set F = (F,R), where RCT.

» Let V be a variety defined over F.

» Let X be an [F-definable subet.

» Denote by X?" the corresponding semialgebraic subset of V2",
A type p = tp(a/A) € S(A) is said to be almost orthogonal to I'
if T(A) =T (Aa).

Fact
As sets, we have the following canonical identification:

{p € Sx(F) | p is almost orthogonal to T'} = X?".
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Given F = (F,R) as before, let F™* = ACVF be maximally
complete such that

» FC (Fmax,R);

» I-Fmax = R, and
> kaax = k?:lg.



LTransfer to Berkovich spaces and applications

Passing from X to Xan

Given F = (F,R) as before, let F™* = ACVF be maximally
complete such that

> F C (F™ R);
» I-Fmax = R, and
> kaax = k?:lg.

Lemma
The restriction of types map

71 X(F™) = Sx(F), p— p|F

induces a surjection m : X(F™M) — Xa".



LTransfer to Berkovich spaces and applications

The topological link to actual Berkovich spaces

Proposition

~

1. The map w : X(F™) — X3 js continuous and closed. In
particular, if F = F™3 jt is a homeomorphism.

2. Any continuous prodefinable map g : X — Y defined over F
descends to a (unique) continuous map

g X"y,

3. Similarly, any prodefinable strong deformation retraction
H: 1 x X — X defined over F descends to a (unique) strong
deformation retraction

H o I(Rao) x XM — X",



LTransfer to Berkovich spaces and applications

The main theorem phrased for Berkovich spaces

Theorem

Let V' be a quasiprojective variety defined over F, and let X be an
F-definable subset of V.

Then there is a strong deformation retraction
H: I(Ry) x XM — X"

onto a subspace Z which is homeomorphic to a finite simplicial
complex.



L Transfer to Berkovich spaces and applications

Topological tameness properties for Berkovich spaces

Theorem
Let V be quasi-projective and definable over F.

1. V2 jslocally contractible.

2. Let X be an F-definable subset of V x P" Then there are only
finitely many homotopy types for X", where b € V.

3. If Ve s compact, then it is homeomorphic to Iimiel Z;, where
the Z; form a projective system of subspaces OFT/ " which are
homeomorphic to finite simplicial complexes.

4. Let d = dim(V), and assume that F contains a countable
dense subset for the valuation topology. Then V3" embeds
homeomorphically into R24+1 (Hrushovski-Loeser-Poonen).
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