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This was a chalk talk. The speaker’s notes may be found at the bottom.

1. Introductory Remarks

This work is joint with D. Nadler, A. Neitzke, and T. Nevins. It’s part of an FRG
group with Freed, Frenkel, Hopkins, Moore, and Telemon.

Goal: explore mysterious object coming out of physics called TheoryX. Physicists
call this the six dimensional (2,0) SCFT.

This involves going from physics to representation theory and the topology comes
in as part of the dictionary. There is still much work to do related to the founda-
tions. What we’re presenting here is what should be true (based on physical in-
tuition) and consequences once Theory X with the prescribed properties has been
constructed.

There will be a workshop on related material at Banff called BIRS May 24-29,
2015.

2. Rough features of theory X

Everywhere we are working over C.

Big picture: begin with a simply laced Lie algebra g and get a 6-dimensional con-
formal field theory.

The accessible part of this is a 2-dimensional conformal field theory (CFT) valued
in a 4-dimensional topological field theory (TFT).

Given a Riemann surface Σ we associate XΣ, an oriented 4-dimensional TFT. In
a recent paper Freed and Teleman describe the structure of this object. We will
related these objects to representation theory.

We model XΣ using B-models (or ‘B type Σ’ models). A B-model is provided by
looking at maps from simplicial sets intoM, whereM is a scheme or stack.

For example ifM = Spec R then O(MX) = O(M) ⊗ X and O(MS 1
) = O(M) ⊗ S 1.

This is the DAG-style mapping space.
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In the derived category QC(MX) = QC(M) ⊗ Σ whereM is a nice object (e.g. a
scheme or stack), and QC(M) is quasi-coherent sheaves over M. This example
has been worked out by Ben-Zvi, Freed, Nadler.

B-model is a 2d TFT where to a point we associate QC(M) thought of as a dg-
category.

Rowanski-Witten theory (RW-theory) is a 3d TFT where to a point we associate
QC(M) thought of as a monoidal category. This is the 3d TFT attached to a holo-
morphic symplectic manifold.

Formally, RWT ∗M(S 1) = QC(M) ⊗ S 1 = QC(L M) where LM is the loop space.
By HKR this is equal to QC(TM[−1]). Koszul duality (if you complete alongM)
gives an isomorphism to QC(T ∗M). This justifies the definition above.

3. Moduli spaces and 4d TFTs

Let Z be a 4d TFT (we’ll say a word about what we mean at the end of the section).
It’s taking a 3-manifold to a chain complex and a 2-manifold to a dg category.
The motivation is from super-symmetric gauge theory. This is the type of data the
physics is providing.

We want to define the moduli space of Z. We will need to consider so-called
‘local operators’ in Z. Morally, local operators are things you can insert points
into.

We define the chain complex of local operators to be Z(S 3). It has the natural
structure of an E4-algebra. The motivation is by looking at a 4-manifold as a
cobordism between 3-manifolds, e.g. from M3∐ S 3 to M3. Then for any point
x ∈ M one can then look at what happens when you cut out a ball around x and
carry that ball through the cobordism. That provides an action of Z(M3) on Z(S 3)
and so Z(S 3) is a Z(M3)-module.

The factorization homology is Z(M) ∈
∫

M Z(S 3). Think of
∫

M Z(S 3) as Z(S 3) ⊗ M
in a similar way to the −⊗− in the previous section but now for E4-algebras rather
than commutative algebras.

Define the moduli spaceM4 as S pec(Z(S 3)). This is an E4-algebra, i.e. a commu-
tative ring together with an odd Poisson bracket.

Basically we are trying to do algebraic geometry where we replace commutative
rings by E4-algebras.

By construction, Z(S 3) corresponds to functions onM4, i.e. what physicists would
call vev’s or vacuum expectation values. So Z(M3) is a sheaf onM4.

Now that we have the moduli spaceM4 in hand we can construct the X promised
at the start.
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The 4d TFT’s we’re considering have a small subtlety. We’re really asking for
a 4d TFT with 4-dualizability relative to Z(S 3). In particular, Z(S 3 × S 1) is not
well-defined. Think of this “relative to Z(S 3)” condition as a finiteness condition
in the background, analogous to the following situation in algebra. Any algebra
has a center, which can be finite dimensional. S 3 is like the center of a 3d TFT, and
we’re working with Z(S 3) so this finiteness condition has to be built into what we
mean by a 4d TFT. See the speaker’s written work for more details.

4. First attempt at understanding X

Let Σ be a Riemann surface. Then XΣ is supposed to be a 4d TFT. This will be
done via the M4 from above. Define Meven

4 to be the Hitchin base
⊕

H0(Σ,Ω⊗di).
The C∗ action on Ω⊗di gives a cohomological grading. Observe that there is no
interesting E4-structure, because of the grading.

Let ZS 1 be a 3d TFT given by ZS 1(M) = Z(S 1 × M). This gets you from the 4d
TFT Z to a 3d TFT. We can play this trick again:

Follow the previous section and construct a 3d moduli spaceM3 as Spec of local
operators in ZS 1 and then define ZS 1(S 2) = Z(S 1 × S 2) as an E3-algebra. Can then
form even Poisson algebra as above. So now there’s an affine Poisson structure of
degree 2.

In our examples this is uninteresting because for Z = XΣ, the resultingM3 is just
M4. So we must have done something wrong.

5. Second attempt

We can turn to the physics to see what we did wrong. Physicists look at the 3d
moduli space of a 4d gauge theory as the total space of Seiberg-Witten theory,
formed from integral systems. In this light, we should not have tried to built our
moduli space from affine data.

So we go back and look at Z(−) as:

Z(S 2) = line defects

Z(S 1) = surface defects

Z(S 0) = surface domain walls

Line defects are defined on 1-manifolds embedded in 4-manifolds by way of Lurie’s
tangle hypothesis. The other two cases are similar.

Consider line operators on Z(S 2). This is now an E3-category with the same op-
erations as before on vector spaces, labeled by 3-disks. The unit sitting in the
E3-category is just Z(D3), i.e. you fill in one of the S 2’s sitting in M. Now,
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〈1〉 = End(1)-modules = Z(S 3)−modules. And Z(S 3) is an E4-algebra, so we
have strictly more structure than in our first attempt.

As in the previous section you can go down a layer and get an E2-category, etc. In
physics these line operators are known as Wilson-Hooft operators.

Use line operators in ZS 1 , i.e. ZS 1(S 1) = Z(T 2) for the torus T 2. This is now an
E2-braided category.

Recall that our goal is to get an interesting 3d TFT. If we were working with a
symmetric monoidal category then we’d use Tannakian formalism at this point. In
fact this will work, as we now sketch.

The idea of Tannakian formalism is that if C is a symmetric monoidal ∞-category
then you can try to realize it as QC(M) for some scheme or stackM. So now we
should try to realize our braided category as QC(M)⊗ (something). For example, if
C is Rep(G) thenM = BG. In general one findsM by Yoneda embedding.

Let R be a commutative ring. Define Spec C(R) = Hom⊗(C,R-mod). This object
wants to be an algebraic stack, and if C is given by the method above then it is
one.

DAGVIII and Wallbridge explain well the connection betweenC and QC(SpecC).

Note: we have been ignoring connectivity. Would need t-structures to do formally,
and this has been done.

Let C be an En-category. Test it against R-mod as above and you get an REn+1-
algebra. So SpecC is an En+1-stack and in the best case scenario it’s actually
QC(SpecC). This is not true for a random braided tensor category but we do expect
this to hold for Theory X. So we will assume this and leave it to the topologists to
prove that it works.

We are looking at ZS 1(S 1) as an E2-category. We get M3 = Spec ZS 1(S 1) as an
E3-stack (in particular, an even Poisson stack).

Then we define XΣ to be the associationM3 ↔ T ∗BunO(Σ) (a.k.a. Hitchin space
coming from the stack BunO), making use of the action of C∗ to get the appropriate
grading.

A physicist would say that we’re approximating the compactification of Z on S 1

by a RW-theory on the moduli space RWM3 . See the work of Garotto-Moore-
Neitzke.

Given a scheme Y , we have said QC(T ∗Y) looks like QC(L Y) (at least, locally
and after doing a completion) which is an E2-category.
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6. Using this object we’ve defined

6.1. Structures on Z(T 2) and on M3. Because this is an E2-category there is a
unit objectOM3 = Z(S 1×D2) ∈ Z(S 1×S 1), given by the structure sheaf Γ(M3,O) =

Hom(O,O) = Z(S 1 × S 2) and O(M3) = Z(S 1 × S 2).

Choice of a point x ∈ T 2 (the 2-torus) gives a map φ : M3 → M4, the moduli
space we started with. This is a map of E3-schemes where the codomain is given
the trivial E3-structure (e.g. M3 → [T 2,M4] → M4). More structure can be ob-
tained by considering the factorization homology. This φ is a collection of Poisson
commuting functions, which is starting to look like an integral system, so we are
getting closer to the physics.

One can also define a dual integral system. Previously we worked with Z(S 1 × S 1)
and got the braided monoidal structure by looking at the second S 1. If we instead
look at the first S 1 then we get the dual integral system. We have an S L2Z worth
of E2-structures. We also get
Z(T 2) =M3 oo //

%%

Mv
3 = Spec(Z(S 1 × S 1))

vv
M4

As stacksM3 andMv
3 are identical, but there are non-trivial derived self-equivalences.

If our conjecture regarding TheoryX is accurate (after TheoryX is constructed that
is) then this will correspond to the following structure in the physics world:
T ∗BunΣ

G
oo //

$$

T ∗BunΣ
Gv

yy
Hitch

6.2. Hitchin Section. We want a section of the map M3 → M4. That’s like
sayingM3 has two monoidal structures and the second one is convolution.

Ov = OMv
3

= Z(D2 × S 1) ∈ QC(M3) is the unit for the convolution structure on
QC(M3).

Γ(M3,O
v) = Hom(O,Ov) = Z(D2 × S 1∐

T 2 S 1 × D2) = Z(S 3) = O(M4)

The compatibility of ⊗ and ∗ gives a map M3 → M4, i.e. a family of abelian
groups which is compatible from the eyes ofM4. That’s really what an integrable
system is, and this is our punchline. The 4d TFT knows about the integrable sys-
tem. See the work of Ngô.

6.3. Quantization of integrable systems. This is based on the work of on Ω-
deformations.
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There is a tautological way to quantize Z(S 1 × S 1) by passing to S 1-equivariant
family Z(S 1 × S 1)S 1

. This is a family over C∗(BS 1) = C[ε] where |ε| = 2.

Deformation quantization of M3 gives an association QC(M3) → QCε(M3) =

Z(S 1 × S 1)S 1

Under our conjecture this corresponds to QC(T ∗BunG) → D(BunG) where D is
for D-modules. So this is saying in particular that QC(L X)S 1

↔ D-mod(X), i.e.
X knows how to quantize itself.

We get a similar picture as from the beginning of this section, but with ε:
M3,ε oo //

""

Mv
3,ε

||
M4

This material also relates to Geometric Langlands, which provides

D-mod(BunGΣ) ' QC(LocGvΣ)

One could also do deformation quantization on both S 1’s and get a more compli-
cated version of Geometric Langlands.

There are many similar games you can play.
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